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Abstract

Natural killer (NK) cells discern the health of other cells by recognising the balance of activating and inhibitory ligands
expressed by each target cell. However, how the integration of activating and inhibitory signals relates to formation of the
NK cell immune synapse remains a central question in our understanding of NK cell recognition. Here we report that ligation
of LFA-1 on NK cells induced asymmetrical cell spreading and migration. In contrast, ligation of the activating receptor
NKG2D induced symmetrical spreading of ruffled lamellipodia encompassing a dynamic ring of f-actin, concurrent with
polarization towards a target cell and a ‘‘stop’’ signal. Ligation of both LFA-1 and NKG2D together resulted in symmetrical
spreading but co-ligation of inhibitory receptors reverted NK cells to an asymmetrical migratory configuration leading to
inhibitory synapses being smaller and more rapidly disassembled. Using micropatterned activating and inhibitory ligands,
signals were found to be continuously and locally integrated during spreading. Together, these data demonstrate that NK
cells spread to form large, stable, symmetrical synapses if activating signals dominate, whereas asymmetrical migratory
‘‘kinapses’’ are favoured if inhibitory signals dominate. This clarifies how the integration of activating and inhibitory receptor
signals is translated to an appropriate NK cell response.
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Introduction

Natural killer (NK) cells are lymphocytes that play an important

role in defence against infections and cancer [1]. They directly kill

tumor-transformed or virally infected cells via the formation of a

cytolytic synapse that facilitates polarisation and subsequent

secretion of cytotoxic granules directed towards the target cell

[2–4] and also contribute to immunity through, for example,

cytokine release [5]. NK cell activation is regulated by a balance of

activating and inhibitory signals through a multitude of germ-line

encoded receptors that recognise ligands expressed on the surface

of other cells [6,7]. One way that cells become susceptible to NK

cell lysis is through an upregulation of activating ligands at their

surface. One of the best characterised activating receptors on NK

cells, NKG2D, recognises ‘‘stress-inducible’’ ligands, such as

MICA, which are upregulated following, for example, heat shock

or UV-induced DNA damage [8,9]. Alternatively, loss of

inhibitory ligands from the surface can also render cells susceptible

to NK lysis. Inhibitory receptors include the killer-cell immuno-

globulin-like receptors (KIRs), members of the leukocyte Ig-like

receptor (LILR) family, and the CD94:NKG2A heterodimer that

recognise class I MHC molecules [10,11]. Broadly, activating

receptors trigger signalling cascades via phosphorylation of ITAM

or ITAM-like motifs encoded within activating receptors or, more

commonly, within associated adaptor proteins, whereas inhibitory

receptors contain ITIM motifs that recruit SH2 domain protein

tyrosine phosphatases upon receptor engagement (recently re-

viewed in [6]).

Understanding how the balance of activating and inhibitory

signals in NK cells leads to appropriate effector responses is an
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important challenge in NK cell biology [12]. NK cells form

synapses with target cells in which cell surface molecules

accumulate and organise into micrometer-scale domains

[2,3,13]. At lytic synapses, f-actin accumulates at the synapse,

the microtubule organizing centre (MTOC) polarises, and lytic

granules are directed towards the target cell [2,14–16]. However,

it remains a central gap in our knowledge as to how the balance of

activating and inhibitory signals relates to these dynamic cell

behaviours and controls the eventual outcome of the interaction

[17].

A special characteristic of our immune system compared with,

for example, the nervous system is the high motility of immune

cells and their propensity to form dynamic intercellular conjugates,

or so-called ‘‘make and break’’ synapses [18,19]. Moreover, recent

imaging of immune cell interactions in vivo found that a complex

orchestration of cell–cell contact times is a key correlate to

establishing appropriate immune responses. Integration of com-

peting receptor signals for migration or adhesion likely determine

the duration of cell–cell contacts, and thus understanding the

regulation of immune cell motility is important for how signal

integration leads to appropriate effector functions in these cells. In

homeostasis, T cells scan for specific peptides presented by

dendritic cells by moving rapidly in lymph nodes [20,21]. When a

cognate antigen is encountered, T cells stop and form a prolonged

interaction with the antigen presenting cells [22–25]. Migrating

cells are polarised and asymmetrical, consisting of a leading

lamellipodium, a lamella, and trailing uropod [26], whereas on

activation T cells spread symmetrically to form a stable synapse

[27,28] to which peptide/MHC proteins are recruited and

signalling is sustained within microclusters of proteins that

assemble at the synapse periphery [29,30]. A migratory configu-

ration of T cells, which allows moving contacts with antigen

presenting cells, has recently been termed a ‘‘kinapse’’ [27,31].

Here, we demonstrate that ligation of the cell surface integrin

LFA-1 alone on NK cells can trigger asymmetrical spreading to

aid cell migration. In contrast, ligation of activating receptor

NKG2D imposes symmetrical cell spreading via extension of

sheets of lamellipodia containing a ring of f-actin. NKG2D ligation

also delivers a stop signal to halt NK cell migration. Importantly,

inhibitory signalling is integrated continuously with activating

signals during spreading and serves to block symmetrical spreading

and provides a reverse-stop signal. The size of inhibitory synapses

and the dwell time of NK cells on inhibitory targets are

consequently reduced. Thus, our data suggest that in NK cells, a

dominance of activating signals results in symmetrical spreading to

form a large stable synapse, whereas a dominance of inhibitory

signals results in a smaller less stable migratory ‘‘kinapse’’ thereby

preventing cytotoxicity.

Results

NK Cells Undergo a Spreading and Contraction Response
at Activating but Not Inhibitory Synapses

Broadly, NK cells may form at least two types or categories of

synapse; an activating synapse that triggers target cell killing (and

other effector functions), or an inhibitory synapse, in which signals

from inhibitory ligands dominate and the target cell is spared (and

other effector functions are blocked). Here, we first set out to

compare the sizes of inhibitory and activating synapses. Confocal

images of NK cell–target cell conjugates were acquired and the

maximum length of the cell contact in a single x-y plane was

measured (Figure 1A). To readily compare activating and

inhibitory NK cell synapses, we initially used the well-established

model cell system of the NK cell line YTS transfected to express an

inhibitory receptor KIR2DL1 (YTS/KIR2DL1) mixed with either

untransfected 721.221 (221), which does not express endogenous

HLA-A, -B, or -C, or transfectants of 221 (221/Cw6) expressing

an inhibitory MHC ligand for KIR2DL1, HLA-Cw6. This system

is well-established as functionally leading to NK cell activation or

inhibition [13]. The synaptic contact was 30.864.2 mm between

YTS/KIR2DL1 and 221, i.e., at an activating synapse, compared

to 15.164.4 mm between YTS/KIR2DL1 and 221/Cw6, i.e., an

inhibitory synapse. Thus there is a 4-fold increase in contact area

at activating synapses relative to inhibitory contacts in this system

(Figure 1B).

To determine the kinetics of these morphological changes at

activating and inhibitory synapses, the diameter of the contact

between cells was measured every 30 s. For YTS cells interacting

with 221 cells, i.e., at activating synapses, NK cells rapidly spread

over the surface of the target cell, reaching their maximum area on

average 2 min after contact, which was followed by a contraction

(Figure 1C). In contrast, when HLA-Cw6 was expressed by target

cells, the inhibitory synapse expanded less rapidly and remained

small (Figure 1C).

To test the generality of these observations, another NK cell

line, NKL, was mixed with transfectants of 221 expressing MICA-

yellow fluorescent protein (YFP), a ligand for the activating

receptor NKG2D expressed by NKL. As for YTS, NKL exhibited

a spreading and contraction response at activating contacts that

followed a similar time course (specific example shown in

Figure 1D and 1E). Accumulation of MICA-YFP occurred during

the spreading process, implying that contraction was not necessary

to accumulate ligand at the synapse. Images of the en face synapse,

in transfectants of NKL expressing YFP-actin, revealed that a ring

of actin rapidly accumulated at the periphery of the activating

synapse (Figure 1F). This ring persisted throughout the spreading

phase and dissipated after the contraction phase.

HLA-E delivers an inhibitory signal to NKL cells via the

CD94:NKG2A heterodimeric receptor. We confirmed that HLA-

E expressed on 221 cells was able to inhibit NKL function, as

Author Summary

Immune cells survey their local environment and an
immunological response can be activated when an
appropriate target cell or antigen-presenting cell is
recognised by key cell surface molecules. Just how the
multitude of protein–protein interactions work to regu-
late this decision is an ongoing question. Imaging
technology has provided key insights, demonstrating
that immune cell activation is often accompanied by the
segregation of proteins at immune synapses. Natural killer
(NK) cells are lymphocytes that can recognise and kill
virally infected or tumour-transformed cells via the
formation of a synapse that facilitates secretion of
cytotoxic granules directed at the target cells. Key to
understanding target cell recognition by NK cells is to
establish how the balance of activating and inhibitory
signals at the synapse leads to an appropriate response,
e.g., to kill or spare a target cell. We found that when
activating ligands are dominant on a target cell, NK cells
stop migrating and spread lamellipodia across the target
cell to form a large symmetrical synapse. If inhibitory
signals dominate, the symmetry of the NK cell spreading
response is broken and the stop signal is reversed, which
reduces the time spent in contact with the target cell.
Thus, NK cell activating and inhibitory signals regulate NK
cell synapse symmetry and migration to determine
whether an NK cell will kill or move on.

NK Cell Spreading and Migration
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Figure 1. The NK cell spreading and contraction response. (A) An illustrative optical slice through a conjugate between a DiO-labelled NK cell
(red) and a transfectant of 221 expressing MICA-YFP (green). The dotted line illustrates the length of contact measured. Scale bar = 10 mm. (B) The
synapse length (mean + SD) at activating synapses between YTS/KIR2DL1 and 221 target cells (n = 6) or inhibitory synapses between YTS/KIR2DL1
and 221/Cw6 (n = 13). (C) The size of activating synapses (mean6SD) between YTS/KIR2DL1 and 221 (n = 9, squares), and inhibitory synapses between
YTS/KIR2DL1 and 221/Cw6 (n = 7, circles). (D) Time-lapse microscopy of NKL (red) spreading and contracting on a 221 cell expressing MICA-YFP
(green). Images shown are maximal projections of fluorescent images and corresponding bright field images. Time as indicated, scale bar = 5 mm. (E)
The synapse length for the cell shown in (D) (squares) and a representative inhibitory synapse between an NKL cell and a 221-HLA-E (circles). (F) Time-
lapse microscopy of NKL expressing actin-YFP and a 221 cell is shown as bright field images, overlaid with YFP-actin (red) and as an en face view of
actin-YFP at the synapse. Times indicated relative to first image, scale bars = 10 mm. (G) The length of synapse (mean6SD) for NKL cells and 221
expressing MICA-YFP (activating synapse; n = 5, squares) or 221 expressing HLA-E (inhibitory synapse; n = 7, circles). (H) Polarisation in NKL cells with
221-MICA, expressed as the distance of the 3-D centroid of intracellular membrane vesicles stained with DiD from the centre of the synapse relative to
the length of the cell (mean6SEM; n = 7). (I) Measurement of synapse length (solid squares) reveals the spreading and contraction between a primary
NK cell and 221 target cell. The distance of intracellular membranes from the synapse (open circles) highlights the simultaneous cell polarisation
towards the target cell. Data are from a single conjugate, representative of 15.
doi:10.1371/journal.pbio.1000159.g001

NK Cell Spreading and Migration
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interferon gamma (IFNc) production by NKL was inhibited for

target cells expressing HLA-E (Figure S1), consistent with previous

studies [32]. More importantly here, recognition of the inhibitory

ligand HLA-E, expressed in transfectants of 221, also prevented

the spreading and contraction response in NKL (Figure 1E and

1G). To determine how spreading at the activating synapse is

temporally related to the polarisation of intracellular granules and

vesicles, trafficking of intracellular membranes was monitored in

cells labelled with the membrane dye DiD. Polarisation, i.e., the

distance of the centroid of the intracellular membranes to the

synapse centre as a proportion of the cell length, began

immediately after cell contact and continued concurrently with

spreading (Figure 1H). Similarly, primary peripheral blood NK

cells underwent a spreading and contraction response on target

221 cells, and this also coincided with the polarisation of granules

towards the target cell (Figure 1I). Taken together, these data

extend observations of NK cell flattening induced by activating

ligands made by others [33] and establish temporal differences in

the morphology of the inhibitory and activating NK synapse;

interaction with an activating target cell triggers NK cells to spread

to form a large synapse concurrent with formation of an actin ring

and polarisation of intracellular granules, which is followed by a

contraction phase and dissipation of the actin ring. In contrast,

during inhibitory interactions the size of the contact between the

NK cell and the target cell remains small.

NKG2D and LFA-1 Ligation Trigger Morphologically
Different Spreading Responses in NK Cells

To identity the minimal requirements for a spreading response

in NK cells, glass slides were coated with mAb against NKG2D, a

major activating receptor on NKL. NKL transfected to express

membrane-bound (palmitoylated) YFP (YFP-mem), or stained

with the membrane dye DiO, were observed to be activated by the

mAb-coated surface and rapidly extended sheets of lamellipodia

out across the surface of the slide, which was followed by a

contraction phase during which the lamellipodia retracted

(maximum projections; Figure 2A; Video S1). NKL did not

undergo a spreading response on control isotype-matched or anti-

MHC I mAb-coated slides, and the response to immobilised anti-

NKG2D could be blocked by the addition of excess anti-NKG2D

mAb to the culture supernatant (unpublished data). Furthermore,

NKL used in this study did not express the Fc receptor CD16

(determined by flow cytometry; unpublished data) [34]. Thus, the

NK cell spreading and contraction response can be triggered by

ligation of NKG2D alone.

Ligation of LFA-1 induced a morphologically distinct response

to that triggered by NKG2D (Figure 2B). Cells extended

asymmetrically into an elongated, rather than round, contact

area with the slide. Bright-field, fluorescence, and interference

reflection microscopy (IRM) images were taken at the interface of

cells with the surface of the glass slide, and the extent of spreading

determined by quantifying the contact area. In response to

NKG2D ligation, spreading was followed by a slower contraction

response (Figure 2C). Analysis of the rate of change of the contact

area of an average of 18 cells responding to NKG2D ligation,

revealed a rapid initial spreading rate of 2.360.9 mm2/s triggered

on contact with the surface, becoming negative (i.e., contracting) at

6 min after contact with the slide (average rate of contraction from

6 to 12 min after contact was 20.1660.1 mm2/s). In contrast,

spreading triggered by LFA-1 ligation resulted in a rapid spreading

that was not followed by a contraction phase (Figure 2D). The

response to LFA-1 was inhibited by the addition of sodium azide,

confirming this was an active ATP-dependent process and not

merely adhesive (Figure 2D).

We next analysed the direction of expansion of NK cells

following NKG2D ligation by measuring the rate of change of the

distance from the initial centre of the cell contact to the cell

perimeter, around 360 equally spaced radii [27]. This analysis

revealed that spreading in response to NKG2D occurred in waves

which extended in all directions around the cell periphery,

followed by a more quiescent phase during which the cell slowly

contracted (Figure 2E). In contrast, analysis of the response to

LFA-1 ligation revealed that cells spread rapidly and asymmetri-

cally (Figure 2F). In response to NKG2D, but not LFA-1, a ring of

f-actin was formed at the periphery of the area of contact of the

NK cell with the slide, corresponding with the periphery of the

extending lamellipodia (Figure 2G and 2H). Cells spreading on

anti-LFA-1 did not form a ring of f-actin at the cell edge (Figure 2G

and 2H) and exhibited a predominance of filopodial extensions

with some lamellipodia, rather than the sheets of lamellipodia

induced by anti-NKG2D (Figure 2I). To quantify differences in

the symmetry of the spreading response, the distance to the cell

perimeter from the centroid of the contact with the slide was

measured along 360 radii in fixed cells. The ratio of maximum to

minimum lengths and the standard deviation (SD) of the radii

reveal that spreading on anti-NKG2D induced symmetrical

spreading (i.e., low variability in the radii), whereas cells spreading

on anti-LFA-1 was asymmetrical, i.e., with a high maximum to

minimum ratio and high variability in the radii (Figure 2J).

While ligation of NKG2D triggers symmetrical NK cell

spreading and LFA-1 ligation results in asymmetrical spreading,

both are dependent on actin remodelling, as both types of

spreading were blocked when cells were treated with cytochalasin

D (Figure 2K). PP2 and Ly49002, which, respectively, inhibit src-

family tyrosine kinases and PI3-kinases, also blocked spreading in

response to either NKG2D or LFA-1 ligation demonstrating the

requirement for these specific signalling pathways.

To determine the influence of the density of activating ligands

on the spreading response, slides were coated with anti-NKG2D

mAb in a dilution series. Homogeneity of mAb coating at the

concentrations used was confirmed by coating slides with

fluorescently tagged antibodies and recording images at the slide

surface (unpublished data). Over a semi-log dilution series, the

proportion of cells spreading and forming the f-actin ring, as

revealed by phalloidin staining, decreased with decreasing amount

of mAb, with almost none responding to slides coated with 1 mg/

ml mAb and ,75% of cells responding to slides coated with 3 mg/

ml (Figure 2L). Using 125I-labelled mAbs, the specific density of

anti-NKG2D was approximately 6006230 and 3,90061,500

molecules per mm2 for slides coated with 1 or 3 mg/ml respectively,

and titrated linearly between these two concentrations (Figure 2L).

However, among cells that formed an actin ring on slides coated

with 1–3 mg/ml anti-NKG2D mAb, there was no difference in the

average area to which they spread (Figure 2L). Thus, the area over

which an individual cell spreads was not dose-dependent, and

instead the spreading response is binary, with individual cells

spreading to the full extent providing a threshold of stimulation

has been reached.

Inhibitory Receptor Signals Are Continuously Integrated
during Spreading in Response to NKG2D Ligation

We next set out to test if and how inhibitory receptor ligation

affected the spreading responses caused by ligation of LFA-1 or

NKG2D. Cell spreading and reorganisation of actin into a

dynamic ring was visualised by total internal reflection fluores-

cence (TIRF) imaging of NKL transfectants expressing actin-YFP

on anti-NKG2D-coated slides (Figure 3A; Video S2). Actin rapidly

accumulated at the periphery of the spreading cell following

NK Cell Spreading and Migration
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Figure 2. NKG2D and LFA-1 ligation trigger morphologically different responses in NK cells. Maximal intensity projections of YFP-mem
NKL on (A) anti-NKG2D (scale = 10 mm) or (B) anti-LFA-1 coated slides (scale = 5 mm). Stacks (left to right) taken every minute from first contact with
the slide. (C) Contact area of a single representative NKL cell spreading and contracting on anti-NKG2D, determined by confocal microscopy (images
taken every 5 s). (D) Area of spreading of NKL cells on anti-LFA-1, untreated (solid line) or treated with sodium azide (dotted line). (E) The rate (nm/s)
of extension or contraction of a YFP-mem NKL cell on anti-NKG2D, determined every 5 s. Extension away from the cell centre is coloured red and
contraction in blue for each point around the circumference (y-axis) against time (x-axis). (F) Rate of extension or contraction of an NKL cell on anti-
LFA-1. (G) F-actin (phalloidin-488; green), with corresponding bright field images for NKL cells on anti-NKG2D- or anti-LFA-1-coated slides. Scale =
5 mm. (H) Quantification of f-actin (phalloidin-AlexaFluor633) across the diameter of cells stimulated on anti-NKG2D (solid line) or anti-LFA-1 (dotted
line) (horizontal bars indicate p,0.05 by ANOVA, n = 20). (I) Morphology of cells stimulated with anti-LFA-1, anti-NKG2D, or anti-MHC I. Number of
cells in brackets. (J) The distance from the centroid of phalloidin-AlexaFluor633-stained cells to the circumference was measured at 360 radii. Cell
symmetry is represented as SD of the radial distances and the ratio of maximum and minimum lengths (**, p,0.01; ***, p,0.001; n = 20). (K)
Spreading area (mean6SEM, n above each bar) of cells pretreated with cytochalasin, PP2, or LY294002, on anti-NKG2D, anti-LFA-1, or control
untreated cells on anti-MHC I. (L) The density of antibody on the slide (n = 46SD), the proportion of NKL cells responding by the formation of an actin
ring and the area of spreading of cells forming an actin ring (mean6SD; n = 120–250) at a range of concentrations of anti-NKG2D.
doi:10.1371/journal.pbio.1000159.g002
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Figure 3. Activating and inhibitory signal integration during the spreading response. (A) TIRF microscopy of NKL YFP-actin on slides
coated with anti-NKG2D, anti-NKG2A, and anti-LFA-1, or combinations thereof. Scale bar = 10 mm. Lower panels: Fluorescence intensity through a
cross section of each cell. (B) Intensity of f-actin (phalloidin-AlexaFluor633) across the diameter of NKL cells on anti-NKG2D (circles) or anti-NKG2D
with anti-NKG2A (squares) (mean6SEM; n = 8). (C) IFNc secretion by NKL on anti-NKG2D with anti-NKG2A (at concentrations indicated) and isotype-
matched control mAb to maintain the same total concentration of Ab. For the minimal and maximal range of secretion (closed circles) the level of
secretion with anti-NKG2D only (+) or isotype-matched control only (2) is shown (n = 36SD). Right side shows the molecular density of anti-NKG2A
on the slide (squares) and IFNc secretion (open circles; n = 36SD). (D) The proportion of NKL cells forming an actin ring (squares; n = 17–940) and the
extent of spreading (circles; mean6SD; n = 36–175) on slides coated as in (C). (E) F-actin distribution (phalloidin-AlexaFluor633) in NKL cells spreading
on slides coated as in (C) (concentration of NKG2A indicated). Scale bar = 30 mm. (F) NKL on anti-NKG2D stripes interspersed with isotype-matched
control mAb, showing bright field, anti-NKG2D stripes (red), and f-actin (phalloidin-AlexaFluor488; green). Scale bar = 25 mm. (G) NKL YFP-actin
(green) on anti-NKG2D (red) interspersed with mixed anti-NKG2D and anti-NKG2A. Scale bar = 5 mm. (H) NKL YFP-actin (green) on anti-NKG2D (red)
interspersed with mixed anti-NKG2D and anti-NKG2A. Scale bar = 5 mm. (I) NKL on stripes of anti-NKG2A and anti-NKG2D (red) alternating with anti-
NKG2D, showing f-actin (phalloidin-488; green). Scale bar = 10 mm. (J) F-actin distribution in regions of cells in contact with anti-NKG2D stripes or
with a mixture of anti-NKG2A and anti-NKG2D (***, p,0.001; n = 31 cells, paired t-test). (K) F-actin distribution following treatment with SHP inhibitor
NSC87877 (n = 36). (L) The percent difference in f-actin accumulation between regions of cells in contact with anti-NKG2D or with anti-NKG2D and
anti-NKG2A, in the presence or absence of NSC87877 (mean6SEM, n = 36).
doi:10.1371/journal.pbio.1000159.g003

NK Cell Spreading and Migration
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contact with the slide, and this annular distribution was

maintained throughout the spreading response and during

contraction, after which it dissipates, as was also seen in cell–cell

conjugates (Figure 1H). The actin ring was a highly dynamic

structure within which waves of actin propagated, consistent with

waves of membrane activity driving the symmetrical spreading

process (Figure 2E). Actin ring formation did not occur on slides

coated with mAb against the inhibitory receptor NKG2A

(Figure 3A; Video S3). Most importantly, actin ring formation

was blocked in cells exposed to a combination of anti-NKG2A and

anti-NKG2D mAbs (Figure 3A and 3B; Video S4). This is

consistent with previous studies showing that inhibitory receptor

ligation in NK cells prevents accumulation of f-actin at NK cell

synapses [14,35,36] and is reminiscent of how ligation of the

inhibitory receptor LILRB1 inhibits TCR-mediated actin poly-

merization [37]. In contrast, asymmetrical spreading induced by

LFA-1 ligation was unaffected by co-ligation of inhibitory

receptors (Figure 3A; Videos S5 and S6).

We next titrated the coating concentration of the NKG2A mAb.

Using 125I-labelled NKG2A mAb, in the presence of 3 mg/ml

unlabelled anti-NKG2D and isotype control antibodies (to

maintain the same total antibody concentration), the specific

density of anti-NKG2A on the slides could be estimated, and

reduced in a dose-dependent manner over the range of coating

concentrations used (Figure 3C). The biological consequences of

NKG2A ligation also titrated out over this range of densities, as

shown by the inhibition of IFNc production (Figure 3C).

Importantly however, at increasing concentrations of anti-

NKG2A mAb, the percent of cells forming an f-actin ring

decreased (Figure 3D and 3E). Interestingly, the area of spreading

in cells that did assemble a ring of f-actin did not alter (Figure 3D).

This further demonstrates that the formation of the actin ring is a

binary decision rather than occurring to an extent that is

proportional to the balance of inhibitory and activating signals

received.

Having shown that the integration of activating and inhibitory

signals controls whether or not a cell spreads, we set out to

determine whether the ‘‘decision’’ to spread is irreversible once

spreading has been initiated. To test this, cell spreading was

assessed on spatially segregated arrangements of activating and

inhibitory antibodies. If NK cell spreading is determined only by

the signals received at initiation of the response, cells would be

expected to spread according to the ligands first encountered on

contact with the slide, regardless of further mAb encountered as

they spread. If signals are integrated during spreading, spreading

would be expected to continue only when a cell continued to

encounter activating mAb and to be stopped if the spreading cell

encountered inhibitory mAb.

Microcontact printing with patterned polydimethylsiloxane

(PDMS) stamps was used to coat the surface of slides with mAb

patterned on a micrometer-scale. Specifically, mAb were stamped

in stripes and a second mAb was applied to fill the uncoated spaces

between the stamped mAb regions. The stamping method was

validated by imaging the distribution of stamped and overlaid

antibodies (Figure S2). When slides were stamped to display

alternate stripes of anti-NKG2D and an isotype-matched control

mAb, NKL cells spread in elongated shapes along the stripes of

activating antibodies and the actin ring was restricted to the cell

periphery along the edge of the stripe (Figure 3F). When NKL cells

were stimulated by stripes of activating NKG2D antibodies

interspersed with stripes containing a mixture of activating anti-

NKG2D and inhibitory anti-NKG2A antibodies, spreading was

again restricted to the regions of anti-NKG2D and stopped where

inhibitory receptors were also ligated (Figure 3G and 3H). These

data demonstrate that in regions with only activating ligands,

spreading continues, but as inhibitory signals are encountered or

where activating signals are absent, spreading is halted, which

implies that local activating signals are needed to maintain

spreading.

To test whether the actin cytoskeleton and spreading could be

tightly spatially regulated in NK cells, narrower stripes (of ,4 mm

width) were used such that cells would make contact with several

stripes at the same time (Figure 3I). Quantification of the

abundance of f-actin in different regions of NK cells on these

narrower stripes revealed that that within individual cells, the

intensity of f-actin staining was significantly higher in regions

interacting with activating mAb compared to regions in contact

with mixed activating and inhibitory antibodies (Figure 3J). Thus,

actin polymerisation is regulated according to the local balance of

activating and inhibitory ligands. Blocking activity of SH2-domain

containing tyrosine phosphatases SHP1 (and SHP2) involved in

NKG2A-mediated inhibition, using the inhibitor NSC87877 [38],

abolished the difference in f-actin intensity between regions of

NKG2D and NKG2D and NKG2A engagement (Figure 3K and

3L).

Taken together with the observation of smaller synapses during

inhibitory contacts, this demonstrates that if inhibitory signals are

dominant, spreading and the formation of the f-actin ring are

blocked. If the threshold for activation is exceeded, cell spreading

continues. Rather than an irreversible commitment to spread

occurring according to the signals received by the NK cell on first

contact, signal integration continues during spreading and there is

a constant local requirement for dominance of activating signals to

continue actin polymerisation and spreading.

LFA-1 Triggers NK Cell Migration, NKG2D Imposes a Stop
Signal, and NKG2A:CD94 Delivers a Reverse-Stop Signal

As NKG2D ligation and LFA-1 ligation resulted in very

different NK cell morphologies we sought to understand how the

signals from these receptors would combine and how they relate to

cell motility. Cells stimulated on slides coated with both NKG2D

and LFA-1 antibodies spread to the same extent as cells stimulated

by either receptor alone, formed a ring of f-actin (Figure 4A) and

spread symmetrically (Figure 4B), demonstrating that NKG2D

imposes symmetrical spreading in the presence of LFA-1 ligation.

Crucially, inhibitory receptor ligation broke the symmetry

imposed by NKG2D in the presence of LFA-1 stimulation

(Figures 4B). Thus, NKG2D imposes symmetry on NK cell

spreading and this is reversed by inhibitory receptor ligation.

To study NK cell motility, slides were coated with ligands to NK

cell receptors, rather than high affinity antibodies. A spreading

response and formation of an f-actin ring were observed in NKL

on slides coated with MICA, a natural ligand of NKG2D

(unpublished data). NKL cells moved across slides coated with

ICAM-1 during which cells extended leading lamellipodia in the

direction of movement (Figure 4C and 4D; Video S7). T cells must

receive a ‘‘stop’’ signal from the TCR, preventing T cell migration,

in order to form a symmetrical stable synapse and become fully

activated [22,27]. Thus, to determine if NKG2D could impose a

stop signal on NK cells, slides were coated with MICA in

combination with ICAM-1. Coating slides with 2.5 mg/ml ICAM-

1 in the presence of MICA generated an ICAM-1 density on the

slide surface of 2,4006440 molecules per mm2 (mean of four

wells6SD), as determined using 125I-labelled protein. MICA was

used at 2.0 mg/ml (leading to densities of protein on the slide of

4,50061,500 molecules per mm2), 1.5 mg/ml (210061,100),

1.0 mg/ml (1,6006120) and 0.5 mg/ml (545685). MICA imposed

symmetrical spreading and delivered a stop signal (Video S8). At
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Figure 4. NKG2D imposes symmetry and a stop signal; NKG2A breaks symmetry and delivers a reverse-stop signal. (A) Area of
contact between NKL and slides coated with combinations of LFA-1, NKG2D, and NKG2A mAb, fixed after 6 min (mean6SD, n = 79–117, ***,
p,0.0001, ANOVA). The percent of cells forming an actin ring determined by phalloidin staining is indicated above each bar. (B) Symmetry of NKL on
slides coated with combinations of LFA-1, NKG2D, and NKG2A mAb. The distance from the centroid to the cell perimeter was measured at 360
equally spaced radii. Symmetry is quantified as the ratio of the longest to shortest radii and as the SD of all 360 radii (n = 20, ***, p,0.001, **, p,0.01
ANOVA). (C) Migration of a representative NKL cell on ICAM-1, measured by rate of radial movement of the cell circumference relative to the original
cell centroid. Extension away from the original centre is coloured red and contraction blue, for each of 360 radii (y-axis) against time (x-axis). (D) NKL
displacement (mm) from position at t = 0, on slides coated with 2.5 mg/ml ICAM-1 in combination with MICA at concentrations indicated, with 2.5 mg/
ml HLA-E or acid-denatured HLA-E (n = 8). (E) Frequency histograms for cell speeds measured at 10-s intervals, total number of time points analysed
for each condition is indicted. (F) Average speed of cells on combinations of ICAM-1, MICA, HLA-E, or acid-denatured HLA-E (mean6SD, ***, p,0.001
versus ICAM-1 only, by ANOVA). Numbers indicate concentration of protein in mg/ml. (G) Duration of conjugation of YTS/KIR2DL1 with 221 (open
squares) or 221/Cw6 (open circles). Cells were co-incubated in a small volume to allow conjugate formation and an excess of media added to prevent
further conjugation. The proportion of NK cells remaining in conjugates was determined by flow cytometry. YTS and 221 (closed squares) and YTS-
KIR2DL1 and 221-Cw6 (closed circles), which had not been premixed to form conjugates, are shown to control for conjugate formation after dilution
(mean of three experiments6SD).
doi:10.1371/journal.pbio.1000159.g004
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increasing densities of MICA the average speed of cell migration

was reduced (Figure 4F). Analysis of cell speeds in each 10-s time

frame, revealed that increasing concentrations of MICA increased

the proportion of time cells spend stopped (Figure 4E).

Previously, studies with a rat NK cell line showed that cell

motility was preserved during inhibitory interactions with target

cells [39]. Also, there is evidence that a reduction in conjugate

formation occurs at inhibitory synapses, but an earlier study

showed that blocking inhibitory class I MHC proteins did not

change the extent of NK cell conjugation [40,41]. Thus we next

set out to clarify whether inhibitory receptors act to deliver a

‘‘reverse-stop’’ signal that restores cell motility and decreases the

duration of the synapse. HLA-E was coated onto slides at 2.5 mg/

ml, which produced a density of 11,70062,700 molecules/mm2.

Crucially, the stop signal delivered by MICA was reversed when

slides were coated with ICAM-1, MICA, and the NKG2A:CD94

ligand, HLA-E, and not when HLA-E had been denatured by acid

(Figure 4D–4F).

To next test whether inhibitory receptor ligation causes a

reduction in the duration of conjugation, fluorescently labelled

YTS/KIR2DL1 were co-incubated with target 221 or 221/Cw6

in a small volume to allow conjugate formation and an excess of

media added to dilute the cells and thus prevent further cell–cell

conjugation. The proportion of NK cells in conjugates after

different times was determined by flow cytometry. This revealed

that the presence of inhibitory receptor ligands dramatically

reduced the time of engagement between NK cells and target cells

(Figure 4G). Thus, inhibitory receptor ligation can prevent

cytotoxicity by blocking formation of a large stable symmetrical

synapse and instead favouring a migratory configuration, which

reduces the duration of intercellular conjugation.

Discussion

In summary, we have demonstrated that the balance of

activating and inhibitory ligands is continually locally assessed by

NK cells following contact with a target cell. Under physiological

conditions, NK cell activation results from integration of many

activating and inhibitory signals from surface receptors interacting

within immune synapses. Here we have studied the outcome of

cross-talk between the integrin LFA-1, the activating receptor

NKG2D, and the inhibitory receptor NKG2A. If activating signals

dominate, the NK cell stops and spreads lamellipodia across the

target to form a large stable synapse, simultaneously forming an

actin ring and polarising towards the target cell. Importantly,

inhibitory receptor signalling can break synapse symmetry and

reverse the stop signal, allowing cells to migrate and resulting in a

reduced dwell time on target cells. This establishes a specific

framework by which the balance of activating and inhibitory

signals is translated into an inhibitory or cytolytic response.

In cytotoxic T lymphocytes, the formation of a peripheral actin

ring polarises the MTOC and directs cytotoxic granules to the

target [42]. Using photoactivatable peptides, it has been shown

that MTOC polarisation is induced within 2 min of TCR

engagement, and therefore occurs concurrently with T cell

spreading [43]. Similarly, spreading and actin ring formation in

NK cells also occurred concurrently with granule polarisation. T

cell spreading is mediated by recruitment of adaptor proteins such

as nck and Wiscott-Aldrich Syndrome protein (WASp), which

direct formation of the f-actin-rich ring at the edge of the synapse

[44,45]. WAS patients are impaired in both T cell- and NK cell-

mediated cytotoxicity [46,47] consistent with cytolytic T cells and

NK cells using similar processes in spreading and the delivery of

cytolytic granules.

For B cells the extent of spreading is proportional to the affinity

of the B cell receptor for antigen and the density of antigen [48].

As the B cell spreads it captures further antigen, which is processed

and presented to T cells. Thus, spreading provides a structural

basis for B cell affinity discrimination. In contrast, NK cell

receptors are germ line encoded and thus do not exhibit the log

scale variation in affinity exhibited by B cell and T cell receptors.

Instead, NK cells must determine the relative density of activating

and inhibitory ligands [10,49]. Here, we found that the density of

activating and inhibitory ligands determines whether or not an

NK cell undergoes a spreading response, and that the extent of

spreading is not proportional to the balance of signalling but

rather occurs if a threshold of activation is surpassed. Thus the

spreading response in the NK cell is binary and this reflects a

necessity for the outcome of the interaction of an NK cell with a

target cell to be all-or-nothing, at least in the case of a cytolytic

response, i.e., either killing or sparing the target cell. In T cells,

competing positive and negative feedback pathways involving

ERK and SHP-1 lead to an all-or-none biological response to

TCR ligation [50,51], and analogous pathways may lead to binary

spreading responses in NK cells.

Microcontact printing of spatially segregated activating and

inhibitory mAb was employed to demonstrate that spreading and

actin polymerisation stop when a spreading cell does not

encounter a dominance of activating ligands. Thus signal

integration continues during the spreading response and the

continued dominance of local activating signals is necessary for

spreading to continue. Functionally, this continuous signal

integration during spreading is likely to be crucial in preventing

misdirection of a cytolytic response towards normal healthy

neighbouring cells within crowded tissue, ensuring that the

activating synapse forms only towards an appropriate target cell.

The T cell synapse has recently been described as an adhesive

junction between cells exhibiting radial symmetry, whereas a

moving adhesive junction, with a leading lamellipodium, has been

termed a ‘‘kinapse’’ [27,31]. It remains to be established whether

analogous moving adhesive contacts made by NK cells are capable

of triggering a response such as secretion of particular cytokines, as

found for T cells. There is clearly a great deal of similarity between

NK cells and cytotoxic T lymphocytes, the latter also found to

migrate on ICAM-1 monolayers where co-ligation of NKG2D

favoured formation of an actin ring [52]. Ligation of the inhibitory

receptor CTLA-4 provides a ‘‘reverse-stop’’ signal to T cells and

thus reduces the duration of T cell contact with an APC, which

may be a key mechanism by which it inhibits T cell activation

[53,54]. Taken together with our data, it emerges that inhibitory

receptor signals can act, for both T cells and NK cells, as

regulators of conjugation, by breaking the symmetrical spreading

imposed by activating receptors and reducing the time of contact

between cells.

Materials and Methods

Cell Lines
NKL were maintained in 10% FCS, 100 mg/ml streptomycin,

100 U/ml penicillin, L-glutamine, b-mercaptoethanol, nonessen-

tial amino acids in RPMI-1640 (all Invitrogen; complete medium)

with 100 U/ml IL-2. NKL cells were transfected with pEYFP-

actin or pEYFP-mem vectors (Clontech) by electroporation

(Amaxa Biosystems) and stable transfectants selected using

1 mg/ml G418. YTS and YTS/KIR2DL1 and the EBV

transformed B cell line 721.221 (221) and 221 transfected to

express HLA-Cw6 (221-Cw6) or MICA-YFP were obtained and

cultured as described [55–57]. Primary human NK cells were
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isolated from healthy donor buffy coats under negative magnetic

selection (Miltenyi) and cultured as described [58].

Imaging and Analysis of NK: Target Cell Conjugates
NK and target cells were mixed in chamber slides and live cell–

cell conjugates were imaged at 5% CO2, 37uC by confocal

microscopy (Leica SP5 RS) using a 636water immersion lens (NA

1.2). To measure NK cell polarisation, intracellular membranes,

stained with DiD (Invitrogen), were mapped as a 3D object using

software (Volocity, Improvision). Polarisation was expressed as the

distance of the centroid of this object to the centre of the synapse

as a proportion of the cell length, measured from the centre of the

synapse to the other cell pole.

Preparation of Coated Slides
Protocols for preparing chamber slides (Nunc) were adapted

from published protocols [59]. Briefly, slides were cleaned using

acidified 70% ethanol, coated with 0.01% poly L-lysine, then mAb

or recombinant protein (at 10 mg/ml PBS unless indicated

otherwise), then blocked with complete medium. Antibodies to

NKG2D (Clone 149810, R&D systems), NKG2A (clone 131411,

R&D systems), LFA-1 (Clone G43-25B, Pharmingen), pan-MHC

class I (Clone W6/32), or murine IgG isotype controls (Pharmin-

gen), recombinant ICAM-1, or ICAM-1-Fc and MICA-Fc

chimeras (R&D systems) were used. HLA-E monomers were

produced and refolded with the HLA-G peptide VMAPRTLFL,

as described [11]. HLA-E was denatured by mixing with an equal

volume of citrate/phosphate buffer (0.131 M citric acid, 0.066 M

Na2HPO4 [pH 3.3]) for 1 min [60].

To determine the density of molecules coated on slides, proteins

were radiolabelled with 125I (ICN Chemicals) using iodogen

coated tubes according to manufacturer’s instructions (Pierce

Chemicals) and dialysed overnight against PBS. Slides were coated

with ligands or antibodies under the conditions described above, in

combination with unlabelled proteins as appropriate, in quadru-

plicate wells. Slides were dismantled and the amount of protein

bound per well was counted using a gamma counter (Hewlett

Packard). The coating density was calculated (molecules per mm2)

using reference radiolabelled samples of known concentrations and

molecular weight of each protein as 150, 79, 100, and 48 kDa for

antibodies, ICAM-Fc, MICA-Fc, and HLA-E, respectively.

Microcontact printing was performed using PDMS stamps in an

adaptation of published procedures (Sylgard 184 Silicone

Elastomere kit, Dow Corning) [61]. Stamps were coated for 1 h

with 100 mg/ml PBS mAb mixed with 15 mg/ml AlexaFluor 635

anti-rat IgG (Invitrogen) to allow visualization of antibodies, then

washed with ddH20, air dried, and pressed onto poly L-lysine

coated slides [62]. Stripes were overlaid with of 5 mg/ml mAb in

PBS for 1 h then blocked with 1% bovine serum albumin in PBS.

Imaging NK Cell Spreading and Migration on Coated
Slides

Cells were added to coated chamber slides in 25 mM HEPES in

complete medium. In some cases cells were preincubated for

30 min with PP2, LY294002, cytochalasin D, or the SHP1/2

inhibitor NSC87877 [38] at the concentrations indicated. Bright

field, fluorescence, and IRM images were captured at the slide

surface every 5 or 10 s for up to 30 min using an inverted confocal

microscope (described above) with either 636 or 206 lens (NA

0.7). Cell speeds and spreading were quantified (Volocity,

Improvision). For TIRF microscopy, NKL-YFP actin cells were

added to coated chamber slides. Single colour fluorescent images

were obtained on an inverted microscope (Axiovert 200, Carl

Zeiss) modified for objective-type TIRF (Till Photonics), using a

1006objective (NA 1.45, Carl Zeiss) and recorded using a charge-

coupled device camera (PCO SensiCam) and software (Image J).

To visualise f-actin, cells were fixed (Cytofix/cytoperm, BD

Pharmingen) 6 min after addition to coated chamber slides,

washed with 0.05% Tween/PBS and stained with 2 U/ml

phalloidin-AlexaFluor 635 or phalloidin-AlexaFluor 488 (Invitro-

gen) in 5% horse serum/3% BSA in buffer containing detergent

(Permwash, Pharmingen). The presence of an actin ring was

defined as a broad ring of intense f-actin staining (revealed by

phalloidin) surrounding an unstained cell centre. Filopodia were

defined morphologically as long thin actin-rich extensions,

whereas lamellipodia were defined as broad membranous sheets

extending from the cell body. Each cell was then scored for the

presence of filopodia, lamellipodia, both, or neither, in a single

confocal image taken at the slide surface. To measure the area of

spreading, the edge of the cell was defined by fluorescence

intensity (using Volocity software), and it was confirmed that this

correlated with the edge of the cell identified in the reflected (IRM)

image. To quantify the intensity of phalloidin staining on

micropatterned mAb, binary masks were produced, of the

fluorescent stripes and the overlay, which were multiplied by the

channel containing phalloidin staining, enabling quantification of

f-actin on each surface (using Image J software).

Cell symmetry and the directional rate of extension or

contraction, was determined similarly to published analysis [27],

using a custom programme written in G (Labview software). The

perimeter of the cell was defined according to fluorescence

intensity thresholding and the centroid located. The distance was

measured from the centroid to the perimeter along 360 evenly

spaced radii. The SD of these distances and ratio of maximum to

minimum distance were used to determine cell symmetry. To

measure radial speed of spreading and contraction, this pro-

gramme determined the rate of change of the radius at each angle,

between frames.

Conjugation Assay
YTS/KIR2DL1 stained with DiD and 221 cells, with or

without expression of HLA-Cw6 stained with DiO, were

incubated together at 106/ml in 100 ml, for 20 min to allow

conjugate formation, then diluted to stop conjugate formation, in

10 ml complete medium in petri dishes. Conjugates were fixed

with 4% paraformaldehyde at 6, 20, 45, and 90 min after dilution,

and the proportion of single and double positive fluorescent events

(conjugates) analysed by flow cytometry (FACSCalibur, BD

Biosciences) and FlowJo software.

IFNc Secretion Assay
Chamber slides were prepared as above and coated with 3 mg/

ml NKG2D, mixed with NKG2A mAb, at a range of

concentrations, and isotype control antibody, to a final total

concentration of 6 mg/ml Ab in PBS at 4uC overnight. After

blocking with complete medium, 1.5 6105 NKL were added per

well in 250 ml complete medium. Alternatively, 1.5 6 105 NKL

were mixed with 1.5 6 105 target cells (221, 221-MICA, or 221

HLA-E) in a total volume of 250 ml complete medium. Cells were

incubated for 24 h at 37uC, 5% CO2, after which the supernatant

was assayed for IFNc by ELISA according to manufacturer’s

instructions (matched anti-human IFNc antibody pair; R&D

systems).

Statistical Analysis
Data were analysed by t-test or one-way ANOVA as indicated.
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Supporting Information

Figure S1 Inhibition of IFNc production by target cell
expression of HLA-E. To confirm that 221 transfected to

express HLA-E were inhibitory in our hands, we incubated 1.5 6
105 NKL cells with 1.56105 target cells (221, 221-MICA, or 221-

HLA-E) in total volume of 250 ml in triplicate, for 24 h.

Supernatants were then assayed by ELISA for IFNc production

(shown as mean +SD).

Found at: doi:10.1371/journal.pbio.1000159.s001 (0.64 MB TIF)

Figure S2 The homogeneity and density of stripes
achieved by microcontact printing. To confirm the efficacy

of our microcontact printing procedure, 100 mg/ml NKG2D mAb

was mixed with 15 mg/ml anti-rat IgG-AlexaFluor 635 to identify

regions of the stamped mAb, and applied to a lysine coated glass slide

using a PDMS stamp. The slide was overlaid with anti-NKG2D mAb

at 5 mg/ml and total mAb detected with anti-mouse AlexaFluor-488.

Image shows the distribution of the stamped mAb (red) overlaid with

total mAb (green); scale = 10 mm. The graph shows the intensity

profile (indicated by a line on the image) for stamped (red) and total

(green) mAb and indicates that the distribution of the stamped mAb is

restricted to the stripes and that the overall density of mAb in the

stripes and regions of overlay are the same.

Found at: doi:10.1371/journal.pbio.1000159.s002 (2.93 MB TIF)

Video S1 NKG2D ligation causes spreading in NKL
cells. NKL cells were labelled with the membrane dye DiD and

were stimulated by glass surfaces coated in NKG2D mAb and

imaged every 5 s at the slide surface by confocal microscopy.

Found at: doi:10.1371/journal.pbio.1000159.s003 (8.11 MB

MOV)

Video S2 NKL cell transfected with YFP-actin stimulat-
ed on a glass slide coated in NKG2D mAb only. Images

were recorded using TIRF microscopy. Scale = 5 mm. Speed =

156.

Found at: doi:10.1371/journal.pbio.1000159.s004 (1.07 MB

MOV)

Video S3 NKL cell transfected with YFP-actin stimulat-
ed on a glass slide coated in NKG2A mAb. Images were

recorded using TIRF microscopy. Scale = 5 mm. Speed = 156.

Found at: doi:10.1371/journal.pbio.1000159.s005 (9.48 MB

MOV)

Video S4 NKL cell transfected with YFP-actin stimulat-
ed on a glass slide coated in an equal mixture of NKG2D

and NKG2A mAb. Images were recorded using TIRF

microscopy. Scale = 5 mm. Speed = 156.

Found at: doi:10.1371/journal.pbio.1000159.s006 (2.36 MB

MOV)

Video S5 NKL cell transfected with YFP-actin stimulat-
ed on a glass slide coated in LFA-1 mAb. Images were

recorded using TIRF microscopy. Scale = 5 mm. Speed = 156.

Found at: doi:10.1371/journal.pbio.1000159.s007 (5.58 MB

MOV)

Video S6 NKL cell transfected with YFP-actin stimulat-
ed on a glass slide coated in and equal mixture of LFA-1
and NKG2A mAbs. Images were recorded using TIRF

microscopy. Scale = 5 mm. Speed = 156.

Found at: doi:10.1371/journal.pbio.1000159.s008 (7.63 MB

MOV)

Video S7 NK cells migrate on ICAM-1. NKL cells were

transfected to express YFP-mem and were stimulated by glass

slides coated with ICAM-1. Bright field, fluorescent, and IRM

images were recorded every 10 s. Field of view = 246 6246 mm.

Found at: doi:10.1371/journal.pbio.1000159.s009 (4.25 MB

MOV)

Video S8 NK cells are stopped by MICA. NKL cells were

transfected to express YFP-mem and were stimulated by glass

slides coated with ICAM-1 and MICA. Bright field, fluorescent

and IRM images were recorded every 10 s. Field of view = 2466
246 mm.

Found at: doi:10.1371/journal.pbio.1000159.s010 (4.47 MB

MOV)
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