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Community-acquired pneumonia (CAP) has been brought to the forefront of global
health priorities due to the COVID-19 pandemic. However, classification of viral versus
bacterial pneumonia etiology remains a significant clinical challenge. To this end, we
have engineered a panel of activity-based nanosensors that detect the dysregulated activ-
ity of pulmonary host proteases implicated in the response to pneumonia-causing
pathogens and produce a urinary readout of disease. The nanosensor targets were
selected based on a human protease transcriptomic signature for pneumonia etiology
generated from 33 unique publicly available study cohorts. Five mouse models of bacte-
rial or viral CAP were developed to assess the ability of the nanosensors to produce
etiology-specific urinary signatures. Machine learning algorithms were used to train
diagnostic classifiers that could distinguish infected mice from healthy controls and dif-
ferentiate those with bacterial versus viral pneumonia with high accuracy. This proof-
of-concept diagnostic approach demonstrates a way to distinguish pneumonia etiology
based solely on the host proteolytic response to infection.
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At the start of 2020, the world was introduced to coronavirus disease 2019 (COVID-
19), the disease caused by the novel severe acute respiratory syndrome coronavirus
(SARS-CoV-2). This new form of community-acquired pneumonia (CAP) put pneu-
monia at the forefront of both medical research and public discourse. However, even
before COVID-19, CAP had long been responsible for significant morbidity and mor-
tality worldwide, with millions of people affected globally and over 100,000 deaths per
year in the United States alone (1). The COVID-19 pandemic has demonstrated how
the design and scaled production of new diagnostics that determine pneumonia etiol-
ogy can benefit both individual patient management and public health. Unfortunately,
the etiology of CAP in cases where SARS-CoV-2 is not the culprit remains hard to deter-
mine, and is often never identified (2, 3). Furthermore, clinical symptoms and radiologic
parameters are insufficiently specific to distinguish between common bacterial and viral
causes (4). As a result, the standard of care for patients with suspected CAP is to initiate
empiric antibiotics as soon as possible based on local antibiotic resistance patterns and
patient characteristics (e.g., age, comorbidities) (5), a strategy that may exacerbate antibi-
otic resistance and not provide clinical relief. To accurately triage, treat, and track patients
with CAP due to bacterial and viral causes, new noninvasive tools that can both rapidly
diagnose acute pneumonia and identify etiology must be developed.
Imaging via chest X-ray or computerized tomography is currently considered the gold

standard pneumonia diagnostic, but such tools are known to suffer from significant deficien-
cies in specificity. Other previously routine tests, such as blood and sputum cultures, have
fallen out of favor unless patients exhibit severe CAP (6). This change in protocol is due to
the slow speed of cultivating bacterial isolates and distinguishing host flora from pathogens,
during which time either treatment is delayed or patients are treated empirically (7). Further-
more, these cultures give no indication of viral etiologies, and the sample collection proce-
dure is difficult, especially for pediatric patients. Urine antigen tests (UATs) are another
means of detecting bacteria-driven pneumonia. These tests are both fast and noninvasive,
but current UATs can only detect Streptococcus pneumoniae (SP) and Legionella, and thus
will fail to identify the many other bacterial or viral causes of CAP (8). To diagnose viral
pneumonia, rapid antigen tests are routinely performed for influenza, and molecular tests
such as PCR offer high-sensitivity tools to detect other known viral causes. However, the
cost per PCR sample can be high when rapid turnaround is needed, a known microbial
sequence is required to produce a result, and sample collection methods can be uncomfort-
able or invasive. Notably, because PCR is an amplification-based method, the sensitivity of
this assay can also lead to false positives, which has caused debate regarding proper thresh-
old setting and its diagnostic capacity in the context of endemic exposure (9). Alterna-
tively, rather than testing for the presence of a specific pathogen, host biomarkers that are
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associated with infection, such as circulating levels of inflamma-
tory molecules, can be used to detect disease. For CAP, C-reactive
protein (CRP) and procalcitonin (PCT) have been proposed to
differentiate between bacterial and viral infections but ultimately
suffer from poor sensitivity and have been shown to be insuffi-
cient to diagnose CAP, let alone distinguish etiology (4, 10).
Host response-based diagnostics have been developed that lever-

age the differential expression of host gene sets to distinguish
bacterial versus viral infections (11, 12). These signatures mainly
consist of genes that encode inflammatory markers, transmem-
brane proteins, and binding proteins that are implicated in the
host immune response to infection but can only be made clinically
useful by measuring their relative abundance through methods
such as protein tests and gene sequencing. A potential trove of bio-
markers lies within the over 550 human proteases that respond to,
cause, and manage disease (13, 14). Proteases have well-established
roles in cancer, vascular disease, apoptosis, and inflammation. In
addition, they are now recognized as potential therapeutic targets
for infectious disease, due to their production by invading patho-
gens as well as their involvement in the immune responses of an
infected host (15, 16). Proteases are also attractive as biomarker
targets since their enzymatic activity enables amplified detection
by means other than simply measuring their absolute concentra-
tion in blood (14, 17). To this end, we have previously developed
a category of nanomaterials that can be administered to a host in
order to read out disease-specific enzymatic reactions through the
generation of amplified, noninvasive “synthetic biomarkers”
(18–24). These activity-based nanosensors (ABNs) are amenable
for intrapulmonary delivery (25, 26) and detect protease activity
in vivo to create urinary signatures of active disease. ABNs contain
mass-encoded peptide linkers that are designed to be cleaved by
proteases dysregulated in specific disease states. Upon peptide
cleavage by a target protease, the linked barcodes are released
from the ABN, after which they are small enough to diffuse into
systemic circulation for subsequent renal concentration and clear-
ance. By leveraging catalytic protease activity and concentrating
barcodes from a large circulating volume of blood to a smaller uri-
nary volume output, a highly amplified urinary readout is gener-
ated for sensitive disease detection. Furthermore, by multiplexing
ABNs, one can create disease-specific urinary “signatures.”
Here, using a previously developed computational framework

(27), we have performed a multicohort analysis of blood tran-
scriptome profiles from patients with a wide range of bacterial
and viral respiratory infections to identify proteases predicted to
be dysregulated based on infection etiology. This analysis yielded
two unique host-derived gene signatures consisting solely of
human proteases for bacterial and viral infection. We then dem-
onstrated that a multiplexed panel of nanosensors designed to
detect the activity of a subset of these enzymes could produce
protease-driven urinary signatures to distinguish between bacterial
and viral pneumonia in mouse models of CAP within 2 h of
intrapulmonary sensor administration (Fig. 1). Using machine
learning algorithms, we leveraged these urinary signatures to create
diagnostic classifiers that can simultaneously detect CAP and dis-
tinguish etiology with high specificity and sensitivity. Thus, with
this panel, we have created a proof of concept for a noninvasive
urinary test for CAP that is driven by the biological host response
to infection, rather than by detection of the pathogen itself.

Results

A 39-Gene Signature Distinguishes Bacterial and Viral Pneu-
monia. Given the plethora of human proteases, we hypothe-
sized that the proteolytic host response to infection would be

sufficiently distinct to distinguish between bacterial and viral
pneumonia. To our knowledge, no disease-specific signatures
consisting solely of host enzymes have been created to distin-
guish pneumonia etiology. To create such signatures for
bacterial versus viral pneumonia, we curated publicly available
transcriptomic datasets for respiratory infections from whole-
blood and peripheral mononuclear blood cells (PBMCs),
filtered these datasets for human peptidases (using the enzyme
nomenclature term ec:3.4.-.-), and applied a computational
multicohort framework designed to integrate gene expression
data (multicohort analysis using aggregated gene expression
[MANATEE]) (27) across 33 unique study cohorts (Fig. 2A
and SI Appendix, Tables S1 and S2). By applying a set of differ-
ential expression statistics and machine learning algorithms, we
identified a subset of 39 proteases that were consistently differ-
entially expressed between bacterial and viral respiratory infec-
tions (Fig. 2B). With our previously described signature score
model (11, 28), the expression of these protease genes was able
to distinguish bacterial and viral respiratory infections in 16
discovery cohorts (area under the receiver operating characteris-
tics curve [AUC] = 0.901, 95% CI: 0.842 to 0.960; Fig. 2C).
Furthermore, in held-out, unseen samples from the 16 discov-
ery cohorts, data from the 39 proteases achieved an AUC of
0.813 (Fig. 2C). Finally, in 17 completely independent cohorts,
the expression pattern of these proteases maintained high accu-
racy in separating bacterial and viral respiratory infections
(AUC = 0.907, Fig. 2C).

The proteases used in these signatures were selected purely
based on differential gene expression and classification power.
To validate their biological relevance to acute respiratory infec-
tions, we input the respective signatures into a molecular func-
tions database (29, 30). Notably, the bacterial gene set was
significantly associated with pathways that included innate
immunity and extracellular matrix (ECM) organization and
degradation (Fig. 2D). Neutrophils are an integral component
of the early innate immune response and have been known to
play a significant role in the clearing of bacterial pneumonia via
mechanisms that include bacterial killing, antimicrobial peptide
production, and recruitment of other innate immune cells (31).
The ECM has also been shown to influence bacterial adhesion
and colonization and is remodeled during tissue repair follow-
ing inflammatory damage (32). Furthermore, the viral protease
set was significantly enriched in several different pathways,
including apoptosis, which is a classic defense mechanism
against viral infections (33) (Fig. 2E). The associations between
these newly derived in silico signatures and known biological
pathways gave us confidence that our 39-protease gene signa-
ture (ProSet) would prove to include active, functional players
in pneumonia and, thus, valuable biomarkers in vivo.

Proteases Involved in Lung Infections Inform the Creation of
a Pneumonia-Specific Panel of ABNs. ABNs produce a func-
tional output for disease and possess an inherent amplification
factor, in that a single target enzyme can trigger the release of mul-
tiple reporters. Therefore, rather than rely on endogenous gene
expression, we sought to create ABNs that leverage the catalytic
activity of host proteases to generate a noninvasive and amplified
urinary readout to distinguish bacterial versus viral pneumonia.
The ProSet provided a foundational list of pneumonia-specific
biomarkers that could be targeted by our ABNs. To create suitable
ABNs, we sought to identify peptide substrates that were suscepti-
ble to cleavage by these enzymes for use as protease-cleavable link-
ers. Some enzymes in the ProSet had cleavage profiles that were
unsuitable for targeting by ABNs (e.g., aminopeptidases), and
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others did not have suitable mouse homologs (e.g., GZMH). For
the remaining viable protease candidates, we drew from prior lit-
erature to identify peptide substrates that had been previously
optimized (see Table 1 for sequence source information). We
then expanded the substrate pool by drawing upon our previous
work, in which we identified peptide sequences that are effi-
ciently cleaved in mouse models of diseases involving lung
inflammation, such as lung cancer and bacterial pneumonia (21,
23, 25, 26), and nominated candidates based on literature review
(references in Table 1). This process resulted in a panel of 20
substrates, which were individually conjugated to a 40-kDa poly-
ethylene glycol (PEG) core to form 20 distinct ABNs (Table 1).
The N terminus of the linker was synthesized with a mass-
encoded glutamate-fibrinopeptide B (GluFib) reporter, a peptide
that is stable in circulation and readily renally cleared, to enable
detection in urine via mass spectrometry. However, the N termi-
nus can also accommodate other reporter molecules, such as a
fluorophore or short peptide domain, to suit different readout
modalities (34, 35).

The Pneumonia ABN Panel Generates Etiology-Specific Uri-
nary Signatures. We next sought to determine whether this
ABN panel could distinguish bacterial from viral pneumonia
in vivo (Fig. 3A). We established five distinct mouse pneumo-
nia models that represent common causes of CAP in humans
by infecting immunocompetent BALB/c mice (see Materials
and Methods for infection protocol) with either bacteria (SP,
Klebsiella pneumoniae [KP], Haemophilus influenzae [HI]) or
viruses (influenza A/PR/8/34 [H1N1] [PR8]; pneumonia virus
of mice [PVM]). We optimized the dose of each pathogen to
cause similar timelines of disease within each etiology based on
lung bacterial and viral loads, as well as physical signs of illness,
including weight loss and ruffled fur (SI Appendix, Fig. S1). To
characterize the performance of our panel in vivo, we then
delivered the 20 ABNs directly into the lungs of mice with
bacterial pneumonia, viral pneumonia, or healthy controls and
collected urine 2 h after administration.

After normalizing the urinary reporter levels relative to the
administered stock and across each other (see Materials and
Methods for details), we compared the concentrations to assess
whether the panel of ABNs was differentially cleaved among
disease states. Principal-component analysis (PCA) revealed a
divergence between the infected mice and the corresponding
healthy controls, consistent with the hypothesis that ABNs are
differentially cleaved between these groups (Fig. 3B). Further-
more, the tight clusters indicated that a consistent set of prote-
ase cleavage events within each group gave rise to the pattern of
reporters detected in urine. To define these signatures, we
examined the relative differences in reporter concentrations
between the healthy and infected mice and found that 17 of
the 20 ABNs were significantly differentially cleaved in one
state versus the other (Fig. 3C). This result demonstrated that
the host protease response could be queried to generate a func-
tional readout of active pneumonia. Furthermore, we noted
that although the infected lung is presumably more protease-
rich than healthy tissue, many reporters are significantly
enriched in healthy controls relative to the pneumonia-infected
mice, which highlights differential protease activity between the
two states.

Relabeling the infected mice based on etiology revealed fur-
ther separation between bacterial and viral pneumonia (Fig.
3D). Notably, of the five reporters enriched in the urine of
infected mice with pneumonia compared to controls, three
(BV13, BV19, BV20) were significantly enriched in the viral
mice, while the other two (BV03 and BV04) were enriched in
the bacterial mice (Fig. 3E). Reporters from additional ABNs
(e.g., BV01, BV10, BV12) also emerged as differentially
enriched in bacterial and viral pneumonia, even though they
were enriched in the healthy controls relative to the pool of all
infected mice. This observation that different sets of reporters
were enriched based on context demonstrated that the multi-
plexed ABN panel yielded discrete reporter sets to reflect
various disease states. Overall, these results revealed distinct
differences in the urinary reporter concentrations, and thus

Fig. 1. Schematic of how ABNs harness host-derived proteases to enable the diagnosis of pneumonia. 1) A multiplexed panel of ABNs with varying prote-
ase substrate linkers and corresponding mass-encoded reporters are administered to mice that have been infected with either bacterial or viral pneumonia.
2) Proteases are present in the lung cleave the ABNs at engineered substrate linkers, which release the reporters from the ABN scaffold (gray) into the circu-
lation. 3) These reporters are filtered by the kidney and concentrated in the urine. 4) The reporters are then collected, and their concentrations are mea-
sured via mass spectrometry. 5) These concentrations are input into machine learning algorithms to train diagnostic classifiers. 6) This algorithm enables
the diagnosis of pneumonia and, in the case of infection, specifies whether the etiology is bacterial or viral.
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in vivo protease activity, between mice with bacterial and viral
pneumonia.

ABNs Are Cleaved by a Wide Range of Protease Classes. After
the discovery of these in vivo cleavage signatures, we next
sought to predict which proteases were driving the differential
reporter enrichment based on the specificity of each substrate
for its target protease. To screen the cleavage of each linker
across a nonexhaustive range of proteases, we first reformulated
each ABN into a fluorescent probe format by flanking the
peptide substrate sequence with a fluorophore-quencher pair

(Fig. 4A; sequences listed in SI Appendix, Table S3). We then
incubated each probe with commercially available recombinant
proteases that were either based on the ProSet or predicted to
be present in the lungs (protease and buffer conditions in SI
Appendix, Table S4). All probes were cleaved by at least one
protease within 10 min, and several proteases known to be rela-
tively promiscuous, such as neutrophil elastase (NE), exhibited
particularly robust and broad substrate cleavage (Fig. 4A). We
performed hierarchical clustering to determine which proteases
produced orthogonal cleavage patterns and saw similar cleavage
profiles across cathepsin K (CTSK), kallikrein 5 (KLK5), and
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Fig. 2. Generation of a bacterial versus viral infection protease signature using transcriptional metanalysis. (A) Publicly available transcriptional datasets
from human patients with bacterial and viral respiratory infections were normalized using MANATEE, a computational framework for metanalysis of gene
expression data. (B) MANATEE yielded a 39-gene signature of proteases that are differentially upregulated in bacterial versus viral infections. (C) A classifier
was trained on human data from 16 published cohorts and validated on 17 independent published cohorts (SI Appendix, Tables S1 and S2). In total, 70% of
samples (n = 495 nonhealthy samples) were used as discovery, and the other 30% were used in hold-out validation (n = 183 nonhealthy samples). ROC
curves represent the distinguishing power of the classifier, where an AUC of 0.5 indicates the classifier performs as well as chance, and an AUC of 1 indi-
cates perfect classification. (D and E) Biological pathways underlying the different gene sets were queried using a pathway analysis program (Consensus-
PathDB). The pathways are represented by nodes, with the size indicating the number of total genes associated with that pathway and the color indicating
the significance of the inputted gene set in terms of its association with the pathway. Signature genes that are shared between different pathways are
depicted as edges, with the color indicating the number of shared input genes.
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serine protease 3 (PRSS3). However, we observed no obvious
clustering based on protease class. Instead, most proteases gave
rise to relatively distinct cleavage patterns across the panel of
substrates, consistent with our rational approach to sub-
strate selection.
Notably, while the peptide substrates were selected based on

published susceptibility to cleavage by our proteases of interest,
peptide sequences are often cleavable by multiple enzymes to
varying degrees; thus, there will inevitably be substrate cleavage
by additional proteases in vivo, especially in the protease-rich
microenvironment of the infected lung. To parse through this
confounding cleavage and more directly correlate our in vivo
results with specific protease activity, we normalized the heat
map data to identify putative specific protease-substrate pairs
from our screen. We reasoned that standardizing across substrates
would allow us to compare how quickly an individual protease
cleaved one probe relative to others, thus providing a yardstick
for cleavage efficiency. Conversely, normalizing across proteases
reflected specificity by comparing the cleavage rates of one probe
by a wide panel of proteases. To correlate these metrics, we com-
bined them to create a specificity vs. efficiency (SvE) plot, which
enabled the identification of optimal protease-substrate pairs that
had both robust and specific cleavage (Fig. 4B). Based on their
cleavage specificity and efficiency, several optimal protease-
substrate pairs emerged from the screen. Groupings such as gran-
zyme B (GZMB) with BV01-F (Fig. 4B) and legumain (LGMN)
with BV06-F (Fig. 4C) confirmed that some of the rationally
designed probes were being well cleaved by their intended targets.
Other probes yielded no optimal protease hits (all plots available
in SI Appendix, Fig. S2), potentially indicating that the ideal pro-
tease was not included in the screen or that the optimal cleavage
kinetics for that probe were not achieved during a 10-min assay.
Overall, while this analysis indicated that each ABN is vulnerable
to protease cleavage, the presence of any given reporter in the

urine may not directly correspond to the in vivo activity of a sin-
gle protease.

BV01 Signals Differences in the Host Immune Response to
Bacterial and Viral Pneumonia. After we observed differential
cleavage of the ABNs in vivo and characterized cleavage suscep-
tibilities in vitro, we sought to validate that our urinary reporter
signatures were reflective of divergent host responses between
bacterial and viral pneumonia. To do this, we focused on
BV01, which was designed and validated to be cleaved by
GZMB. GZMB is a serine protease that is produced by natural
killer (NK) cells and cytotoxic T lymphocytes and has been
implicated in the antiviral response (44). NK cells in particular
are known to play an important role in antiviral immunity
(45). However, there is evidence that this population can exert
a detrimental effect on the lungs of immunocompromised mice
in the context of SP via inflammatory cytokine production
(46), suggesting that NK cells may also participate in the
immune response to bacterial pneumonia.

To determine whether our differential BV01 signal was
driven by the immune response to viral infection, we focused
on two main causes of viral and bacterial pneumonia: PR8 and
SP, respectively. We hypothesized that the virally associated
BV01 signal we observed in vivo was due to increased recruit-
ment of cells that produce GZMB in the lungs during viral
infection. We assessed the presence of NK cells, which are
known to be actively recruited to the lungs following influenza
infection in mice (47), and cytotoxic T cells, via immunofluores-
cent staining for NKp46 (for NK cells) and CD8 (for T cells).
We observed very small populations of antigen-expressing cells
in the SP-infected tissue (Fig. 5 A and B and SI Appendix, Fig.
S3). However, PR8-infected lungs had a higher number of
positively stained cells, which suggests NKp46-expressing and
CD8-expressing cells are recruited to the PR8-infected lungs. As

Table 1. 20-plex panel of ABNs for pneumonia

Name Sequence (reporter, peptide sequence) Sequence source

BV01 e(+2G)(+6V)ndneeGFFsAr-(ANP)-GGAIEFDSGC-(PEG8-40kDa) Published GZMB substrate (36)
BV02 eG(+6V)ndneeGF(+1F)s(+1A)r-(ANP)-GGHPGGPQC-(PEG8-40kDa) Commercially available CATK substrate
BV03 e(+3G)(+1V)ndneeGFFs(+4A)r-(ANP)-GGGVFRMLSVGC-(PEG8-40kDa) Derived GZMA substrate (37)
BV04 e(+2G)Vndnee(+2G)FFs(+4A)r-(ANP)-GGGLFRSLSSGC-(PEG8-40kDa) Screened GZMA substrate (37)
BV05 eGVndnee(+3G)(+1F)Fs(+4A)r-(ANP)-GGGLLYGKGGC-(PEG8-40kDa) Published CAPN2 substrate (38)
BV06 e(+2G)(+6V)ndnee(+3G)(+1F)(+1F)s(+1A)r-(ANP)-GGy-Tic-TNGC-(PEG8-40kDa) Derived LGMN substrate (39)
BV07 eG(+6V)ndnee(+3G)(+1F)Fs(+4A)r-(ANP)-GGfPRSGGGC-(PEG8-40kDa) (26)
BV08 e(+3G)(+1V)ndneeG(+10F)FsAr-(ANP)-GGGSGRSANAKGC-(PEG8-40kDa) (26)
BV09 e(+2G)Vndnee(+2G)F(+10F)sAr-(ANP)-GGGIQQRSLGGGC-(PEG8-40kDa) (21)
BV10 eGVndneeGF(+10F)s(+4A)r-(ANP)-GGIPSIQSRGLGC-(PEG8-40kDa) Influenza hemagglutinin mimic peptide
BV11 e(+2G)(+6V)ndneeG(+10F)(+1F)s(+1A)r-(ANP)-GGNLARALKQTIGC-(PEG8-40kDa) Screened MMP substrate (40)
BV12 eG(+6V)ndneeG(+10F)Fs(+4A)r-(ANP)-GGHMVQHLIQWHGC-(PEG8-40kDa) Screened MMP substrate (40)
BV13 e(+3G)(+1V)ndnee(+2G)(+10F)Fs(+4A)r-(ANP)-GGPRAAA-Homophe-TSPGC-

(PEG8-40kDa)
Screened ADAM9 substrate (41)

BV14 e(+2G)Vndnee(+3G)(+10F)(+1F)s(+4A)r-(ANP)-GGTGPPGYTGC-(PEG8-40kDa) Screened ADAMTS substrate (42)
BV15 eGVndneeG(+10F)(+10F)sAr-(ANP)-GGTGLPVYQGC-(PEG8-40kDa) Screened ADAMTS substrate (42)
BV16 e(+2G)(+6V)ndnee(+3G)(+10F)(+1F)s(+4A)r-(ANP)-GG-Nle(O-Bzl)-Met(O)2-Oic-

Abu-C-(PEG8-40kDa)
Published NE substrate (43)

BV17 eG(+6V)ndneeG(+10F)(+10F)sAr-(ANP)-GGAAFAGC-(PEG8-40kDa) Published NE substrate (23)
BV18 e(+3G)(+1V)ndnee(+2G)(+10F)(+10F)sAr-(ANP)-GGGGGPGC-(PEG8-40kDa) (21)
BV19 e(+2G)VndneeG(+10F)(+10F)s(+4A)r-(ANP)-GGPLGMRGGC-(PEG8-40kDa) (26)
BV20 eGVndnee(+2G)(+10F)(+10F)s(+4A)r-ANP-GGP-(Cha)-G-Cys(Me)-HAGC-(PEG8-

40kDa)
(26)

Each nanoparticle consists of a mass-encoded GluFib reporter (in italics, d-amino acids represented by lowercase letters) attached to a photolabile linker (3-amino-3-(2-nitro-
phenyl)propionic acid, ANP). The adjacent peptide substrate (in bold) is conjugated to an inert 40-kDa 8-arm PEG scaffold. All substrate sequences were derived from published studies.
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a positive control, we also stained sections with a Ly6G-binding
antibody (RB6-8C5) to mark neutrophil lineage cells. In contrast
to the NKp46 and CD8 staining patterns, we observed robust
staining of RB6-8C5+ cells in sections that were infected with
SP versus PR8 (Fig. 5C and SI Appendix, Fig. S4). We also
stained for GZMB protein in the same sections and saw
increased expression in PR8-infected lungs relative to
SP-infected samples (Fig. 5D and SI Appendix, Fig. S4), consis-
tent with elevated GZMB levels by qRT-PCR in PR8 tissue
samples (Fig. 5E). Given that there are circumstances in which
NK cells can express CD8, at this resolution, we cannot exclude
the possibility that the CD8 antibody may mark NK cells as
well (48, 49). Nonetheless, we observed that NKp46+, CD8+,
and GZMB+ cells are significantly more prevalent in virus-
infected lungs compared to bacterial infection, which reinforces
our model that urinary signatures generated by host cell
responses vary based on infection etiology.

Collectively, our data led us to nominate GZMB as a viral
target via transcriptomics; indicated that BV01 is efficiently and
specifically cleaved by GZMB in vitro; suggested, based on
immunostaining, that the cells producing GZMB are enriched
in lungs infected with PR8 (viral pneumonia) compared to SP
(bacterial pneumonia); and validated that GZMB itself is up-
regulated in a model of influenza based on immunohistochemis-
try and mRNA expression. We next sought to determine
whether GZMB activity was the source of the viral-associated
BV01 signal that was observed. To do this, we constructed an
activatable zymography probe (AZP) based on the BV01 sub-
strate sequence (BV01-Z) to assay for in situ GZMB cleavage in
fresh-frozen lung tissue samples from our mouse models of infec-
tion (50–52). AZPs are composed of an anionic poly-glutamic
acid (polyE) domain that is connected to a fluorophore-labeled
cationic poly-arginine (polyR) domain via a peptide substrate
(Fig. 5F). The AZP is applied topically to tissue similarly to the
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Fig. 3. Nanosensors distinguish pneumonia and its etiology in mice. (A) ABNs were administered into five mouse models of pneumonia. Urine from each
mouse was collected 2 h after administration to characterize in vivo ABN activity. (B and D) Unsupervised PCA of normalized urinary reporter concentrations in
pneumonia (n = 83 mice) and healthy controls (n = 35 mice). Data from pneumonia mice are labeled according to either infection (B) or etiology (D) (bacterial
pneumonia, n = 45; viral pneumonia, n = 38). (C and E) The relative fold change between disease states was calculated using mean-scaled reporter concentra-
tions. Dotted vertical line represents no fold change between disease states. Each point represents one reporter, with significantly differential reporters in red
(above the dotted horizontal line at Padj = 0.05). Significance was calculated using two-tailed t test with Holm-Sidak correction.
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typical workflow for immunofluorescence, except when the pep-
tide substrate connecting the polyE and polyR domains of the
AZP (in this case, the BV01 substrate; sequence in SI Appendix,
Fig. S5) is cleaved by a protease, the AZP is activated as the
polyE and polyR domains separate (Fig. 5F). The liberated,
fluorophore-labeled, cationic polyR domains can then bind
locally to the tissue where the AZP was activated, thus labeling
the site of protease activity in situ.
To confirm that BV01-Z was cleaved by GZMB and that

proteolytic activation was necessary for tissue binding, we incu-
bated the AZP with recombinant GZMB, allowing protease-
driven activation to take place in vitro. We then applied either
the precleaved mixture or intact AZP probe onto fresh-frozen
sections of healthy mouse lung at a temperature that enabled tis-
sue binding while preventing activity of endogenous enzymes. A
fluorescent signal was visible in the sections incubated with the
precleaved AZP, but not with the intact probe, supporting the
hypothesis that that the AZP could be cleaved by recombinant
GZMB and that a positive signal is dependent on protease activity
(SI Appendix, Fig. S5).

Having validated that the GZMB-cleaved BV01-Z could
bind to healthy lung tissue sections, we applied the intact AZP
to fresh-frozen lung sections from PR8-infected mice to assay
whether the reporter would be activated in situ and where it
would bind. In these conditions, we observed strong BV01-Z
labeling throughout the tissue (Fig. 5G). To determine whether
this AZP activation signal could be attributed to GZMB activity,
we then added a GZMB-specific inhibitor (Z-AAD-CH2Cl;
in vitro validation of inhibition in SI Appendix, Fig. S5) to the
tissue incubation step and observed a significant decrease in
binding of the activated polyR domain (Fig. 5 G and H;
*P = 0.0278), confirming that in situ GZMB activity con-
tributes to BV01-Z activation. However, at least at this level of
GZMB inhibition (SI Appendix, Fig. S5), some AZP signal
remained. Notably, peptide substrates can exhibit broad suscepti-
bility to proteolytic cleavage; this includes BV01, which we
observed to be cleaved to a lesser extent by both NE and
ADAM9 in vitro (Fig. 4B). Moreover, there are many proteases
present in vivo, but only a small subset was tested in our in vitro
cleavage screen.
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Fig. 4. In vitro screening of fluorescent substrates reveals possible nanosensor targets. (A) The peptide sequence of each ABN was incorporated into a
quenched fluorescent substrate. These fluorogenic probes were then incubated with recombinant proteases to evaluate cleavage profiles. Hierarchical clus-
tering was performed based on the fold change in fluorescence after 10 min (average of two replicates). A fold change of 1 indicates no cleavage (white
squares in the heat map); increased cleavage corresponds to higher color intensity. (B and C) Standardization was performed to assess protease-substrate
pairings from the in vitro screening data. Z-scores of the average fold change values for each pairing across the proteases (x axis) and substrates (y axis)
were compared using sSvE plots to characterize protease-substrate pairs with highly specific and efficient cleavage.
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Thus, we hypothesized that off-target BV01 cleavage by
other tissue-resident proteases was responsible for the observed
residual BV01 AZP signal in PR8-infected sections. Consistent
with this prediction, when we incubated with a broad-spectrum
mixture of serine, cysteine, metallo, amino, and aspartic pepti-
dase inhibitors, the BV01-Z staining was further diminished
relative to GZMB-specific inhibition, albeit not at a level that
reached statistical significance (Fig. 5H; n.s., P = 0.0937). Hav-
ing confirmed that GZMB did activate BV01-Z in situ, we
then applied BV01-Z to both a whole-lung section of PR8 and
a lobar section of healthy lung and observed elevated AZP sig-
nal in the infected tissue compared to healthy (SI Appendix,
Fig. S6). Taken together, these results demonstrate that there is
a greater influx of NK and CD8 T cells in viral pneumonia
compared to bacterial pneumonia. These cells produce the viral
pneumonia marker GZMB, which can cleave the BV01 peptide
sequence in tissue sections from mice with viral pneumonia

and, by proxy, in vivo to produce a reporter signal that is
detectable in urine.

The ABN Panel Can Classify Pneumonia and Determine Etiology.
Ultimately, our goal is to use the protease activity sensor panel to
noninvasively diagnose pneumonia and simultaneously determine
its etiology. Our enrichment analysis demonstrated that ABNs
were differentially cleaved based on disease state (Fig. 3), and our
AZP results supported that the reporters present in the urine
reflect protease activity driven by pathways that are key to disease
pathogenesis (Fig. 5). Having shown that the urinary reporters
were reflective of disease, we next leveraged their measurements
to create a diagnostic tool. For this purpose, we built a machine
learning algorithm to create classifiers that could be prospectively
applied to enable pneumonia diagnosis. To train the classifiers,
we infected a completely new set of mice (cohort 2, n = 102).
These mice were infected with the same pathogens as the original

G

F

A B C ED

H

Fig. 5. GZMB is elevated in viral pneumonia and contributes to nanosensor signal. (A–D) Percentage of detected cells positive for various cell markers via
immunofluorescent staining performed on fresh-frozen sections from mice infected with either PR8 or SP (n = 2 consecutive sections per group, mean ±
SD). Counts were obtained using QuPath, and stain-positive cells were identified via manually set thresholds. Counts for positive/total cells per section in
each panel are (A) CD8 (PR8: 884/83153, 747/80149; SP: 49/86308, 34/127753; healthy: 252/117485, 289/122812); (B) NKp46 (PR8: 4256/80149, 6895/83153;
SP: 345/86308, 505/127753; healthy: 593/117485, 421/122812); (C) RB6-8C5 (PR8: 5021/90127, 5549/97327; SP: 38217/128902, 51305/145035; healthy: 2641/
130332, 2032/128009); and (D) GZMB (PR8: 1127/82380, 3432/94145; SP: 168/119890, 767/89157; healthy: 335/156523, 291/135411). (E) Relative expression
of GZMB in lung tissue from healthy control mice and those with PR8 or SP via qRT-PCR. (F) The original BV01 substrate was incorporated into the AZP
BV01-Z, consisting of the substrate sequence linking a fluorescently labeled polyR domain and a polyE domain. The AZP is applied to fresh-frozen tissue and
is cleaved by active tissue-resident enzymes, after which the liberated polyR domain electrostatically binds to the tissue. (G) The GZMB responsive AZP
BV01-Z (yellow) was applied to PR8-infected tissue with and without a GZMB-specific inhibitor or a broad-spectrum mixture of protease inhibitors. Sections
were costained with a free polyR binding control (not shown) and counterstained with DAPI (blue). Staining shows one section of the slide, with white
squares marking the location of the inset images. Scale bars for full sections: 2,000 μm; scale bars for zoomed regions: 100 μm. (H) Quantification of relative
BV01-Z intensity in sections stained with or without inhibitors (n = 2 consecutive sections, mean ± SD; one-way ANOVA with multiple comparisons and
Brown-Forsythe and Welch’s correction, *P = 0.0278).
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cohort (cohort 1, n = 118), but all aspects of the infection, ABN
administration, and urine collection processes were performed
independently (Fig. 6A). We then split cohort 2 into two groups:
one group (n = 81) was used to train a support vector machine
(SVM) classifier, and a second group (n = 21) was used to validate
the classifier’s performance (Fig. 6B). The classifier was able to per-
fectly distinguish between mice that had pneumonia and healthy
controls within this validation group (AUC = 1.0; Fig. 6C). We
applied this classifier to the urinary reporter concentrations from
cohort 1 to evaluate its diagnostic potential in an independent
test set and achieved near-perfect classification (AUC = 0.998;
Fig. 6C), thus demonstrating that the ABN panel can be used

to design and deploy a machine learning classifier to diagnose
pneumonia.

Using the same framework, we then used the reporter con-
centrations from the infected population of cohort 2 (n = 69)
to train and validate a new binary classifier to distinguish
between viral and bacterial pneumonia. Again, we observed
very high performance in the validation cohort (AUC = 0.980;
Fig. 6D). To test the bacterial-viral classifier, we applied it to
the infected mice from cohort 1 (n = 83) and observed near-
perfect classification of the infected mice based on pneumonia
etiology (AUC = 0.999; Fig. 6D). After determining that sepa-
rate binary classifiers could identify pneumonia and distinguish
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Fig. 6. The nanosensor panel diagnoses pneumonia and classifies pneumonia etiology with high accuracy. (A) Mice from two independent cohorts were
infected with various pneumonia-causing pathogens or given a mock dose of phosphate buffer saline for healthy controls. (B) Flowchart of the training, vali-
dation, and testing method used to create and test SVM classifiers for pneumonia. Cohort 2 was split into two groups: one to train the classifier and another
to validate its performance. The classifier was then applied to an independent group of infected and healthy mice, cohort 1. The classification performance
of the classifier on this independent cohort is labeled as the test condition. The validation and test performance of binary classifiers trained using this
framework is represented with ROC curves (see C and D). Distinguishing power of classifiers trained on a multiclass prediction problem were visualized with
a confusion matrix (see E, F, H, and I). (C and D) Performance of binary classifiers to differentiate mice infected with pneumonia from healthy controls
(C) and bacterial from viral pneumonia (D). (E and F) Confusion matrices can visualize the performance of a multiclass SVM algorithm to distinguish among
all three states of interest. The (E) cross-validation and (F) test performance of the multiclass classifier are shown here. Each value represents the frequency
at which each true label was classified with the predicted label (e.g., the top left box represents the mice with bacterial pneumonia, the true label, that were
classified as having bacterial pneumonia, the predicted label). The diagonal represents the true positive classifications. (G) PCA was performed on mean nor-
malized urinary ABN signals from healthy controls (black) and mice with pneumonia (colored symbols) in cohort 1. (H and I) Confusion matrices showing the
accuracy of an SVM classifier in pathogen identification. All performance metrics are averages over 10 independent train-test trials. Train, validation, and
test n can be found in Materials and Methods.
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its cause, we put these capabilities together in a multiclass SVM
algorithm. This multiclass differentiated among all three states
(healthy, ill with bacterial pneumonia, and ill with viral pneu-
monia) with near-perfect accuracy (Fig. 6 E and F). These
results demonstrate that our ABN platform can be used to not
only identify pneumonia, but also to stratify etiology.
After establishing that machine learning classifiers, trained

on our urinary reporter data, could accurately differentiate
between viral and bacterial pneumonia, we next sought to eval-
uate whether this approach could enable pathogen-specific
identification. PCA of cohort 1 showed that samples from mice
infected with various pathogens formed distinct clusters (Fig.
6G). By training a multiclass classifier on the task of pathogen
identification, we demonstrated that this classifier correctly
identified the pneumonia-causing pathogen, or lack thereof in
the case of the healthy controls, in each mouse with high accu-
racy (Fig. 6 H and I). Applying this classifier to the test set
yielded highly accurate identification of all pathogens except
HI, which was frequently mislabeled as healthy (Fig. 6I). Given
these considerations, while the ABN panel can achieve patho-
gen identification, further optimization is required to reach a
level of accuracy that would enable microbe-specific treatment.

Multiplexing Enables Disease-Specific Classification with a
Smaller Nanosensor Panel. The complexity and heterogeneity
of human disease will likely necessitate a wide panel of multi-
plexed ABNs that can reflect subtle differences in protease
activity not only between pneumonia etiology, but also among
comorbidities across varied individuals. This makes the 20-plex
panel a valuable tool toward clinical translation. However, to
make ABNs a viable point-of-care tool for diagnosing pneumo-
nia in low-resource settings, we sought to determine the mini-
mal subset of ABNs that could still achieve high classification,
as a simplified panel of reporters could enable testing with
lower-cost readouts such as lateral flow assays (LFAs). Based on
our in situ results, we first evaluated whether the GZMB-
sensitive sensors (BV01 and BV14) could be used to distinguish
disease. Analysis of the full panel data revealed that this pair of
ABNs is sufficient to differentiate between bacterial and viral
pneumonia with high accuracy (validation AUC = 0.938, test-
ing AUC = 0.914; SI Appendix, Fig. S7) when using binary
classification. However, using a multiclass classifier, which
resembles the clinical use case of this diagnostic, the perfor-
mance of this pair did not accurately discriminate between dis-
ease states (SI Appendix, Fig. S7). Therefore, limiting the panel
to these two ABNs may be useful for true-positive identification
of viral pneumonia but would be insufficient to accurately
stratify bacterial pneumonia and healthy controls.
Looking beyond GZMB, we went back to our differential

enrichment analysis (Fig. 3C) and assessed the ability of the
most differential reporters to discriminate disease. Creating a
binary classifier using the top two differentially expressed
reporters between bacterial and viral pneumonia (BV03 and
BV19) yielded high classification of the two pneumonia etiolo-
gies (testing AUC = 0.951; SI Appendix, Fig. S8). However,
like pairing BV01 and BV14, a multiclass classifier composed
of BV03 and BV19 did not classify etiology in the wider con-
text including healthy controls, making the pair unsuitable for
use in the target clinical setting. Nonetheless, when the panel
was expanded to a 5-plex of other top hits (BV19, BV03,
BV13, BV09, and BV07), this set of five ABNs determined eti-
ology with high accuracy using both binary and multiclass clas-
sifiers (SI Appendix, Fig. S8).

Discussion

In this paper, we have created and validated a urine-based test
that leverages the body’s response to infection to not only detect
active pneumonia in mice, but also distinguish between bacterial
and viral pneumonia etiologies. This diagnostic is powered by
noninvasive measurements of host-derived protease activity, a
means of pneumonia classification distinct from the oft-cited bio-
markers such as CRP, PCT, and inflammatory cytokines. Our
results reveal several insights into the diagnosis of CAP. First, we
demonstrated that proteases can be mined from existing human
transcriptomic data and then leveraged as biomarkers for distin-
guishing pneumonia etiology. Second, we created a nanosensor
panel that can detect the differential activity of these proteases
during pneumonia and release renally cleared reporters to gener-
ate disease-specific signatures in urine. Third, we identified a
protease activity sensor, BV01, that contributes to etiology strati-
fication by detecting the activity of GZMB, which is expressed at
higher levels in a mouse model of viral pneumonia than bacterial
pneumonia. The diagnostic power of this sensor appears to be
driven by the greater influx of GZMB-producing immune cells
into the lungs of mice in response to influenza pneumonia versus
infection with SP. This observation suggests a mechanism of
nanosensor activation that is dependent on differential host
immunity to bacterial versus viral etiologies. Finally, we used our
urinary reporter signatures to design and deploy machine learning
algorithms that can diagnose pneumonia and differentiate
between bacterial and viral pneumonia with high accuracy. By
focusing on the proteases implicated in host immunity, we have
demonstrated that pneumonia diagnostics can leverage the body’s
innate response to pathogens to create noninvasive readouts of
infection that are sensitive and specific.

The world’s response to the COVID-19 pandemic illustrated
that rapidly determining the etiology of pneumonia is crucial for
individual patient management and public health. We believe that
our ABN panel represents a method to diagnose pneumonia that
could augment the current diagnostic paradigm. Because sample
collection for our method simply requires a urine sample, reporter
analysis could likely be run in parallel with existing UATs for
Legionella and pneumococcus, which would allow clinicians to
leverage existing noninvasive tests to diagnose their patients more
accurately. Furthermore, the ability of our panel to detect pneumo-
nia and determine etiology via a noninvasive readout within 2 h of
sensor administration could represent a rapid test for pneumonia.
Additionally, the ability to determine pneumonia etiology quickly
and accurately could help curb rising antimicrobial resistance by
ruling out bacterial pneumonia on a time scale that would enable
antibiotic stewardship in patients with suspected CAP.

While more work is needed to establish the potential of our
approach for diagnosis of human disease, there exists a path to
clinical approval and translation. The safety of the base formula-
tion (i.e., a PEG scaffold with attached peptide linkers and conju-
gated mass barcodes) has already been established in both small
and large animal models, as well as in healthy human subjects
after intravenous administration in a phase I clinical trial (53).
Furthermore, our laboratory is developing aerosolized formula-
tions of ABNs that are suitable for pulmonary delivery in patients.
Finally, we have previously developed LFAs that can detect uri-
nary ABN reporters in paper diagnostic formats (54, 55). These
advances in safety, administration, and detection establish a path
to develop our activity-based diagnostic platform for clinical use.

However, beyond the clinical barriers to bringing our proof-
of-principle detection approach from bench to bedside, an
important biological limitation of this work is that a wide range
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of bacterial and viral pathogens cause CAP. Thus, to use the
ABN panel as a point-of-care diagnostic, the classifier will need
to be trained on urinary reporter data derived from human sub-
jects infected with pathogens beyond the five included in this
work. For example, emerging causes of CAP, such as SARS-
CoV-2, should be included in datasets used to build and test
diagnostic classifiers. Promisingly, recent work has shown that
respiratory viruses such as influenza, SARS-CoV-2, and Ebola,
among others, elicit well-conserved patterns of host immune
response dysregulation (56), which supports that our diagnostic
may be generalizable to novel and evolving viruses.
Another limitation of our work is that all in vivo studies

were performed on female mice, but there are gender differ-
ences in CAP: namely, increased severity and mortality in males
compared to females (57, 58). Such sexual dimorphism could
not be captured by our urinary signatures but may be evident
in clinical translation of the ABNs. However, we suspect that by
multiplexing with 20 different sensors and training the classifier
with urinary samples across genders, the resulting classifiers will
provide coverage for any differences that may arise.
A critical step to translation is to account for the complexity

of translating from animal disease models to humans. For
example, there are likely differences in the cleavage patterns
between the mouse and human protease homologs that would
necessitate tweaking of the peptide sequences comprising the
ABNs for human use (59). However, our transcriptomic signa-
ture was derived from human patients, and our in vitro screen
was performed with recombinant human proteases, which
makes it likely that the ABN panel will translate to humans
and perhaps perform even better after optimizing the substrates
to any preferred homologs. Differences in urinary reporter sig-
natures between model organisms and humans could also be
addressed by developing future ABN panels that respond to
proteases produced by the pathogens themselves, as their
expression and subsequent activity would be independent from
the host. In this work we did not target microbial proteases, as
our goal was to broadly distinguish between etiology, but the
inclusion of ABNs that target microbial proteases in future nano-
sensor panels could enable pathogen-specific detection.
Overall, our intrapulmonary ABNs can diagnose pneumonia

and distinguish etiology in several mouse models of bacterial
and viral pneumonia. We have created, screened, tested, and
validated the sensors using in silico, in vitro, in vivo, and in
situ methods, setting the stage for further development that
might one day translate into a clinically useful diagnostic for
the rapid and noninvasive detection of CAP.

Materials and Methods

Derivation of the Protease Transcriptomic Signature. We performed a
systematic search in NIH Gene Expression Omnibus and European Bioinformatics
Institute ArrayExpress for public human microarray genome-wide expression
studies of tuberculosis or other diseases (60, 61). Datasets were excluded if they
1) were nonclinical, 2) were profiled using tissues other than whole blood or
PBMCs, 3) did not have at least three healthy samples, or 4) did not provide
information to identify whether a patient had bacterial or viral infection. We con-
ormalized data using COCONUT (combat conormalization using controls) (11).
COCONUT allows for conormalization of expression data without changing the
distribution of genes between studies and without any bias toward sample diag-
nosis. We then applied MANATEE, which is a multicohort analysis framework
that is used to integrate gene expression datasets, perform differential expres-
sion analyses to filter out top genes, apply machine learning methods to arrive
at a concise diagnostic signature, and finally to validate the discovered signature
in independent data (Fig. 2A) (27). Details about each of these steps can be
found in SI Appendix, Supplemental Methods.

Animal Models. All animal studies were approved by the MIT Institutional Ani-
mal Care and Use Committee (protocol 0619-032-44) and were conducted in
compliance with institutional and national policies. The 7- to 9-wk-old female
mice (BALB/c, Taconic) were dosed with either SP (NCTC 7466), KP (ATCC
43816), HI (ATCC 33391), PVM (ATCC VR-1819), or influenza (Influenza A/PR/8/
34 (H1N1), Charles River). Nanosensors were synthesized by CPC Scientific.
ABNs were dosed in mannitol buffer (0.28 M mannitol, 5 mM sodium phosphate
monobasic, 15 mM sodium phosphate dibasic, pH 7.0 to 7.5) and deposited into
the lungs by intratracheal instillation (50 μL total volume, 20 μM per ABN). After
1 h, the bladder was manually voided, the urine was discarded, and the mice were
put into a collection chamber for the next hour. Two hours after ABN administration,
the bladder was manually voided and the urine was collected, along with any urine
that was produced in the collection chamber. These urine samples were then sent
to Syneos Health for liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis. Reporter quantification by LC-MS/MS was performed as previously
described (26).

Statistical Analysis. For in vivo analysis, PCA, reporter enrichment, and the
SVM algorithm training/validation were performed using our group’s Protease
Activity Analysis toolkit, a publicly available Python package designed to process
and visualize enzymatic activity datasets (62). Transcriptomic datasets and the
in vitro protease screen hierarchical clustering were analyzed in R (https://www.r-
project.org/). All other analyses were performed in GraphPad 9.0 (Prism). For dis-
ease classification based on urinary ABN signatures, randomly assigned sets of
paired data samples consisting of features (i.e., standardized scores of peak area
ratio of individual urinary reporters measured by LC-MS/MS) and labels (i.e., bacte-
rial or viral) were used to train linear SVM classifiers implemented in Python 3. All
analyses were run with 10-fold cross-validation, and trained classifiers were tested
on randomly assigned, held-out, independent test cohorts. Classification perfor-
mance was evaluated with ROC statistics. Classifier performance was reported as
the mean accuracy and AUC across 10-fold independent cross-validations.

Data Availability. All materials are included in the manuscript and/or SI
Appendix. The code used to analyze the in vitro and in vivo data have been
deposited into publicly available repositories. The MANATEE scripts associated
with this paper can be found at GitHub: https://github.com/Khatri-Lab/manatee_
pnas. The code used for analysis of the in vivo data can be accessed by down-
loading the Protease Activity Analysis toolkit at GitHub (https://github.com/
apsoleimany/protease_activity_analysis).
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