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Abstract

Pangenomes—the cumulative set of genesencoded by apopulation or species—arise fromthe interplay of horizontal gene transfer,

drift, and selection. The balance of these forces in shaping pangenomes has been debated, and studies to date focused on ancient

evolutionary time scales have suggested thatpangenomes generally conferniche adaptation to their bacterial hosts. To shed lighton

pangenome evolution on shorter evolutionary time scales, we inferred the selective pressures acting on mobile genes within indi-

vidual human microbiomes from 176 Fiji islanders. We mapped metagenomic sequence reads to a set of known mobile genes to

identify single nucleotide variants (SNVs) and calculated population genetic metrics to infer deviations from a neutral evolutionary

model. We found that mobile gene sequence evolution varied more by gene family than by human social attributes, such as

household or village. Patterns of mobile gene sequence evolution could be qualitatively recapitulated with a simple evolutionary

simulation without the need to invoke the adaptive value of mobile genes to either bacterial or human hosts. These results stand in

contrast with the apparent adaptive value of pangenomes over longer evolutionary time scales. In general, the most highly mobile

genes (i.e., those present in more distinct bacterial host genomes) tend to have higher metagenomic read coverage and an excess of

low-frequency SNVs, consistent with their rapid spread across multiple bacterial species in the gut. However, a subset of mobile

genes—including those involved in defense mechanisms and secondary metabolism—showed a contrasting signature of

intermediate-frequency SNVs, indicating species-specific selective pressures or negative frequency-dependent selection on these

genes. Together,ourevolutionarymodels andpopulationgeneticdata showthatgene-specific selectivepressurespredominateover

human or bacterial host-specific pressures during the relatively short time scales of a human lifetime.

Key words: pangenome, evolution, mobile genes, horizontal gene transfer, human gut microbiome, evolutionary simu-

lations, population genetics.

Introduction

Human gut microbial communities (microbiomes) impact di-

verse aspects of human health, such as food digestion, nutri-

tional uptake, immunity, and inflammation (Brito et al. 2016;

Valdes et al. 2018). The gut microbiome is shaped by both

ecological factors, such as shifts in species abundance or strain

replacements, and evolutionary forces, such as mutation, hor-

izontal gene transfer (HGT), drift, and selection (Garud and

Pollard 2020). In particular, microbes in the gut dynamically

and frequently exchange genetic material through HGT (Vos

et al. 2015), resulting in pangenomes—defined as the total

set of genes observed across all sampled members of a species
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or population—which are often much larger than an individ-

ual genome size (Sela et al. 2016; McInerney et al. 2017; Jiang

et al. 2019). Horizontally transferred (mobile) genes can con-

tribute to environmental adaptation, notably through the

propagation of antibiotic resistance (Jiang et al. 2019).

However, there are contexts in which pangenome evolution

could be driven more by drift than by selection. For instance,

the evolution of endosymbionts or intracellular pathogens,

which have small effective population sizes, is generally driven

by drift and gene loss, resulting in small pangenomes

(Giovannoni et al. 2014). In contrast, selection seems to play

a bigger role in free-living microbes, like hydrothermal vent

bacteria (Bobay and Ochman 2018; Moulana et al. 2020).

Whether pangenome evolution is mainly driven by selection

(an adaptive model) or drift (a nonadaptive or neutral model)

is a question that has generated active debate (Sela et al.

2016; Andreani et al. 2017; McInerney et al. 2017; Bobay

and Ochman 2018).

Pangenome studies to date have focused on relatively long

evolutionary time scales. For example, a model in which gene

gain by HGT is predominantly adaptive to prokaryotic

genomes provides a good fit to a data set of 707 distantly

related genomes from the NCBI database (Sela et al. 2016). In

that model, gene gain and loss maintain genome size equi-

librium and have opposite fitness effects. Based on a synthesis

of this model with additional population genomic data,

McInerney et al. (2017) argued that mobile genes generally

provide niche adaptation to their bacterial host genomes, and

thus pangenomes can be considered an adaptive feature. A

key piece of evidence supporting this conclusion is that bac-

teria with large effective population sizes (Ne) tend to have

larger genomes that have gained many mobile genes (Sela et

al. 2016). Since the effects of natural selection (relative to

drift) are stronger when Ne is large, this suggests that mobile

gene acquisition tends to be of adaptive value to the bacterial

host genome. Similarly, Bobay and Ochman (2018) found

that Ne correlates positively with pangenome size for most

of the 153 prokaryotic species they analyzed. Another study

of a similar NCBI data set revealed a positive correlation be-

tween genome fluidity (a measure of gene turnover in the

pangenome) and synonymous nucleotide diversity, a proxy for

the molecular clock (Andreani et al. 2017). Although this does

not exclude a role for selection, the observation is most par-

simoniously explained by a neutral model, in which mobile

genes are gained and lost randomly over time. To reconcile

these findings (Bobay and Ochman 2018), proposed a nearly

neutral model of drift-selection balance. It assumes that most

accessory genes in the pangenome are slightly beneficial,

such that they can be considered neutral when Ne is small,

but they can escape the effects of drift and spread when the

selective coefficient s exceeds 1/Ne. This more nuanced model

is likely more realistic than an artificial duality between either

selection or drift alone.

Resolving the balance of evolutionary forces influencing

pangenomes also depends on the biological scale or unit of

evolution. For example, the consequences of selection at the

level of single genes, genomes (i.e., the bacterial hosts of

mobile genes) or humans (i.e., the hosts of microbiomes)

could yield different patterns. The studies mentioned above

focused on adaptation at the whole-genome level, but the

selection also acts at the level of individual genes (Takeuchi et

al. 2015; Shapiro 2017; Moulana et al. 2020). Mobile genes in

particular may have their own Ne, which could be distinct

from the Ne of the species as a whole (Shapiro 2017). For

example, there is a distinct class of mobile genes, including

phage and other “selfish” elements that have effectively in-

stantaneous HGT rates (Wolf et al. 2016). Other mobile genes

may provide rapid adaptive value to their microbial hosts, such

as in the gut microbiome of humans with different diets or

lifestyles (Brito et al. 2016). Therefore, some mobile genes

appear to be selected to favor their own (“selfish”) replica-

tion, whereas others may provide benefits to their bacterial or

even human hosts (Hehemann et al. 2010).

All the studies above investigated pangenome evolution

among distantly related genomes over relatively ancient

time scales. Yet selective pressures might differ on recent

and shorter evolutionary time scales, such as within local pop-

ulations of bacteria over dozens rather than millions of years.

However, a targeted investigation of the population genetics

of mobile genes on short time scales is still missing. To fill this

gap, we used a data set of 37,853 mobile genes involved in

recent HGT events in the human gut (Brito et al. 2016). HGT is

known to occur frequently within individual human gut

microbiomes (Smillie et al. 2011; Yaffe and Relman 2020;

Significance

It has recently been debated to what extent pangenomes, the total set of genes encoded by a species, are adaptive or

shaped by neutral evolution. Based on a data set of mobile genes and metagenomes from bacteria in the human gut

microbiome, we reframe this debate and find that gene sequence evolution can qualitatively be recapitulated by an

evolutionary model in which mobile genes maximize their own replication but provide little adaptive benefit to their

bacterial host genomes. We infer divergent regimes of natural selection acting on genes of different cellular functions

within individual gut microbiomes. These results suggest that, at least on time scales of a human lifetime, selection acts

on individual genes, but not in a way that is necessarily adaptive to microbial host cell fitness.
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Groussin et al. 2021), making it an ideal system in which to

study mobile gene evolution over short time scales. We

mapped metagenomic reads from a cohort of 176 Fiji islander

gut microbiomes to the set of mobile genes. From these

mapped metagenomic reads, which sample multiple micro-

bial populations within each person’s gut, we identified single

nucleotide variants (SNVs) segregating within microbiomes,

from which we calculated population genetic metrics (dN/

dS and Tajima’s D) that contain information about the evolu-

tionary and demographic histories of mobile genes. Our ap-

proach is thus gene-focused rather than species-focused

because mobile genes are likely to inhabit multiple prokaryotic

species (Shapiro 2017). By mapping metagenomic reads to

mobile genes, we thus include mutations (SNVs) that occur in

one or more bacterial species and evolve within the time

frame of a single human lifespan. In contrast to studies over

longer evolutionary time scales, which have concluded that

gene acquisition is generally adaptive to bacterial hosts, we

find that many aspects of mobile gene molecular evolution on

shorter time scales can be explained without invoking adap-

tive benefits to the bacterial (or human) host. However, a

small subset of genes with distinct functions shows dramati-

cally different signatures of molecular evolution, suggesting

that selection acts at the level of gene function. Therefore,

selection acting at the level of individual gene function—

rather than bacterial host genome adaptation—might pre-

dominate over shorter “human” time scales.

Results and Discussion

Gene Mobility Correlates Positively but Not Strongly with
Metagenomic Coverage

To study pangenome evolution on time scales on the order of

a human lifespan, we used an existing collection of mobile

genes identified in 387 isolate genomes from the Human

Microbiome Project (HMP) and 180 single-cell genomes

from the Fiji Community Microbiome Project (FijiCOMP).

Selected single-cell genomes came from 31 different genera

and had less than 10% contamination as assessed by CheckM

(Parks et al. 2015; Brito et al. 2016). The mobile genes were

identified as genomic regions (�500 bp) with >99% nucle-

otide identity over the whole gene length that was shared

between distantly related reference or single-cell bacterial

genomes (<97% identity in 16S rRNA), suggesting that

HGT occurred within an individual human gut microbiome

(Brito et al. 2016). Ribosomal genes, which tend to be highly

conserved, were excluded from this set of mobile genes as

they could represent false-positive HGT events (Brito et al.

2016). This procedure is strict, yielding likely true positive

HGT events, at the expense of many false negatives (Smillie

et al. 2011; Brito et al. 2016). We considered only genes with

at least 10X metagenomic sequence coverage, and only

metagenomes with at least 500 genes passing this coverage

threshold. These filters yielded a total of 7,990 mobile genes

out of the 37,853 genes present in the original data set, and

175 out of 176 metagenomes, each from a different person

from Fiji. We operationally defined gene mobility as the num-

ber of single-cell genomes in which a mobile gene was found.

Gene mobility ranged from 1 to 16 species (mean ¼ 2.73,

standard deviation ¼ 2.42; supplementary fig. S1,

Supplementary Material online) and is probably an underesti-

mate of the true HGT rate because it was calculated from a

limited sample (180 genomes) of the diversity in Fijian

islanders’ gut. This could also be explained by small or incom-

plete assemblies of the single-cell genomes. Nonetheless, this

data set allows us to assess the balance of evolutionary forces

in the pangenome on short time scales.

We first asked whether our mobility metric behaves as

expected in quantifying the spread of mobile genes in the

gut. Assuming that genes with higher mobility will occur in

more species, we expect them to be more deeply covered by

metagenomic sequence reads. Consistent with this expecta-

tion, we found that a gene’s mobility is positively correlated

with its depth of metagenomic read coverage (fig. 1, supple-

mentary tables S1A and C, Supplementary Material online).

The expectation of a positive correlation is not guaranteed

because some mobile genes, such as selfish elements, have

deleterious effects (Vogan and Higgs 2011) and can be sub-

ject to negative frequency-dependent selection (Takeuchi et

al. 2015; Corander et al. 2017; Domingo-Sananes and

FIG. 1.—The correlation between gene mobility and metagenomic

sequencing coverage is positive but widely variable. The boxplots and violin

plots show the distributions of adjusted R2 values (blue) and slopes (red)

across samples (individuals from Fiji) for the correlation between coverage

(average depth per site) and gene mobility. The black dots represent the

167 samples (out of 175 tested) in which the correlation is significant

(t-test, FDR-adjusted P<0.05). Examples of this correlation in four

randomly selected samples are shown in supplementary figure S2,

Supplementary Material online.
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McInerney 2019) such that they are carried only by a fraction

of individuals within a species, even if prevalent across species.

The correlation between gene mobility and coverage is signif-

icantly positive in 167 out of 175 gut metagenomes (false

discovery rate [FDR]-adjusted P< 2.2 � 10�16), but the ad-

justed R2 and slope values are relatively modest (fig. 1, sup-

plementary fig. S2, Supplementary Material online). Varying

selective pressures across mobile genes (e.g., deleterious

effects and negative frequency-dependent selection) might

be responsible for reducing the scaling between gene mobility

and coverage, but not enough to flatten the relationship

completely. We conclude that gene mobility, even if esti-

mated from a relatively small sample of 180 gut bacterial

genomes, behaves approximately as expected: generally lead-

ing to higher gene copy numbers.

Estimating Population Genetic Metrics from
Metagenomic Data

The relationship between metagenomic coverage and gene

mobility is generally positive but varies substantially across

individuals (fig. 1). We therefore sought to ask whether this

variation could be explained by either gene-specific factors,

such as gene mobility and COG functional categories (Tatusov

et al. 2000), or by human host-specific factors, such as age,

diet, and social networks. Such factors are known to influence

the patterns of mobile gene presence/absence across bacterial

genomes (Takeuchi et al. 2015) and human hosts

(Yatsunenko et al. 2012; Brito et al. 2016; Zhernakova et al.

2016; Garud and Pollard 2020), yet it is unknown how they

influence the molecular evolution of mobile genes. To study

molecular evolution, we mapped metagenomic reads to mo-

bile genes to call SNVs segregating within and among bacte-

rial species in the gut microbiome. We quantified mobile gene

sequence evolution using four population genetic metrics that

detect selection and capture deviations from a neutral evolu-

tionary model:

1. hp, the nucleotide diversity calculated from the average

number of pairwise nucleotide differences among metage-

nomic reads,

2. hw , the nucleotide diversity calculated from the normalized

number of segregating/polymorphic sites in metagenomic

reads,

3. Tajima’s D, the normalized difference between hp and hw ,

and

4. dN/dS, the ratio of nonsynonymous to synonymous substi-

tution rates, measuring selective constraints at the protein

level.

We note that our estimate of dN/dS, based on mapping

metagenomic reads that could come from the same or differ-

ent species, is a mixture of within-species polymorphism (often

called pN/pS) and between-species divergence (dN/dS), but we

refer to this hybrid metric as dN/dS for simplicity. We further

note that hp and hw are two different estimators of the popu-

lation mutation rate,h ¼ 2 Nem, where m is the mutation rate

and Ne is the effective population size. hp is more sensitive to

intermediate-frequency mutations whereas hw is more sensi-

tive to low-frequency mutations. The difference between the

two estimators is captured by Tajima’s D, with D< 0 indicating

more low-frequency mutations than expected under a stan-

dard neutral model with no selection and a constant popula-

tionsize (Tajima1989).NegativevaluesofDcanbe the resultof

a population expansion, purifying selection, or a very recent

selective sweep. Conversely, positive values of D indicate more

intermediate-frequency mutations thanexpectedunder aneu-

tral model (supplementary fig. S3, Supplementary Material on-

line), due to population contraction, balancing selection, or

negative frequency-dependent selection.

These population genetic metrics were calculated for each

mobile gene in each sample by mapping metagenomic reads

and calling SNVs after applying a 10X sequencing coverage

filter (Materials and Methods). Consistent with previous esti-

mates across multiple kingdoms of life (Koonin and Wolf

2010), we observe that hp and hw distributions across samples

span 3 to 4 orders of magnitude (supplementary fig. S4,

Supplementary Material online). Also consistent with previous

estimates in bacteria over different time scales (Sela et al.

2016; Gardon et al. 2020; Garud and Pollard 2020), dN/dS

tends to be less than one, suggesting the predominance of

purifying selection at the protein level (supplementary fig. S4,

Supplementary Material online). Our estimates of these pop-

ulation genetic metrics from metagenomic data are thus

within an expected range.

Population Genetic Metrics Vary More across Mobile
Genes Than across Human Host Attributes

With these metrics in hand, we asked whether mobile gene

evolution is mainly driven by microbial- or human host-specific

selective pressures. To do so, we determined whether popu-

lation genetic metrics varied more across gene families or

across individual human hosts. We first compared distribu-

tions of pairwise differences for each metric using the

Kolmogorov–Smirnov test (KS test) and found much greater

variation between genes than between individuals (fig. 2 and

supplementary fig. S4, Supplementary Material online). This

result indicates that, on short time scales, the selective pres-

sures quantified by the four metrics may be less affected by

person-specific factors, such as lifestyle or social networks,

than by gene functions within a microbial cell. In other words,

although some mobile genes may enable adaptations to per-

sonalized factors such as diet (Brito et al. 2016), sequence

evolution is modestly affected by these factors on short

time scales (within an individual). In contrast, population ge-

netic metrics vary substantially more across genes, suggesting

that selective pressures act predominantly at the level of gene

function.

N’Guessan et al. GBE
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To further assess the evidence that person-specific fac-

tors have weaker effects than gene-specific factors on mo-

bile gene sequence evolution, we used a linear regression

where the continuous response variable is one of the pop-

ulation genetic metrics and the qualitative/categorical ex-

planatory variable is a human host attribute (Materials and

Methods). Because the statistical significance of such an

analysis is affected by sample size, we selected mobile genes

with less than 30% missing values across the 172 samples

for which metadata were available, for a total of 1,333

tested genes. Human host age and sex did not show any

significant effects on mobile gene sequence evolution.

However, a person’s household or village significantly influ-

enced the evolution of a relatively small percentage of mo-

bile genes (7.84–15.2% of the 1,333 tested genes; fig. 3a).

In this small subset of significant genes, the correlations

between population genetic metrics and household (ad-

justed R2 �0.30 to �0.85) were stronger than correlations

with village (adjusted R2 < 0.30). These results varied

somewhat depending on the value of the missing value fil-

ter. For example, using a stringent filter, the village of origin

had a significant influence on dN/dS in up to 20% of genes

(supplementary fig. S5, Supplementary Material online).

The small set of genes significantly influenced by household

and village could be representative of very specific family/

village selective pressures such as diet. Annotations of these

genes show that they are involved in a set of functions in-

volved in carbohydrates, lipids, secondary metabolites and

ions transport or metabolism, and potential antibiotic resis-

tance through ABC-type multidrug transporter system (sup-

plementary table S2, Supplementary Material online). Some

of these functions are similar to those identified by Brito et

al. (2016) as differentially abundant among villages.

Therefore, although village- or household-specific selective

pressures do not explain much of the variation in population

genetic metrics across genes, we cannot exclude specific

instances in which social networks or lifestyles drive the

evolution of few mobile genes over short time scales.

(a) (b)

(c) (d)

FIG. 2.—Mobile gene evolution is more variable across genes than across human hosts. Each panel shows the distribution of the variation of population

genetic metrics among samples (red) or among gene families (black) through the distribution of log10(DKS) statistics. The DKS statistic from the KS test

measures the maximal distance between a pair of cumulative distributions—in this case, across either samples or genes. Panels a, b, c, and d represent the

variation of hp, hw , Tajima’s D, and dN/dS, respectively. We downsampled the 37,853 genes to the same size as the number of samples to make them

comparable and repeated the downsampling 999 times. This figure presents the result for 999 replicate downsamplings of 175 genes and shows that there

is more variation across genes than across samples/individuals for all the population genetics metrics (KS test, P<2.2� 10�16). See supplementary figure S4,

Supplementary Material online for example distributions across genes and samples.

Mobile Gene Sequence Evolution within Individual Human Gut Microbiomes GBE
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(a)

(b)

FIG. 3.—Gene function explains more variation in mobile gene sequence evolution than human host attributes. (a) Adjusted R2 values for the categorical

regressions between population genetic metrics (color-coded) and human host attributes. We only considered genes with at least 10X coverage in a sample,

and we also required that mobile gene should have less than 30% missing values across samples, for a total of 1,333 genes included in this analysis. The five

strongest and most prevalent correlations between population genetics metrics and human host factors are shown (FDR-adjusted P<0.05). Not shown are

village significantly correlated with Tajima’s D (0.75%) and dN/dS (0%), and household significantly correlated with hw (0.38%). Human host age and sex did

not show any significant effects on mobile gene sequence evolution. Each black point represents a mobile gene for which the categorical regression is

significant. The percentage of significant genes out of the total number of genes tested is indicated in parentheses along the x-axis. For dN/dS, the sample

size was reduced to n¼255 genes because an additional filter requiring mutations to be seen in the least five metagenomic reads was applied before

computing dN/dS, which can other be sensitive to sequencing errors (Materials and Methods). (b) Adjusted R2 values of the categorical regressions between a

population genetic metric and the gene family. Each black point represents a sample for which the categorical regression is significant. The percentage of

significant samples out of the total number of samples tested is indicated in parenthesis along the x-axis. Only 172 out of 175 samples for which metadata

were available are included in this analysis. We only considered genes with at least 10X coverage in a sample. We only included genes with a gene family

annotation and required that each gene family be represented by at least two genes. Finally, we only included genes present in 70% or more of the samples

(less than 30% missing values), for a total of 512 genes.

N’Guessan et al. GBE
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Although human host factors seem to have relatively little

effect on the sequence evolution of most mobile genes on

short time scales, selective pressures at the level of the genes

might be more important. Indeed, we observed a higher var-

iation of population genetics metrics between genes than

between samples (fig. 2), which could be explained by gene

attributes such as their cellular function. To test this hypoth-

esis, we used linear regressions between population genetics

metrics and gene families based on the following set of

conditions:

1. the gene should have at least 10X coverage to limit the

impact of sequencing errors and increase confidence in var-

iant calling,

2. the gene should have an available gene family annotation,

which is the explanatory variable of the regression. Gene

family annotations come from COG, KEGG, TIGRFAM,

PFAM, or dbCAN databases (Brito et al. 2016),

3. the COG family should be represented by at least two genes

within the data set to avoid low sample sizes, and

4. the mobile gene should have less than 30% missing values

across samples, for a total of 512 tested genes.

In contrast to human factors, gene functions defined by

COG families explained much of the variation in mobile gene

sequence evolution across the majority of tested samples. For

hw , hp, and Tajima’s D, COG families explained from �10%

to �60% of the variance in more than 88% of the samples

(FDR-adjusted P< 0.05; fig. 3b). For dN/dS, COG families

explained from �26% to �83% of the variance in 52.3%

of samples. To ensure that the less prevalent effect of host

factors was robust to differential sampling of genes (n¼ 512)

and individuals (n¼ 172), we downsampled 999 times the set

of tested genes to n¼ 172 and repeated the regressions for

each subset of randomly selected genes. After downsam-

pling, host village and household significantly correlated

with mobile gene sequence evolution for �1–28% of tested

genes compared with 52.3–97.1% of tested samples for

COG family (fig. 3a and supplementary fig. S6,

Supplementary Material online), which confirms the less prev-

alent effect of host factors compared with gene functions. A

remaining caveat is that the explanatory power and the re-

producibility of the correlation (i.e., the proportion of samples

for which the correlation is significant at an FDR-adjusted

P< 0.05) depends on the balance between sample size (num-

ber of genes) and the stringency of the data quality filters

(supplementary fig. S7, Supplementary Material online).

Indeed, as the filter stringency increases, only the most prev-

alent mobile genes are included and the correlation R2 tends

to increase. However, the sample size and the reproducibility

of the correlation tend to decrease (supplementary fig. S7,

Supplementary Material online). For instance, as the strin-

gency of the missing value filter increases, fewer samples

show significant correlations between Tajima’s D and COG

function, going from 88.4% of samples when a gene can be

absent in at most 30% of samples to 40.1% significant when

a gene can be absent in at most 10% of samples (supplemen-

tary fig. S7, Supplementary Material online). Although the

correlation strength depends on the filter stringency, the me-

dian adjusted R2 of the correlation is always higher than 20%

and can reach up to�60%. Altogether, these results suggest

that COG functions appear to explain much of the short-term

molecular evolution of a subset of mobile genes, which is

much larger than the subset of genes that are significantly

influenced by human host factors.

Higher Gene Mobility Is Associated with Low-Frequency
SNVs in the Gut Microbiome

In addition to gene- or environment-specific selective pres-

sures, the rate of HGT is also expected to affect mobile

gene molecular evolution, as it allows genes to spread across

different species, possibly altering their population size and

thus the efficacy of selection (Vos et al. 2015; Shapiro 2017).

To first order, each human host represents a distinct short-

term evolutionary trial. Thus, to study the influence of HGT

rate on molecular evolution within each of the human guts

sampled, we correlated gene mobility with the population

genetic metrics described above: dN/dS, hp,hw , and Tajima’s

D.

Using this regression approach, we first observed that the

correlation between dN/dS and gene mobility was significant

and positive in 147 out of 175 samples (supplementary table

S3D, Supplementary Material online and fig. 4a), but with a

low average adjusted R2 of 0.03 (SD ¼ 0.02). This pattern is

robust whether or not we include gene length and coverage

as covariates in linear regressions to control for the effect of

sequencing artifacts (supplementary fig. S8, Supplementary

Material online). This correlation could be explained by the

fixation of slightly deleterious nonsynonymous mutations in

the early stage of a population expansion (Parsch et al. 2009)

as might be the case when mobile genes are spreading across

species on short time scales. Alternatively, this could also be

explained by slightly increasing positive or relaxed purifying

selection with increasing gene mobility, but we refrain from

drawing strong conclusions due to the weak R2 values.

We next observed that 153 out of 175 samples had a

stronger and significant positive correlation between hw and

gene mobility (linear regression with FDR-adjusted P< 0.05;

mean adjusted R2 ¼ 0.06; SD ¼ 0.04; supplementary table

S3B, Supplementary Material online and fig. 4a). This is con-

sistent with a model in which mobile genes accumulate SNVs

that remain at low frequency (as measured by hw ;which is

sensitive to these low-frequency mutations) as they spread

across species. This pattern is reproducible in most samples,

but it is less robust to the potential effects of sequencing

artifacts than other observed patterns (supplementary fig.

S8, Supplementary Material online). We also observed that

hp, which is more sensitive to intermediate-frequency
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mutations, decreases with gene mobility (supplementary table

S3A, Supplementary Material online and fig. 4a). Among

samples in which hp versus gene mobility regression results

were significant (157 out of 175 samples with FDR-adjusted

P< 0.05), �97% of them exhibited this negative correlation

(mean adjusted R2¼ 0.08; SD¼ 0.04). As a result, Tajima’s D

(which reflects the difference between hpand hw ) is signifi-

cantly negatively correlated with gene mobility in 149 out of

175 samples (fig. 4a and supplementary table S3C,

Supplementary Material online). Even if the R2 values are

modest, we note that the trends are highly repeatable across

samples even when we control for the effect of sequencing

artifacts (supplementary fig. S8, Supplementary Material on-

line). Reasons for the relatively low R2 values could include

noise in the gene mobility metric (based on a small sample of

genomes) and/or variable selective pressures across genes.

There are several reasons for this enrichment of low-

frequency SNVs (resulting in lower Tajima’s D values) in

more highly mobile genes, including purifying selection keep-

ing deleterious mutations at low frequency, recovery of new

polymorphism after a recent selective sweep, or population

expansion. Overall, these results suggest that HGT can spread

genes across species faster than SNVs are able to rise to high

frequency.

(a)

(b)

(c)

FIG. 4.—Gene mobility is negatively correlated with Tajima’s D and positively correlated with dN/dS in real and simulated microbiomes. (a) Real data from

Fiji. The heatmap shows the slope of a regression model in which either hp, hw , Tajima’s D, or dN/dS is the response variable and gene mobility is the

explanatory variable (across samples). Regression P-values were obtained through a t-test. The heatmap contains nonsignificant regressions results after FDR

correction for multiple testing (black), negative significant correlations (red), and positive significant correlations (blue). Data standardization was performed

before each regression to respect the t-test’s assumption of normality, and t-tests were concordant with nonparametric tests (Materials and Methods).

Heatmap rows and columns were clustered with Euclidean distance and complete linkage clustering. (b) Representation of simulation events over two

generations. In the first generation, a gene gain event occurs through HGT. Gene gain is represented by the transfer of gene from a donor to a recipient cell

and increases the genome size of the recipient. The probability of future gene gain or loss events (Pgain and Ploss, respectively) is determined by the difference

between the current genome size of the cell (x) and the equilibrium genome size (x0). At equilibrium, the probability of gene gain and loss is the same by

definition (Pgain¼ Ploss). An increase of genome size until it exceeds the equilibrium point (x> x0) leads to gene loss being more likely than gain (Pgain< Ploss).

Gene gain also increases the fitness (f> fWT) of the recipient cell based on the selection coefficient of the transferred gene (sgain). In the model, each gene has

its own selective coefficient drawn from an exponential distribution exp(k) with an expected value of 1/k. Gene gain is either slightly beneficial or neutral in

this model and has the opposite fitness effect of gene loss, which is slightly deleterious or neutral (-sgain ¼ sloss where sgain � 0). Gene loss decreases the

genome size of the target cell and in case this decrease leads to a smaller genome size than equilibrium, the probability of gene gain becomes higher than the

probability of gene loss (Pgain> Ploss). Gene loss also decreases the fitness of the target cell (f< fWT) based on the selection coefficient of the lost gene (sloss).

Finally, as represented in the second generation, mutations can also occur and change the fitness of the cell based on a selective coefficient (smutation) which is

drawn from a distribution (Materials and Methods). (c) Simulated data. The heatmap shows the slope of a regression model in which either hp, hw , Tajima’s

D, or dN/dS is the response variable and gene mobility is the explanatory variable (across simulation replicates). Simulations with different parameters for HGT

rate and or distributions of selective coefficients (s � exp(k)) are color-coded (n¼10 replicates per simulation). Heatmap rows and columns were clustered

with Euclidean distance and complete linkage clustering.
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Simple Evolutionary Simulations Recapitulate the Observed
Effects of HGT on Mobile Gene Sequence Evolution

To better understand potential mechanisms underlying the

relationship between gene mobility and sequence evolution

observed in the Fiji microbiome data, we implemented the

explicit simulation of HGT and sequence evolution in

SodaPop, a forward evolutionary simulation toolkit (Gauthier

et al. 2019), which we updated to include HGT. Similar to Sela

et al. (2016), gene gain and loss are constrained to maintain

genome size equilibrium and to have opposite fitness effects

(fig. 4b). SodaPop simulates protein sequence evolution with

the distribution of fitness effects of mutations derived from

biophysics-based protein fitness landscapes (Gauthier et al.

2019). Briefly, we simulated a Wright–Fisher process for asex-

ual populations with 10 bacterial species. Each simulation in-

cluded 5,000 cells in total, divided into 10 species, and ran for

105 generations. Each gene has an explicit DNA sequence,

where each site can be mutated to another nucleotide at a

defined mutation rate (10�7 mutations per site per genera-

tion). These mutations include synonymous changes that are

assumed to be neutral, and nonsynonymous changes with a

distribution of fitness effects of which 30% are lethal and

70% are drawn from a normal distribution N (m ¼ �0.02,

r¼ 0.01) (Eyre-Walker and Keightley 2007) (Materials and

Methods). Microbial genomes also experience HGT events,

with explicit gene gain and loss events. The rates of these

two events are updated at each generation for each cell to

maintain an equilibrium around the genome size x0, set to 500

genes (fig. 4b) (Sela et al. 2016). Genomes larger than x0 are

prone to gene loss, but genomes smaller than x0 are prone to

gene gain. We also modeled gene gain and loss selection

coefficients, specific to each gene and drawn from an expo-

nential distribution with parameter k (Materials and Methods).

We kept simulated population sizes small due to memory

limitations. To make sure this limitation does not cause exces-

sive drift (e.g., the accumulation of deleterious mutations lead-

ing to extinction, also known as Muller’s Ratchet (Bachtrog

and Gordo 2004)) we forced species relative abundances to

remain constant . We also set a relatively high mutation rate of

1� 10�7 mutations per site per generation to compensate for

the small population sizes and to ensure that enough muta-

tions were generated in a reasonable number of generations.

Genome size equilibrium was reached for every simulation,

indicating robustness to variable starting conditions (supple-

mentary fig. S9, Supplementary Material online). Altogether,

this model allows us to test if the relationships between gene

mobility and population genetic metrics observed in the real

data can be observed under varying rates of HGT and the

adaptive benefit of acquired genes.

We found that the simulation could recapitulate the major

features observed in the real Fiji microbiome data without

requiring that mobile genes provide adaptive value to a hu-

man host or to its bacterial genome. First, the simulations can

recapitulate the shape of the observed distribution of gene

mobility (supplementary fig. S1, Supplementary Material on-

line). A caveat is that simulations are far from including all the

complexity of the gut microbiome that is the number of spe-

cies, population structures, and other features not simulated,

and the distributions were only compared for one illustrative

set of input parameters (supplementary fig. S1,

Supplementary Material online). Thus, we do not claim that

our model can provide a precise quantitative description of

gene mobility in the gut microbiome, but rather that it can

recapitulate the major qualitative features.

Second, the simulations recover the positive correlation be-

tween gene mobility and census population size (metage-

nomic coverage) observed in the real data (fig. 1). The

positive correlation was always stronger in the simulations

(mean adjusted R2 of 0.705 across all parameter settings,

standard deviation ¼ 0.190) compared with the real data

(mean adjusted R2 of 0.057 across all parameter settings,

standard deviation ¼ 0.062). This suggests that factors not

included in the model, such as negative frequency-dependent

selection and noise in the gene mobility metric, reduced the

strength of the correlation in the real data. The positive cor-

relation was stronger in simulations with relatively low HGT

rates but was largely unaffected by whether HGT events were

neutral or adaptive to microbial host cell fitness (supplemen-

tary table S4, Supplementary Material online). This suggests

that relatively high HGT rates could also explain the weaker

correlation between gene mobility and coverage observed in

the real data.

Third, we assessed whether the simulations could repro-

duce the observed correlations between population genetics

metrics and gene mobility. Simulations recapitulated most of

the observed effects of HGT on nucleotide diversity in real

data. Specifically, Tajima’s D correlates negatively with gene

mobility in simulations, with a median adjusted R2 of 0.32

(mean¼ 0.23; SD¼ 0.13) compared with a median adjusted

R2 of 0.01 (mean ¼ 0.01; SD ¼ 0.01) in the real data and

reproducible across all the simulations compared with �85%

of the samples in the real data (fig. 4; supplementary tables

S3C and S5C, Supplementary Material online). The variation

in this correlation is explained more by the HGT rate than by

fitness effects (i.e., neutral or adaptive selective coefficients on

gene gain/loss). This can be seen in the heatmap, in which

simulations cluster by HGT rate rather than by selective coef-

ficients (fig. 4c). Along the same lines, we performed a K-S

test on the slopes of the regression between Tajima’s D and

mobility and observed that this slope varies more by HGT rate

than by selective coefficients (supplementary fig. S10,

Supplementary Material online). Simulations also predict

that dN/dS correlates positively but weakly with mobility,

but this is only significant at intermediate HGT rates (supple-

mentary fig. S11, Supplementary Material online). A similar

pattern is observed in the real data, in which dN/dS correlates

weakly with mobility (fig. 4a). This effect could be due to
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slightly deleterious nonsynonymous mutations spreading by

HGT before they can be purged by the selection, but further

work will be needed to test this thoroughly and to exclude the

competing hypothesis of positive selection. Overall, real hu-

man microbiome data are recapitulated by our simple evolu-

tionary model, which includes only selection for a stable

genome size, without the need to invoke adaptive advantage

of mobile genes to their bacterial genomes, or to include any

human host factors whatsoever.

A Subset of Gene Functions Experiences a Divergent
Regime of Natural Selection

Having established that Tajima’s D correlates negatively with

gene mobility whereas coverage tends to correlate positively

both in simulations and in the real data set, we sought to

determine if these general trends apply equally to all gene

families. Although the trends are significant across samples,

the large variations observed across genes (fig. 2 and supple-

mentary fig. S4, Supplementary Material online) could be due

to gene-specific evolutionary regimes. To test this hypothesis,

we used linear mixed models with gene mobility as a predictor

of either Tajima’s D or coverage as a response variable, while

controlling for variations across gut microbiome samples like

alpha or beta diversity, and allowing the response to vary

across COG categories (Materials and Methods). This analysis

was performed on genes with at least 10X coverage and

available COG annotations (n¼ 3,608 mobile genes).

As expected, based on the overall positive relationship ob-

served (fig. 1), coverage and gene mobility are positively and

significantly correlated across most COG categories (fig. 5a).

COG category X (mobilome, prophages, and transposons)

stood out as the strongest contributor to this positive relation-

ship, consistent with this signal being driven by genes with the

highest mobility. Removing sample identity or COG category

from the linear mixed models significantly decreased the

model fit, suggesting that they both contribute substantially

to explaining variation in the coverage-mobility and Tajima’s

D-mobility relationships (supplementary tables S1A and B,

Supplementary Material online). We confirmed that Tajima’s

D is negatively correlated with gene mobility (fig. 5a), as ob-

served in the regression analysis (fig. 4a), and the same rela-

tionship holds even when mobile genes are binned according

to bacterial host range. Regardless of whether mobile genes

are shared within a genus, across genera of the same phylum,

or across phyla, gene mobility is positively correlated with

coverage and negatively with Tajima’s D, and there is no ap-

parent trend according with increasing host range (supple-

mentary fig. S12, Supplementary Material online). We also

considered whether community alpha diversity (Shannon

entropy) or beta diversity (the first principal component of

Bray–Curtis dissimilarity between samples) within individual

microbiomes could affect these results. However, adding

these diversity metrics to the mixed models did not change

the sign of the correlations, nor did they significantly improve the

model fits (Likelihood ratio test P> 0.05; Materials and

Methods). Therefore, the negative correlation between

Tajima’s D and gene mobility appears to be rather general and

robust to factors such as host range and microbiome diversity.

Certain functional categories of genes deviated from the

general negative correlation between D and mobility. The

COG categories for which Tajima’s D is positively and signif-

icantly correlated with mobility include P (Inorganic ion trans-

port and metabolism), I (Lipid transport and metabolism), Q

(Secondary metabolites biosynthesis, transport, and catabo-

lism), V (Defense mechanisms), and O (Posttranslational mod-

ification, protein turnover, chaperones), representing �30%

of gene families (supplementary fig. S13, Supplementary

Material online). There are several explanations for why these

gene families maintain or accumulate more intermediate-

frequency SNVs (i.e., an increase in Tajima’s D) while being

transferred to many new species (fig. 5b). The first explana-

tion is a population contraction, or in this context, a reduction

of the number of gene copies across species. However, this is

unlikely to be the case for these genes because their coverage

(a proxy for their relative abundance) increases with mobility.

The second explanation is that these genes could be subject to

species-specific selective pressures that push mutations to fix-

ation in some species but not in others, resulting in interme-

diate SNV frequencies in the bulk metagenome. The third

potential explanation is that negative frequency-dependent

selection, which is thought to be an important force shaping

pangenome evolution (Cordero and Polz 2014; Domingo-

Sananes and McInerney 2019), is acting on these genes,

within species, between species, or both. Thus, the last two

scenarios, which rely on the presence of distinct selective

pressures on these subsets of genes, most likely explain

how some mobile genes can maintain or accumulate

intermediate-frequency SNVs as they spread across species.

Conclusion

To date, pangenome evolution has been studied primarily

over long evolutionary time scales by comparing relatively dis-

tantly related genomes (McInerney et al. 2017). These studies

have largely concluded, although with some debate

(Andreani et al. 2017; Shapiro 2017) that pangenomes are

predominantly adaptive—that selection plays a bigger role in

pangenome evolution than drift. Here we have refocused the

study of pangenome evolution to shorter time scales that is

within individual gut microbiomes in which gene transfer

events likely occurred within a human lifespan (Brito et al.

2016; Groussin et al. 2021). Based on microbiome data

from a Fiji cohort, we found that mobile gene sequence evo-

lution is more influenced by selective pressures at the level of

gene function than at the human host level. Of course, there

were many unmeasured human host factors that could im-

pose selective pressures that we were unable to study, and
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certain mobile genes do indeed provide adaptive benefits to

humans (Hehemann et al. 2010; Brito et al. 2016). However,

evolutionary simulation results showed that mobile genes

need not provide any special adaptive value to their human

host or microbial genomes in order to recapitulate the qual-

itative patterns of molecular evolution observed in the real

data. We therefore conclude that the bulk of mobile gene

evolution within the gut microbiome can be explained by

(a)

(b)

FIG. 5.—Gene mobility regressions reveal a minority of genes with distinct signals of selection. (a) Linear mixed model regression slopes per COG

category. This figure illustrates COG categories regression slopes for the linear mixed models “Coverage � Genemobility þ Sampleþ COGcategory” and

“Tajima0sD � Genemobility þ Sampleþ COGcategory” with “Sample” and “COGcategory” being considered as random effects. The asterisks at the tip

of each bar indicate the significance of the simple linear regressions “Coverage � Genemobility” and “Tajima0sD � Genemobility,” respectively, for the

associated COG category (*Significant; N.S., not significant; Cutoff: FDR-adjusted P<0.05). (b) Schematic of evolutionary scenarios. Scenario 1 represents

the situation in which mobile genes Tajima’s D is negatively correlated with gene mobility because HGT is faster than fixation of mutant alleles (red stars).

Scenario 2 represents the situation in which Tajima’s D correlates positively with mobility. These genes maintain intermediate frequency mutations (blue stars)

despite being frequently transferred to new species. Note that the gene copies (dots or stars) illustrated here could come from members of the same or

different species in the microbiome.
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selective pressures acting at the level of individual genes rather

than human or bacterial hosts.

The observed patterns of molecular evolution based on

population genetic metrics provide clues about the balance

of evolutionary forces acting on mobile genes in microbiomes

within a human lifespan. We found that most genes accumu-

late low-frequency mutations as they spread within and be-

tween bacterial species. One interpretation of this result is

that most mobile genes are under purifying selection to main-

tain a conserved function, even as they spread across species,

such that most mutations are deleterious and kept at low

frequency. Another nonexclusive interpretation is that low-

frequency mutations could become enriched during the rapid

spread of a gene, before mutations are able to rise to a higher

frequency. This pattern of rapid spread is strongest in phages

and transposons (COG category X), which are known to have

extremely high rates of transfer across genomes (Wolf et al.

2016). In contrast, a minority of genes involved in specific

cellular functions, such as defense mechanisms (COG cate-

gory V), accumulate intermediate-frequency mutations as

they spread across species, possibly due to negative

frequency-dependent selection within species and/or fixation

of beneficial mutations within some species but not others.

Further investigation is needed to explore the nature of these

variable selective pressures across genes.

Pangenome evolution is the product of a fine balance be-

tween drift and selection, which can shift depending on the

time scale and level of biological organization. In the gut

microbiome of a single person, the time scale of evolution

may be too short to easily resolve the balance between drift

and selection. Indeed, on very short time scales during which

mutations could still be segregating and HGT likely occurs

more rapidly than point mutation (Levade et al. 2017; Yaffe

and Relman 2020), slightly adaptive genes that have been

recently transferred could be largely influenced by drift be-

cause of their initially small Ne, such that their adaptive value

could be effectively detected only over long time scales. This is

supported by our relatively short-term simulations, in which

the HGT rate (which increases the census population size and

thus Ne) was found to be a major determinant of sequence

evolution, whereas gene-specific selection coefficients were

not. These findings are broadly consistent with a drift-barrier

model of evolution (Bobay and Ochman 2018; Gardon et al.

2020), which could be explored in additional genomic data

sets and simulations. We suggest that future work on pan-

genome evolution should ask what factors control shifts in the

drift-selection balance and its interplay with species ecology

(Ne, species lifestyle, etc.) and gene ecology (i.e., gene func-

tion, to what extent are genes selfish or cooperative within a

genome, etc.). Rather than settling for a binary distinction

between an adaptive or neutral model, the relative strengths

of drift and selection should be considered at varying evolu-

tionary time scales and levels of biological organization, from

gene to genome to community.

Materials and Methods

Population Genetics of Fijian Gut Microbiome Mobile
Genes

The Fiji Community Microbiome project provides open access

to metagenomes from the gut microbiomes of 176 individu-

als. For each of these individuals, we mapped metagenomic

sequence reads to a set of 37,853 mobile genes previously

defined as follows from bacterial whole-genome sequences

from the HMP and FijiCOMP. To be considered mobile, pairs

of genes had to be identified in �500 bp fragments that

shared >99% nucleotide identity over the whole fragment

length between reference or single-cell assembled genomes

with <97% identity in the 16S rRNA gene (Brito et al. 2016).

Metadata about the single-cell assemblies are available in the

following link: http://fijicomp.bme.cornell.edu/data/

Singlecellassemblies.xlsx. This procedure selects nearly identi-

cal genes present in distinct species or genera as candidates

for very recent HGT, likely within an individual gut micro-

biome (Smillie et al. 2011; Brito et al. 2016). As ribosomal

genes can be highly conserved between species without be-

ing horizontally transferred, inferred HGT events involving

from ribosomal genes were excluded. For the metagenomic

read mapping, only reads that aligned with 99% identity

across �50% of their own length were considered (Brito et

al. 2016). From the mappings, we used Anvi’o to report SNVs

(–min-coverage-for-variability 10 –min-contig-length 50)

(Eren et al. 2015), followed by a pipeline to compute popu-

lation genetics metrics (hp,hw , dN/dS, and Tajima’s D) based

on the SNVs. The pipeline scripts are available at https://

github.com/arnaud00013/Fiji_Mobile_Gene_Specific_

PopGen_scripts. The Anvi’o SNV calling module (Eren et al.

2015) has the advantage of being fast and simple to use, can

be executed in parallel (High-Performance Computing), and

has filters to control minimum gene coverage or mutation

frequency. For each sample mapping, a gene was retained

if its mean site depth was �10. Only one sample was ex-

cluded for having less than 500 genes passing the site depth

filter, reducing the sample size to 175 metagenomes. Among

all samples, 7,990 unique genes were conserved after apply-

ing the site depth filter. Finally, mobile gene COG annota-

tions, available in the FijiCOMP data (http://fijicomp.bme.

cornell.edu//), were used to define two levels of gene func-

tions: COG gene family (which is more specific), and COG

category (which is more general).

Detecting Selection by dN/dS

dN/dS is the nonsynonymous to synonymous mutations per

site ratio. Different methods have been developed to estimate

dN/dS with the common purpose of inferring selection in

protein-coding genes. More precisely, dN/dS can detect puri-

fying selection (dN/dS< 1), neutral evolution (dN/dS� 1), and

positive selection (dN/dS > 1). Because we are working with
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metagenomic gene variants, we defined our own estimator of

dN/dS:

cdN

dS
¼ Nbnsm=Nbnss

Nbsm=Nbss;
(1)

where Nbnsm is the number of nonsynonymous mutations

(SNVs), Nbnss is the number of nonsynonymous sites, Nbsm

is the number of synonymous mutations (SNVs), and Nbss is

the number of synonymous sites.

Measuring Mobile Genes Nucleotide Diversity at
Metagenomic Level

Because mobile genes are by definition present in multiple

species, we calculated population genetic metrics based on

all reads from a metagenome that map to a particular mobile

gene. Based on these mapped reads, we calculated Tajima’s D

(Tajima 1989), which measures the difference between aver-

age per site pairwise nucleotide differences (hp) and the nor-

malized number of polymorphic sites (hwÞ :

DTajima ¼
hp � hwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar ðhp � hwÞ;

q (2)

where the dVar denotes the expected sampling variance of

ðhp � hwÞ. For each sample, we estimated mobile gene nu-

cleotide diversity from sequence variants detected in the map-

ping between metagenomic reads and mobile gene reference

sequence from FijiCOMP as follows:

bhp ¼
NbreadspwdiffPn

i¼1 Cðci;2Þ;
(3)

where n is the gene length, ci is the depth of the site i of the

gene, Cðci; 2Þ is the choose() function, which calculates the

number of pairs of reads in a set of size ci and

Nb_reads_pwdiff is the number of pairwise nucleotide differ-

ences, and

chw ¼
S

a1
; (4)

where S in the number of segregating sites and a1 is a nor-

malizing factor that represents the sample size (n):

a1 ¼
Xn�1

i¼1

1

i:
(5)

Usually, Tajima’s D is estimated from a multiple alignments

between gene alleles. The sample size used to estimate the

normalizing factor a1 is the number of alleles. Here we use the

average depth of coverage at polymorphic sites as an estima-

tor of the sample size n.

Effect of Gene Mobility on Metagenomic Coverage

We operationally defined gene mobility as the number of

single-cell genomes in which a mobile gene was found and

tested if this metric behaves as expected in explaining gene

frequencies in metagenomes. More precisely, we correlated

gene mobility with metagenomic coverage with the expecta-

tion that more mobile genes occur in multiple species and

should thus be more deeply covered by metagenomic se-

quence reads. Metadata on the 180 single-cell genomes

used to estimate gene mobility are available at http://fiji-

comp.bme.cornell.edu/data/Singlecellassemblies.xlsx. Linear

regression analyses and t-tests were calculated using the R

function “summary.lm()” (R Core Team 2019). Data stan-

dardization was performed before each regression to respect

the t-test’s assumption of normality. The distributions of the

significant correlations adjusted R2 obtained from the t-tests

converged with the ones from a nonparametric permutational

ANOVA (K-S test P > 0.05) (Anderson 2001; Wheeler and

Torchiano 2016). The results from the t-tests on the standard-

ized data are reported instead of the permutational ANOVA

on the raw data because standardization removes units and

thus facilitates comparison between real and simulated data.

Finally, we adjusted the regression P-values using the FDR

correction for type I error after multiple testing implemented

in the p.adjust() function of the R package “stats” (Benjamini

and Hochberg 1995; R Core Team 2019).

Assessing Variation in Sequence Evolution across Genes
and Across Individuals

To determine whether mobile gene evolution is driven more

by gene-specific factors or by human host attributes, we first

compared the variation of mobile genes nucleotide diversity

(and other population genetic metric described above) across

genes versus across samples through the KS test. The KS test

involves a statistic D, which measures the maximal distance

between a pair of cumulative distributions. We downsampled

the mobile genes to the same size as the number of samples

to avoid the potential bias due to different sized data sets and

repeated this for a total of 999 resamples. We performed this

series of KS test with the function ks.test() from the R package

“stats” (R Core Team 2019).

Gene Function and Human Host (Individual) Attributes as
Predictors of Mobile Genes Evolution

To determine whether mobile gene evolution is driven more by

gene function or human host attributes, we performed linear

regressionsbetweenacontinuousresponsevariableandaqual-

itative/categorical explanatory variable, which we will refer as a

factor.Regressionsbetweenaquantitativecontinuousvariable,

forexampleTajima’sD, anda factor, forexamplegenefunction

family,requiretransformingthefactorasitcannotbeintegrated

into a regression equation in its original form (R Core Team

Mobile Gene Sequence Evolution within Individual Human Gut Microbiomes GBE

Genome Biol. Evol. 13(8) doi:10.1093/gbe/evab142 Advance Access publication 16 June 2021 13

http://fijicomp.bme.cornell.edu/data/Singlecellassemblies.xlsx
http://fijicomp.bme.cornell.edu/data/Singlecellassemblies.xlsx


2019). We therefore used the R contrast function

“constr.sum()” to transform factors (R Core Team 2019). This

transformation allows the regression coefficients to represent

how each level/state of the factor differs. Then, we assess the

significance of the regression model with a permutational

ANOVA (Anderson 2001). This test makes random permuta-

tions of the response variable between the different groups/

levels of the factor and estimates the P as the proportion of

permutations with an F-statistic greater than or equal to that

observedinthereal(unpermuted)data.Thistest is implemented

in theR library“lmPerm” (v.2.1.0) (RCoreTeam2019).Wealso

adjustedtheregressionP-valuesusingtheFDRcorrectionimple-

mented in the p.adjust() function of the R package “stats”

(Benjamini and Hochberg 1995; R Core Team 2019).

For the correlations between human host attributes and

population genetic metrics, we focused on 172 samples with

available metadata. Metadata about these samples were

extracted from Brito et al. (2016) and NCBI accession numbers

of the corresponding stool metagenomes are publicly avail-

able at http://fijicomp.bme.cornell.edu//data/

FijiCOMPmetagenomicsamples.xlsx. Mobile genes selected

for this analysis needed to respect the following conditions:

1) the gene should have at least 10X coverage to limit the

impact of sequencing errors and 2) mobile gene should have

less than 30% missing values across samples, for a total of

1,333 tested genes.

As for linear regressions between population genetics met-

rics and gene families, we selected genes based on the fol-

lowing set of conditions: 1) the gene should have at least 10X

coverage to limit the impact of sequencing errors, 2) the gene

should have available gene family annotations, which come

from COG, KEGG, TIGRFAM, PFAM, or dbCAN databases

(Brito et al. 2016), 3) the gene family should be represented

by at least two genes within the data set, and 4) the mobile

gene should have less than 30% missing values across sam-

ples, for a total of 512 tested genes. The first two filters are

the basic requirements for doing these regressions analyses.

However, the 3rd and 4th filters were chosen, respectively, to

avoid the effects of small sample size for COG families that are

underrepresented in the data set and to handle missing values

caused by gene absence across sample or genes with low

coverage in gut metagenomes.

Effect of HGT on Sequence Evolution

To determine the impact of HGT on mobile gene sequence

evolution, multiple linear regressions were performed. In

these multiple linear regressions, coverage, Gene Mobility—

the number of species in which a mobile gene has been iden-

tified when looking for HGT events—and gene length were

the explanatory variables and the various population genetic

metrics were the response variables. We used the lm() func-

tion in R to remove collinearity with QR-decomposition/Gram-

Schmidt orthogonalization. Thus, it is possible to assess the

effect of Gene Mobility on each population genetics metrics

while controlling for the effect of potential confounders like

coverage and gene length. The significance of the multiple

linear regression was evaluated with the F-test of the R func-

tion summary.lm() (R Core Team 2019). For each response

variable Y tested (hp,hw , dN/dS, and Tajima’s D), there are

two regression models:

Y � GeneMobility (6)

Y� � GeneMobility þ Coverageþ Genelength: (7)

The asterisk represents the fact that the regression controls for

the effects of coverage and gene length, which increases the

chance of observing sequencing errors. The adjusted R2 of a

correlation represents the proportion of variable Y variance

that is explained by the regression model with a correction for

the number of explanatory parameters included in the model

(k) and the sample size (n):

adjusted2
R ¼ 1�

SSres
�

n�k�1

� �
SStotal=n�1;

� � (8)

where SSres is the residual sum of squares and SStotal is the

fitted data sum of squares. The type of correlation (positive or

negative) can be determined by the regression coefficient.

The reproducibility of the regressions was measured by the

number of samples in which the correlation is significant.

For the simple linear regression, P-values were obtained

from a t-test computed by the R function summary.lm() (R

Core Team 2019). We adjusted the regression P-values using

the FDR correction implemented in the p.adjust() function of

the R package “stats” (Benjamini and Hochberg 1995; R Core

Team 2019). Data standardization was performed before

each regression to respect the t-test’s assumption of normal-

ity. The distributions of adjusted R2 values obtained from the

t-tests converged with those from a nonparametric permuta-

tional ANOVA (K-S test P-value > 0.05) (Anderson 2001;

Wheeler and Torchiano 2016). The results from the t-tests

on standardized data are reported.

Variation across COG Categories

To assess how the relationships between gene mobility and

Tajima’s D or coverage varied across COG categories, we con-

sidered 22 COG categories (Tatusov et al. 2000). We then

used linear mixed models, through the R package lme4, to

study the effect of gene mobility on coverage and Tajima’s D

across COG categories (Bates et al. 2015). A linear mixed

model allows to build a linear model between the response

variable and the fixed effects while controlling for random

effects. In the regression model, fixed effects are explanatory

variables for which we want to know the relationship with the

response variable. Random effects are grouping factors that
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explain the random variance of the relationship between the

response variable and the fixed effects across a finite number

of different groups. To control for random effects, the algo-

rithm builds a linear model for each group. In the two regres-

sion models, the variables “COG category” and “Sample”

were included as random effects:

Coverage � Mobility þ COGcategory þ Sample (9)

Tajima0sD � Mobility þ COGcategory þ Sample (10)

Data were normalized using the Box-Cox transformation to

ensure the condition of residual normality was accounted for

before building the linear mixed models. We only used the

99.6% of Tajima’s D values that were negative and thus

inversed their sign before applying Box-Cox transformation,

which only works with positive values. We then performed

the linear mixed model regression “� Tajima0sD � Gene

mobility þ Sampleþ COGcategory” and inversed the sign

of its slope.

We included human “Sample” as a random effect in the

models to control for differences in alpha and beta diversity,

and other sample-specific effects. As an additional test, we

specifically included the microbial community alpha or beta

diversity in the linear mixed models. To do so, we used

Metaphlan2 (Segata et al. 2012) to estimate the relative abun-

dances of named prokaryotic species in each metagenome

(supplementary table S6, Supplementary Material online).

We estimated the alpha diversity using Shannon entropy and

performed principal component analysis on the Bray–Curtis

dissimilarity matrix across samples (Legendre and Legendre

2012). We then added alpha diversity and the first principal

component (PC1) of the Bray–Curtis matrix, which we used as

a proxy of beta diversity, to the linear mixed models as follows:

Coverage � Mobility þ COGcategory þ Sampleþ alpha
þ PC1beta

(11)

Tajima0sD � Mobility þ COGcategory þ Sampleþ alpha
þ PC1beta

(12)

We then removed “alpha” and “PC1_beta” one at a time

and used the R function anova() to perform a likelihood ratio

test between each linear mixed model and their nested

model. This allowed us to test the significance of alpha and

beta diversity in the models (Crainiceanu and Ruppert 2004; R

Core Team 2019). The likelihood ratio test compares the like-

lihood of a nested model to the likelihood of the full linear

mixed model, with the assumption that the test statistic fol-

lows a Chi-square distribution. Thus, we can create each

nested model by the removal of a single variable from the

full linear mixed model and assess the significance of this

variable using a P-value from the Chi-square distribution

(Crainiceanu and Ruppert 2004). We repeated the same pro-

cedure for “COG category” and “Sample” to test their sig-

nificance in the models.

Effect of Mobile Gene Host Range

We divided the set of 7,990 mobile genes with enough cov-

erage (�10x) and prevalence (�30% missing values) in the Fiji

metagenomes in three categories of host range: shared

within a single genus (n¼ 2,275 mobile genes), shared be-

tween genera of a single phylum (n¼ 874), and shared be-

tween phyla (n¼ 4,841). We then performed the linear mixed

model regressions with “hostrange” as a random effect to

determine the relationships Tajima’s D-mobility and coverage-

mobility while controlling for random variations across genes

with different host range:

Coverage � Mobility þ hostrange (13)

Tajima0sD � Mobility þ hostrange: (14)

Simulation of Pangenome Evolution

We simulated Sela, Wolf, and Koonin’s prokaryotic genome

size evolution model with few changes, using the SodaPop

simulation tool (Sela et al. 2016; Gauthier et al. 2019). In this

model, the selective advantage of gene gain that is the ad-

vantage of having xþ 1 genes instead of x genes, depends on

the genome size, which is measured by the number of genes

in the genome (x). Selection coefficients for gene loss have the

opposite sign as gene gain; thus, gene gain is slightly benefi-

cial while gene loss is slightly deleterious (Sela et al. 2016). The

selection coefficient of gene gain and gene loss can thus be

described by the following formula:

sgainðxÞ ¼ aþ b:x ¼ �slossðxÞ; (15)

where sgain is the selection coefficient of gene gain through

HGT, “a” is a constant input parameter of the simulation that

allows to improve the fit of the linear expression with the real

data, “b” is a constant input parameter that represents the

benefit or cost associated with the gain of a single gene, x

represents genome size (number of genes), and sloss is the

selection coefficient of gene loss. We modified this formula

to simulate a model where each gene has its own constant

selective advantage regardless of genome size (x). To do so,

we only needed to set the condition b¼ 0. This change

allowed us to reproduce the shape of gene mobility distribu-

tion in simulation (supplementary fig. S1, Supplementary

Material online). In this case:

sgain ¼ a ¼ sgene ¼ �sloss; (16)

where sgene � Exp(k), k is an input parameter of the simula-

tion, and 1/k represents the expected value of the exponential

distribution of selection coefficients.

Mobile Gene Sequence Evolution within Individual Human Gut Microbiomes GBE

Genome Biol. Evol. 13(8) doi:10.1093/gbe/evab142 Advance Access publication 16 June 2021 15



In the model, genome size (x) influences gene gain rate

and gene loss rate. Indeed, the more genome size increases,

the more gene gain rate decreases, and the more gene loss

rates increase to find an equilibrium around a certain genome

size x0. Therefore, when genome size (x) is smaller than ge-

nome size at equilibrium (x0), the cell has a higher probability

of gene gain than loss. To consider the stochastic component

of evolution, the cells and genes that are involved in each gain

or loss events are randomly selected. Also, the number of gain

or loss events is drawn from a Poisson distribution with the

gain and loss rates as follows:

Grate � Poissonðk ¼ s0:xkþÞ (17)

Lrate � Poissonðk ¼ r0:xk�Þ; (18)

where Grate is the gain rate that is the number of gene gain

events per generation, Lrate is the loss rate that is the number

of gene loss events per generation, and r’, s’, kþ; and k� are

simulation input parameters that allow to tune the gain and

loss rates.

We implemented this model in the SodaPop software,

which simulates a Wright–Fischer process for asexual popula-

tions (Gauthier et al. 2019). In SodaPop, the mutation model

is equivalent to Jukes–Cantor in which all single nucleotides

occur at the same constant rate (Jukes and Cantor 1969). We

also implemented a distribution of nonsynonymous mutation

fitness effect in which 30% of mutations are lethal, as previ-

ously reported in the literature (Eyre-Walker and Keightley

2007), and 70% are drawn from a normal distribution, N (m
¼ �0.02, r¼ 0.01). Synonymous mutations are all consid-

ered neutral unless the user provides data on species codon

usage and the related fitness effects. SodaPop also offers flex-

ibility in the initial setup of the simulation (Gauthier et al.

2019). We created scripts to facilitate the creation of the sim-

ulation starting conditions (https://github.com/arnaud00013/

SodaPop/tree/Sodapop-pev/tools). The scripts allow to define

each species abundance, gene content, and to define the

genes that are mobile (https://github.com/arnaud00013/

SodaPop/blob/Sodapop-pev/tools/Setup_SodaPop_with_

PEV.py). Mobile genes can be transferred and lost whereas

core genes and accessory genes (defined at the start of the

simulation) can only be lost. For each set of simulations shar-

ing the same input parameters, we ran 10 replicates. Each

simulation included 5,000 cells, 10 species, 500 genes per

cells at equilibrium, and a simulation time of 105 generations

and a timestep of 104 generations to save simulation data.

Population size is small in simulation because of hardware

memory limitations. To avoid undesirable effects, like

Muller’s Ratchet, we maintained species abundance constant.

We also established a relatively high mutation rate on the

order of 10�7 mutations per site per generation to compen-

sate for small population sizes. Genome size equilibrium was

reached for every simulation and the model is thus robust to

the initial conditions (supplementary fig. S9, Supplementary

Material online). The software is available on GitHub at:

https://github.com/arnaud00013/SodaPop.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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