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Abstract: Vitamin A and provitamin A carotenoids are involved in the regulation of adipose tissue
metabolism and inflammation. We examined the effect of dietary supplementation using all-trans
and 9-cis β-carotene-rich Dunaliella bardawil alga as the sole source of vitamin A on obesity-associated
comorbidities and adipose tissue dysfunction in a diet-induced obesity mouse model. Three-week-
old male mice (C57BL/6) were randomly allocated into two groups and fed a high-fat, vitamin
A-deficient diet supplemented with either vitamin A (HFD) or β-carotene (BC) (HFD-BC). Vitamin A
levels in the liver, WATs, and BAT of the HFD-BC group were 1.5–2.4-fold higher than of the HFD
group. BC concentrations were 5–6-fold greater in BAT compared to WAT in the HFD-BC group. The
eWAT mRNA levels of the Mcp-1 and Cd68 were 1.6- and 2.1-fold lower, respectively, and the plasma
cholesterol and triglyceride concentrations were 30% and 28% lower in the HFD-BC group compared
with the HFD group. Dietary BC can be the exclusive vitamin A source in mice fed a high-fat diet, as
shown by the vitamin A concentration in the plasma and tissues. Feeding BC rather than vitamin A
reduces adipose tissue macrophage recruitment markers and plasma lipid concentrations.

Keywords: vitamin A; β-carotene; obesity; adipose tissue; mice

1. Introduction

Obesity is characterized by the excessive accumulation of fat in adipose tissue, which
may impair health. Obesity is a major risk factor for cardiovascular diseases, type 2 diabetes,
nonalcoholic fatty liver disease, and several types of cancers [1]. Although obesity has been
recognized as a worldwide epidemic, the current interventions and treatments have many
limitations. Several human studies have found correlations between obesity and low levels
of serum or subcutaneous fat carotenoids [2–7].

Carotenoids are fat-soluble pigments synthesized in plants, fungi, bacteria, and algae.
Provitamin A carotenoids, such as β-carotene (BC) and α-carotene, are cleaved in the
body to produce vitamin A [8]. Vitamin A is an essential micronutrient for growth and
development, vision, reproduction, and immunity in mammals. The main dietary sources
of preformed vitamin A include meat and dairy products, while BC from plants serves as
the primary provitamin A carotenoid in the human diet [8]. Vitamin A and provitamin
A carotenoids are stored in the liver and adipose tissue. In these tissues, vitamin A and
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provitamin A carotenoids can be converted into the biologically active derivatives of
vitamin A: retinol, retinal, and retinoic acid (RA) [9,10]. Although the distribution of
vitamin A in different rodent adipose depots has been examined [11,12], to the best of our
knowledge, the accumulation of provitamin A carotenoids in rodent WAT and BAT has not
been investigated.

In previous studies, we used the alga Dunaliella bardawil as a source for natural BC.
This unicellular alga accumulates high BC concentrations (~10% of the dry weight), and it
consists of two primary BC isomers: ~50% ATBC and ~50% 9-cis BC [13]. We have shown
that dietary supplementation with 9-cis BC or a mixture of all-trans and 9-cis BC from
Dunaliella bardawil can protect against atherogenesis and reduce plasma cholesterol concen-
trations in a mouse model of atherogenesis, while synthetic all-trans BC had the opposite
effect [14]. In vitro and in vivo experiments have demonstrated that ATBC is enzymatically
converted to all-trans RA (ATRA), while 9-cis BC is converted to both ATRA and 9-cis
RA [15,16]. Both RA isomers are involved in the regulation of gene expression through
the activation of nuclear receptors. Our studies have indicated that dietary Dunaliella
bardawil supplementation may inhibit the development of obesity-associated pathological
disorders, such as dyslipidemia, adipose tissue inflammation, diabetes, atherosclerosis,
and fatty liver in Ldlr−/−, Apoe−/−, and db/db mice models [14,17–19]. These mouse models
develop fatty liver when fed a high-fat diet [20–22]. Interestingly, another group recently
reported that dietary BC, as an exclusive source of vitamin A, reduced plasma cholesterol
concentration and atherosclerotic lesion size only when the production of vitamin A by
enzymatic cleavage of BC is available [23,24]. This supports our hypothesis that the positive
impact of Dunaliella bardawil supplementation in mice might be the result of the conversion
of algal BC isomers into vitamin A derivates.

So far, the effect of dietary BC supplementation on adiposity and adipose tissue
metabolism has been investigated by relatively few studies utilizing non-obese animal
models fed a standard diet containing vitamin A [25–27]. Moreover, the isomer composition
of the BC used in these experiments has not been unspecified. Thus, it is likely that ATBC
was the dominant isomer. In the current study, we sought to investigate the impact of
dietary supplementation with ATBC and 9-cis BC-rich Dunaliella bardawil as the sole source
of vitamin A on risk factors associated with obesity in a diet-induced obesity.

2. Results
2.1. Body Weight, Energy Intake, and Tissue Mass

Body weight was measured throughout the 23-week experiment. The rate of body
weight gain was higher in the HFD-BC group than in the HFD control group between
weeks 7 and 9 (Figure 1A). However, no differences between the groups were observed in
either NMR body composition analysis after 14 weeks (Supplemental Figure S1) or body
weight gain from the 10th week and onwards. At week 23, the WAT mass was 10% greater
in the HFD-BC group than in the HFD group (p < 0.05). In contrast, the liver mass was
similar (Figure 1C). Although we found a 5% increase in food intake in the HFD-BC group
compared with the HFD group, this result could not be statistically analyzed because intake
was measured per cage.

2.2. Tissue and Plasma Vitamin A Levels

Vitamin A levels (all-trans retinol) in the HFD-BC group were significantly higher in
the liver, eWAT, iWAT, and iBAT, but not in the plasma, when compared with the HFD
group (Table 1). As expected, vitamin A concentration in the liver, which is the primary
vitamin A reservoir, was substantially higher than all adipose depots by two orders of
magnitude (p < 0.0001) in both the HFD and HFD-BC groups. Within each group, vitamin
A concentrations did not differ between eWAT, iWAT, and iBAT (p > 0.99).
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Figure 1. Three-week-old male mice were fed an HFD (n = 15) or an HFD-BC (n = 13) for 23 weeks. 
(A) Body weight throughout the experiment. (B) eWAT mass. (C) Liver mass. Values are means ± 
SEM. * Different from HFD group, p < 0.05. BW, body weight; eWAT, epididymal white adipose 
tissue; HFD, high-fat diet; HFD-BC, high-fat diet supplemented with Dunaliella bardawil. 
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Table 1. Tissue and plasma retinol levels in mice fed an HFD or an HFD-BC for 23 weeks 1. 

 HFD (n = 5) HFD-BC (n = 5) 
Liver retinol, μg/g tissue 126 ± 15.8 194 ± 15.8 * 

eWAT retinol, μg/g tissue 0.21 ± 0.04 0.37 ± 0.03 * 
iWAT retinol, μg/g tissue 0.21 ± 0.01 0.50 ± 0.07 * 
iBAT retinol, μg/g tissue 0.25 ± 0.04 0.41 ± 0.03 * 
Plasma retinol, μg/mL 0.19 ± 0.01 0.16 ± 0.03 

1 Data are presented as mean ± SEM. * Different from HFD group, p < 0.05. iBAT, interscapular 
brown adipose tissue; iWAT, inguinal white adipose tissue. 

2.3. Tissue and Plasma BC Concentrations 
As expected, no isomers of BC were detected in the tissues of the mice in the HFD 

group supplemented exclusively with preformed vitamin A. On the other hand, both 
ATBC and 9-cis BC were detected in all analyzed samples of the HFD-BC group supple-
mented with BC given as Dunaliella bardawil powder (Table 2 and Figure 2). In the HFD-

Figure 1. Three-week-old male mice were fed an HFD (n = 15) or an HFD-BC (n = 13) for 23 weeks. (A)
Body weight throughout the experiment. (B) eWAT mass. (C) Liver mass. Values are means ± SEM.
* Different from HFD group, p < 0.05. BW, body weight; eWAT, epididymal white adipose tissue;
HFD, high-fat diet; HFD-BC, high-fat diet supplemented with Dunaliella bardawil.

Table 1. Tissue and plasma retinol levels in mice fed an HFD or an HFD-BC for 23 weeks 1.

HFD (n = 5) HFD-BC (n = 5)

Liver retinol, µg/g tissue 126 ± 15.8 194 ± 15.8 *
eWAT retinol, µg/g tissue 0.21 ± 0.04 0.37 ± 0.03 *
iWAT retinol, µg/g tissue 0.21 ± 0.01 0.50 ± 0.07 *
iBAT retinol, µg/g tissue 0.25 ± 0.04 0.41 ± 0.03 *
Plasma retinol, µg/mL 0.19 ± 0.01 0.16 ± 0.03

1 Data are presented as mean ± SEM. * Different from HFD group, p < 0.05. iBAT, interscapular brown adipose
tissue; iWAT, inguinal white adipose tissue.

2.3. Tissue and Plasma BC Concentrations

As expected, no isomers of BC were detected in the tissues of the mice in the HFD
group supplemented exclusively with preformed vitamin A. On the other hand, both ATBC
and 9-cis BC were detected in all analyzed samples of the HFD-BC group supplemented
with BC given as Dunaliella bardawil powder (Table 2 and Figure 2). In the HFD-BC group,
the plasma BC concentration was 0.48 ± 0.08 µg/mL, and the ATBC/9-cis BC ratio was
8.90 ± 1.45 (n = 5). Expectedly, the accumulation of total BC (µg/g tissue) in the liver
(7.04 ± 1.45) of the HFD-BC group was 20-fold, 17-fold, and 3-fold greater than eWAT,
iWAT, and iBAT, respectively (p < 0.001). ATBC/9-cis BC ratio in the liver (1.82 ± 0.19) was
lower by 3.7-fold, 2.7-fold, and 5.8-fold than in eWAT, iWAT, and iBAT, respectively, here
suggesting that the liver stores more 9-cis BC than the adipose tissue (p < 0.05). The ATBC:9-
cis BC isomer ratio in Dunaliella bardawil powder was about 1:1. Nevertheless, ATBC was
the dominant isomer present in the plasma and tissues. Liver BC/retinol ratio (0.04 ± 0)
was lower by 23-fold, 22-fold, and 130-fold than in eWAT, iWAT, and iBAT, respectively
(p < 0.05). Surprisingly, iBAT BC concentration was elevated by 5–6-fold compared to eWAT
and iWAT. As a result, the ratio between BC to retinol was higher in iBAT than in eWAT
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and iWAT (Table 2). Furthermore, we found that the ATBC/9-cis BC ratio was elevated by
1.6- and 2.2-fold in iBAT compared with eWAT and iWAT, respectively (Table 2).

Table 2. Adipose tissue β-carotene levels, isomer ratios, and β-carotene/retinol ratios in mice fed an
HFD-BC for 23 weeks 1.

eWAT (n = 5) iWAT (n = 5) iBAT (n = 5)

Total BC, µg/g tissue 2 0.34 ± 0.05b 0.41 ± 0.04b 2.13 ± 0.17a
ATBC/9-cis BC ratio 6.67 ± 1.19b 4.91 ± 0.54b 10.6 ± 0.61a

BC/retinol ratio 2 0.95 ± 0.15b 0.86 ± 0.10b 5.20 ± 0.46a
1 Adipose tissue BC levels were measured by HPLC analysis. 2 Total BC is the sum of ATBC and 9-cis BC
concentrations. Data are presented as means ± SEM. Labeled means in a row without a common letter differ,
p < 0.05. ATBC, all-trans β-carotene; BC, β-carotene.
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Figure 2. Representative HPLC analysis of hepatic carotenoids (spectrum range 200–700 AU) in a
liver of a mouse in the HFD-BC group.

2.4. mRNA Levels of Inflammatory Cytokines and Transcriptional Regulators of Thermogenesis
and Macrophage-Staining in Adipose Tissue

We examined the mRNA expression levels of inflammatory markers in eWAT and iBAT.
The eWAT mRNA levels of Mcp-1 and Cd68, which are markers for monocyte recruitment
and tissue macrophages, were lower by 1.6- and 2.1-fold, respectively, in the HFD-BC group
compared with the HFD group (Figure 3A). The mRNA levels of Tnfα and Il-6 in eWAT and
iBAT, as well as Il-1β in eWAT, were not different between the diet groups (Figure 3A,B).

We also assessed eWAT and iBAT mRNA levels of Ucp1, which is expressed in ther-
mogenically active adipocytes, and of the transcriptional regulators of Ucp1: Pparγ and
Pgc1α [28]. No differences were found between the mRNA levels of Pgc1α in iBAT or
levels of Ucp1 and Pparγ in both eWAT and iBAT between the HFD-BC and HFD groups
(Figure 3B).

In immunohistochemical staining of adipose tissue, we detected macrophage infiltra-
tion in adipose tissue of high-fat fed mice, while in Dunaliella-treated mice no macrophages
were identified. (Figure 3C,D).
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Figure 3. eWAT (A) and iBAT (B) relative mRNA levels (n = 5–7). Gapdh was used as a reference
gene after 23 weeks. Histochemical detection of macrophages in epididymal adipose tissue of HFD
(C) and HFD-BC (D); the bar = 100 micrometer. Black arrows indicate macrophages. Values are
mean ± SEM. * Different from HFD group, p < 0.05.

2.5. Plasma Lipids, Leptin, and Adiponectin Concentration

The plasma cholesterol and triglyceride levels in the HFD-BC group were decreased
by 28% and 30%, respectively, compared with the HFD group after 23 weeks of treatment
(Figure 4A,B). On the other hand, no differences were observed in the plasma leptin and
adiponectin concentrations between the HFD-BC and HFD groups (Figure 4C,D).
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Figure 4. Fasting cholesterol (A), triglycerides (B), leptin (C), and adiponectin (D) concentrations in
the plasma after 23 wk of treatment (A–B n = 5, C–D n = 11–12). Values are mean ± SEM. * Different
from HFD group, p < 0.05.

2.6. Glucose Metabolism, White Adipocyte Size, and NAFLD

No significant differences were identified between the HFD-BC and HFD groups for all
the following parameters: glucose tolerance (IPGTT), fasting blood glucose levels, fasting
plasma insulin concentrations, the white adipocytes area in eWAT, and NAFLD activity
score (Supplemental Figures S2–S4).

3. Discussion

In the current study, we investigated the effect of BC-rich Dunaliella bardawil powder
as the sole source of vitamin A on the development of obesity and its complications in mice.
We have demonstrated that dietary BC maintains tissue and plasma vitamin A reservoir
and that BC accumulation in BAT was elevated compared with WAT. Unexpectedly, we
found that BC supplementation increased eWAT mass but reduced eWAT mRNA levels of
macrophage recruitment markers and lowered plasma cholesterol and triglyceride levels
in high-fat diet fed mice. Contrary to our hypothesis, BC treatment did not affect the
mRNA levels of the genes involved in regulating adipose tissue thermogenic activity in
iBAT or eWAT.

Our previous study [29] showed that BC supplementation decreased atherogenesis in
an Apoe−/− mouse model compared with a vitamin A deficient group. In that study, both
groups were fed a chow diet. Since ApoE can affect lipid metabolism, it is crucial to study
BC in a wild-type model. Therefore, in the current study, we investigated the effect of BC
in C57BL/6 mice fed a high-fat diet compared with the vitamin A–fed group. The present
study demonstrates that dietary BC maintains vitamin A levels (all-trans retinol) in the
liver, adipose tissue, and plasma. Although vitamin A levels in the tissues of the HFD-BC
group were elevated compared with the controls, it is important to note that we did not
adjust the relative quantity of vitamin A (retinol equivalent) in the HFD BC group to the
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HFD control group. To the best of our knowledge, the estimated efficiency of BC isomer
conversion to vitamin A in mice has not been evaluated [30]. Thus, adjusting the relative
vitamin A content in the diets was not feasible. These results provide further evidence
supporting BC’s ability to maintain tissue and plasma vitamin A levels as an exclusive
dietary source in mice.

In addition to vitamin A, we examined the accumulation of BC in mouse liver and
adipose tissue. Here, we show that higher levels of BC accumulated in mouse BAT com-
pared with WAT. To the best of our knowledge, the accumulation of BC in mouse BAT has
not been studied, and we are the first to report this finding. Since BC storage in mouse
tissues occurs only upon exposure to remarkably high dietary concentrations, BC is usually
undetected in the tissues of mice fed standard diets that contain low levels of BC [31].
Thus, mice lacking the BC degradation enzyme β-Carotene oxygenase 1 (Bco1) are typically
utilized to examine BC accumulation in tissues. However, it is impossible to study the
role of BC as a provitamin A carotenoid in this model. By fortifying the high-fat diet to
wild-type mice, we were able to study whether the presence of BC in adipose tissue together
with vitamin A confers beneficial effects over the presence of vitamin A alone. With a high
dose of BC, we detected ATBC and 9-cis BC in several tissues, studying the effect of BC as a
sole source of vitamin A on obesity development in mice. As expected, BC accumulation
in the liver, which is the primary reservoir of vitamin A and BC in mammals, was higher
than in adipose tissue. Nevertheless, the ratio between BC and vitamin A concentrations in
adipose tissue was greater compared with the liver ratio, suggesting that BC metabolism is
distinct in each tissue. Taken together, our results imply that BC metabolism in mice differs
between the liver and adipose tissue and between BAT and WAT.

Next, we investigated the effect of BC enrichment on body weight and adiposity.
Unexpectedly, we discovered that eWAT mass was higher in the HFD BC group compared
with the HFD control group. However, we found no differences in adipocyte hypertrophy
or body weight gain during the second half of the experiment. Conversely, a previous study
showed that BC supplementation decreased the masses of the three WAT depots examined:
inguinal, gonadal, and retroperitoneal [27]. Nevertheless, the study was performed on
female mice (C57BL/6) fed a standard diet. Further studies may be required to determine
whether the effect of dietary BC supplementation on WAT mass in mice is influenced by
diet composition and gender.

Furthermore, we examined the inflammatory state in eWAT by analyzing the mRNA
levels of inflammatory-related genes. The mRNA levels of Mcp-1 and Cd68 in eWAT were
significantly lower (p < 0.05) in the HFD-BC group compared with the HFD control group.
Moreover, macrophages were detected in adipose tissue of HFD-treated mice, while no
macrophages were found in Dunaliella-treated mice. Similarly, in a previous study, we
demonstrated that BC dietary supplementation reduced the mRNA level of Mcp-1 in the
mesenteric WAT of obese db/db mice [17]. The Mcp-1 levels in adipose tissue and plasma of
obese rodents are increased and promote adipose tissue macrophage infiltration [32–34].
Additionally, a study in humans demonstrated that the mRNA levels of Mcp-1 and Cd68
(macrophage marker) were elevated in subcutaneous WAT of obese individuals [35]. No-
tably, BC treatment decreased the expression of Mcp-1 and the activity of NFkB, which
regulates the expression of proinflammatory cytokines, in cultured adipocytes exposed to
oxidative stress [36]. In addition to BC, its downstream cleavage product ATRA has been
shown to have an anti-inflammatory effect [37]. Altogether, these results suggest that a
BC-rich diet may reduce adipose tissue macrophage recruitment, possibly because of the
presence of vitamin A, BC, or both.

Moreover, we sought to assess measures of obesity-associated hyperlipidemia. The
plasma concentrations of cholesterol and triglycerides were lower in the HFD-BC group
compared with the HFD control group. In previous studies, we have demonstrated that BC
(given as Dunaliella bardawil) decreased plasma cholesterol concentrations in atherosclerosis
mouse models (Apoe−/− and Ldlr−/−), as well as triglyceride levels in obese diabetic (db/db)
mice [14,17–19]. Of note, oxidized (BC-free) Dunaliella bardawil powder did not reduce
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the plasma cholesterol concentration of Ldlr−/− mice [14]. A recent study has shown that
BC, when given as the sole source of vitamin A, decreased plasma cholesterol levels in
wild-type mice but not in Bco1−/− mice [23]. A follow-up study found that atherosclerotic
lesion size and plasma cholesterol level were reduced by BC supplementation in Ldlr−/−

mice but not in Ldlr−/−/Bco1−/− mice [24]. Overall, these observations suggest that the
effect of BC on plasma lipids is probably mediated by Bco1-dependent cleavage of BC
to form RA, a derivative of vitamin A that binds to and activates the nuclear receptors
involved in regulating metabolic pathways [23,24].

Finally, we evaluated the thermogenic activity in eWAT and BAT by gene expression
analysis. BC, when given as the only dietary source of vitamin A, did not affect the mRNA
levels of genes involved in regulating thermogenesis (Ucp1, Pparγ, and Pgc1α) in the eWAT
or BAT of the HFD-BC group compared with the HFD group. To the best of our knowledge,
the effect of BC supplementation on the expression of Ucp1, which plays a major role in
brown and beige adipocyte thermogenic activity, has only been examined in vitro [38,39]
and in standard-diet-fed ferrets [26]. Remarkably, a review of several studies has concluded
that high-fat diets may increase the expression of Ucp1 in rodent BAT, likely reflecting an
adaptive mechanism to excess caloric intake [40]. Hence, it is conceivable that high-fat diet
feeding might have masked a feasible effect of BC on adipose tissue thermogenic capacity.

The positive effects of BC can be attributed to its role as a precursor of retinol, RA, and
other retinoids. However, additional research is required to elucidate whether BC itself
could act directly in this manner. It was shown by Lobo et al. that retinoid signaling and
the expression of Pparγ in the WAT of vitamin A-deficient mice were both affected by BC
treatment, while all-trans-retinol had no effect [41]. In addition, the study showed that
in mature adipocytes, BC, not all-trans-retinol was metabolized to RA. Furthermore, we
recently showed that serum and adipose tissue carotenoids, including BC, but not retinol,
negatively correlated to many anthropometric and metabolic traits in humans [2].

The current study implies that BC metabolism in mouse WAT and BAT is different. Still,
possible molecular pathways that may explain this difference have not been investigated.
Moreover, we show that supplementing high-fat diet-fed obese mice with ATBC and 9-cis
BC, as an exclusive vitamin A source, decreases eWAT macrophage infiltration markers
and reduces cholesterol and triglyceride plasma levels.

4. Materials and Methods
4.1. Mice

Three-week-old male mice (C57BL/6JOlaHsd) were housed in plastic cages on wood-
shaving bedding, under controlled ambient temperatures (23 ± 2 ◦C) and on a 12 h
light/12 h dark cycle. The animals had free access to feed and water. The mice were
killed after 23 weeks using isoflurane following a 15 h fast. Venous blood, liver, epididymal
WAT (eWAT), inguinal WAT (iWAT), and interscapular BAT (iBAT) were collected. Blood
samples were immediately centrifuged (10 min at 4 ◦C and 955 g), and the plasma was
stored at −80 ◦C. Tissue samples were immediately snap-frozen in liquid nitrogen and
stored at 80 ◦C until use. All procedures were performed in accordance with the Chaim
Sheba Medical Center’s Guidelines for Animal Studies and approved by the Institutional
Animal Ethics Committee (ethical approval code 1204/19).

4.2. Diet

We used a vitamin A-deficient, high-fat diet (20% of the calories from protein, 20%
from carbohydrate, 60% from fat, D06040702, Research Diets, Inc., New Brunswick, NJ,
USA) fortified with either vitamin A as retinyl acetate (Sigma-Aldrich, St. Louis, MO, USA)
or Dunaliella bardawil powder (Nikken Sohonsha, Gifu, Japan) containing ~10% of the dry
weight as BC [13]. Detailed diet formulation is listed in Supplemental Table S1. To prepare
the feed, 250 mL warm distilled water was mixed with 12 g fish gelatin until the solution
became clear. Then, the gelatin solution was thoroughly mixed with 1 kg of feed and 4.5 mg
of vitamin A (dissolved in 40 µL olive oil) or 80 g Dunaliella bardawil powder. The feed
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mixtures were poured into containers and stored at −20 ◦C. Since BC isomers are oxidized
upon exposure to air and light, the BC content and ATBC/9-cis ratio in Dunaliella bardawil
powder were examined before adding the alga to the feed. The feed was replaced every
2 days.

4.3. Study Design

The mice were allocated into two groups, 15 animals per group, while ensuring that
the initial body weight variation was similar in each group. In each diet group, the mice
were housed in two separate cages (6–8 animals per cage). The mice were fed for 23 weeks
with either one of two high-fat diets: I. HFD, containing 4.5 mg vitamin A per kg feed,
or II. HFD-BC containing 6–8 g BC (~50% all-trans and ~50% 9-cis) per kg feed. At the
most, body weight and feed intake were recorded every 10 and 4 days, respectively. Body
composition was determined in anaesthetized mice at the 14th week using a TD-NMRLF50
minispec Live Mice Analyzer (Bruker Optics, Billerica, MA, USA). The NMR instrument
was calibrated according to the manufacturer’s instructions, and the mice were weighed
and inserted into the test chamber.

4.4. Carotenoid and Retinol Analysis

All-trans retinol (vitamin A) and BC isomer levels in plasma, liver (n = 5), and adipose
tissue (n = 5) were determined by HPLC, as previously described by Harari et al. [29].

4.5. Analysis of Gene Expression by Real-Time PCR

An RNeasy Lipid Tissue Mini Kit (QIAGEN, Hilden, Germany) was used to extract
RNA from eWAT (n = 5–6) and iBAT (n = 5–7). The extracted RNA quantity and quality
were determined using NanoDrop One (Thermo Scientific, Wilmington, DE, USA), and
the RNA was stored at −80 ◦C. Equivalent amounts of the total RNA were reversely
transcribed to cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Waltham, MA, USA). Quantitative real-time PCR was performed in dupli-
cates with the 7500 Real-Time PCR (Applied Biosystems, Waltham, MA, USA), FastStart
Universal Probe Master ROX (Roche, Pleasanton, CA, USA), probes labeled at the 5′ end
with fluorescein (FAM) and at the 3′ end with a dark quencher dye (Universal ProbeLi-
brary, Roche, Indianapolis, IN, USA) and custom primers (Sigma-Aldrich, St. Louis, MO,
USA). A predesigned qPCR assay (PrimeTime® Mini 135qPCR Assay, Integrated DNA
Technologies, Coralville, IA, USA) was used for the quantification of Pparγ expression.
All probes and primers are listed in the Supplementary Data (Supplemental Table S2).
Relative quantification was done using the 2−∆∆CT method against control glyceraldehyde-
3-phosphate dehydrogenase (Gapdh) [42]. The results are expressed as fold-change relative
to the HFD group.

4.6. Adipose Tissue and Liver Histological Analysis

eWAT and liver samples were fixed in 4% formaldehyde buffered solution for 72 h
and embedded in paraffin. Tissue sections (5 µm) were stained with hematoxylin and eosin
(H&E) and visualized under a microscope at 20× (Olym-144pus BX51 microscope, Olympus
UPLanApo 20×/0.70 objective, Nikon DS-Fi1 camera, Olympus, Tokyo, Japan). Initial
processing of the eWAT image sections was performed using AdipoCount software [43].
Then, the sizes and numbers of the adipocytes were measured using Fiji software [44] with
Adiposoft plugin [45] in manual editing mode. Blinded scoring of the liver sections was
performed by the Head of the Institute of Pathology at Sheba Medical Center (Prof. Iris
Barshack), according to NAFLD activity score criteria [46,47]. Macrophage infiltration in
adipose tissue was estimated by CD68 staining [48].

4.7. Analysis of Plasma Parameters

During the 18th week, retro-orbital blood samples were collected after a 4 h fast
into collection tubes containing EDTA for insulin measurement, whereas terminal blood
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samples (23rd week) were used to test all other parameters. We used a colorimetric
enzymatic procedure to measure the total plasma cholesterol and triglycerides (AU480
chemistry analyzer, Beckman Coulter, Inc, Brea, CA, USA). Plasma insulin (MRC-10-1249-
01, Mercodia, Uppsala, Sweden), leptin (MOB00, R&D Systems, Inc., Minneapolis, MN,
USA), and adiponectin (MRP300, R&D Systems, Inc., Minneapolis, MN, USA) levels were
measured using commercial ELISA following the manufacturer’s protocols.

4.8. Intraperitoneal Glucose Tolerance Test and Fasting Glucose

An intraperitoneal glucose tolerance test (IPGTT) was performed during the 16th
week of treatment by injecting weight-adjusted volumes of 20% (w/v) glucose solution (2 g
glucose/kg body weight) after 4 h of fasting. IPGTT blood samples were measured at 0, 15,
30, 60, and 120 min. Fasting blood glucose (4 h) was assessed during the 18th week. All
blood samples were collected from the tail vein, and glucose levels were measured using a
glucometer (FreeStyle Lite, Abbott, Alameda, CA, USA).

4.9. Statistical Analyses

Data are expressed as the means± SEM. Statistical significance was defined as p < 0.05.
Differences in body weight between the HFD and HFD-BC groups were analyzed by a
mixed effects analysis, followed by Bonferroni’s multiple comparisons test. Other differ-
ences between the two groups were analyzed by an unpaired Student’s t-test or Mann–
Whitney test (NAFLD activity score data). BC concentrations in tissues (WATs, BAT, liver)
of the HFD-BC group were tested by 1-factor ANOVA followed by Tukey’s multiple
comparisons test, or by a Brown–Forsythe ANOVA followed by Tamhane’s T2 multiple
comparisons test. Statistical analysis and figures were generated using GraphPad Prism 8.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20070433/s1, Table S1: D06040702 Research Diets high-fat
rodent diet formulation [49], Table S2: Real-Time PCR primers and probes (mouse). Figure S2: IPGTT
(A) after 16 wk (4 h fast, n = 7). Blood glucose (B) and plasma insulin concentrations (C) after 18 wk
(4 h fast, n = 8). Figure S3: eWAT adipocyte area (A) and liver NALFD activity score (B-E) after
23 weeks (n = 4–5). Figure S4: Representative images of eWAT (A) and liver (B) sections stained
with H&E.
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