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Gastric cancer is one of the most common cancers and is one of the leading

causes of cancer-related deaths in worldwide. Early diagnosis and treatment are

essential for a positive outcome. The integration of artificial intelligence in the

pathology field is increasingly widespread, including histopathological images

analysis. In recent years, the application of digital pathology technology emerged

as a potential solution to enhance the understanding and management of gastric

cancer. Through sophisticated image analysis algorithms, artificial intelligence

technologies facilitate the accuracy and sensitivity of gastric cancer diagnosis

and treatment and personalized therapeutic strategies. This review aims to

evaluate the current landscape and future potential of artificial intelligence in

transforming gastric cancer pathology, so as to provide ideas for future research.
KEYWORDS
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1 Introduction

Gastric cancer (GC), a globally formidable health challenge, is the fifth most common

cancer worldwide and the third leading cause of cancer-related mortality (1). This malignancy

exhibits a marked geographical variation, with high incidence rates in East Asia, Eastern

Europe, and parts of South America, while lower rates are observed in North America and

Africa (2, 3). The high mortality rate associated with GC is primarily due to late-stage

diagnosis and the complexity of the disease, which present significant hurdles in both

diagnosis and treatment (4, 5). The global impact of gastric cancer is profound, affecting

millions of individuals and their families (6). GC frequently progresses silently, with many

patients remaining asymptomatic until reaching advanced stages (7). Symptoms, such as

weight loss, abdominal discomfort or nausea, are vague and nonspecific, and may delay
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medical assistance and diagnosis (8, 9). Early detection is crucial

because it significantly improves patient survival (10). However, the

absence of distinctive symptoms and the lack of robust screening

procedures lead to delayed diagnosis (11). The management of GC

generally comprises a multidisciplinary approach, including surgery,

chemotherapy, radiation therapy, and immunotherapy. However, the

efficacy of these treatments is contingent upon the stage of the disease

at the time of diagnosis (12, 13). The heterogeneity of GC, with its

various histological and molecular subtypes (14), introduces

additional complexity to its management, underscoring the

necessity for precise diagnostic and therapeutic strategies (15).

Histopathologic examination has long been the cornerstone in

cancer diagnosis (16, 17). Traditional pathology involving microscopic

examination of tissue samples has limitations in terms of scalability,

speed and objectivity (18, 19). Digital pathology involves converting

glass slides into superresolution digital images that can be easily stored,

shared and analyzed (20, 21). This transformation has potentially

altered the operational paradigms of pathologists, facilitating more

effective collaboration and laying the groundwork for the incorporation

of sophisticated computational technologies (22).

Artificial intelligence (AI) has revolutionized various fields,

including pathology, by enabling advanced data analysis (23, 24).

The potential capabilities of AI are particularly useful for identifying

subtle or complex features and specific pathological conditions that

might be challenging for a human pathologist to discern (25–28). In

gastric cancer, AI could analyze digital histopathological images to

aid in diagnosis, prognostication, and treatment decisions, offering

critical insights, precise tumor classification, grading, and

potentially predicting therapy responses (29).
Frontiers in Oncology 02
2 Fundamentals of AI in
digital pathology

Digital and computational pathology convert glass slides into

digital images using high-resolution scanners, enabling viewing,

management, and analysis on computers (30). This transition offers

several advantages, such as easy sharing with experts globally,

facilitating remote consultations, promoting standardized

interpretations, and reducing inter-observer variability (31–33).

Early pathology image analysis efforts, like those by Prewitt and

Mendelson in 1966, were limited by scarce computational resources

and simple algorithms (34). With the rise of AI and machine

learning (ML), more powerful computing enabled sophisticated

analyses, such as classifying types of cancer or predicting disease

outcomes (35). Another breakthrough came in the 2010s with deep

learning (DL), particularly CNNs, which automatically learn

features from raw data, eliminating the need for manual selection

(36). The potential of DL in computational pathology was driven by

the availability of large annotated datasets (37).Initiatives like The

Cancer Genome Atlas (TCGA) and public competitions provided

essential data for training and validating models, accelerating

progress in the field (38, 39).

The applications of AI in GC pathology are vast and

transformative, promising for enhancing various aspects of

pathology practice from diagnostics to research, including

automated disease diagnosis, tumor detection and quantification,

grading and staging cancer, predictive analytics for prognosis,

treatment response, biomarker identification and data integration

for holistic analysis (Figure 1).
FIGURE 1

(A) The digital pathology workflows of AI for gastric cancer. (B) The potential clinical applications of AI in digital pathology for gastric cancer.
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3 Application of AI in the detection
and pathological diagnosis of GC

GC is the prevailing malignancy in humans, emphasizing the

paramount importance of early diagnosis to enhance cure rates and

prognoses (40). Currently, pathological diagnosis continues to serve

as the definitive method for diagnosing gastric cancer (41). Within

the diagnostic procedure, the discrimination between benign and

malignant lesions constitutes a pivotal and indispensable step. The

application of AI in the detection and pathological diagnosis of GC

are summarized in Table 1. Yoshida et al. proposed an image

analysis software called “e-Pathologist,” which was the first

application of an AI algorithm to categorize gastric biopsy Whole

slide images (WSIs) as carcinoma, adenoma, or non-malignant. The

sensitivity, detection specificity, negative predictive value, and

positive predictive value of the e-Pathologist test were 90%, 50%,

99.8%, and 1.7% respectively (42). Abe et al. (43)designed an

artificial intelligence‐based system grounded in a deep

convolutional neural network (DCNN) for diagnosing gastric

biopsies (normal, carcinoma) through the use of H&E-stained

WSIs. Their AI-system was tested on validation cohort including

3450 gastric biopsy samples of 1772 patients from 10 different

institutes, with an accuracy of 91.3%. This shows the potential

power of AI-based model in alleviating the pressure on pathologists

in diagnosing gastric biopsies. In a similar study, Fan and colleagues

(44) applied a DL model for automated gastric endoscopic biopsy

classification. Five common CNN models (VGG-16, VGG-19,

ResNet-50, Xception, and InceptionV3) were utilized for the

Japanese “Group Classification” of Gastric Carcinoma. The

ResNet-50 model demonstrated the best performance, with an

accuracy of 93.16%. Likewise, Iizuka et al. (45) trained a CNN

model based on the inception-v3 framework for stomach biopsy

whole slide image (WSI) classification into three types:

adenocarcinoma, adenoma, and non-neoplastic. Then a test

cohort of 45 WSIs was used to confirm this model, and an

accuracy of 95.6% and an AUC of 0.924 were obtained. These

indicate the efficacy of AI model in classifying epithelial lesions in

biopsy WSIs of gastric.

In a different study, Ko et al (46) proposed a rapid daily post-

analytical AI-assisted quality control (QC) system for pathologists

to evaluate stomach biopsy specimens. The QC system was

composed of laboratory information and an AI WSI-classifier

model based on the DenseNet algorithm. The AI WSI-classifier

distinguished histopathological WSIs of biopsy specimens among

three classes: negative for dysplasia, dysplasia, and malignant, and

demonstrated high accuracy rates (95.8%) from their internal

verification set, which included 150 gastric biopsy WSIs. Evidence

like this demonstrates the clinical efficacy of AI algorithms in

enhancing the diagnostic accuracy and consistency of GC. Park

et al. (47) constructed a DL formula to classify gastric biopsy lesions

into dysplasia, tubular adenoma, and carcinoma. The formula

model obtained an accuracy of 97% with 100% sensitivity and

97% specificity in distinguishing gastric epithelial tumors. This

showcases the aid of AI system could decrease the missed

diagnosis of cancer, especially in biopsies with small areas of
Frontiers in Oncology 03
lesion. A dataset comprising 640 H&E-stained histopathological

slides of GC tissues and immunohistochemistry (IHC) for the HER-

2 gene was utilized by Sharma et al (48). They developed a CNN

system capable of swiftly and accurately distinguishing between

tumor and non-tumor regions in HE-stained WSIs. Compared to

traditional methods and the AlexNet architecture, this model

exhibited superior discrimination of necrotic tumor areas,

achieving an overall accuracy of 0.8144. This highlights the

potential of AI system in cancer classification and necrosis

detection without immunohistochemical staining. Wang et al.

(49) developed a two-stage deep learning model to automatically

classify WSIs of gastric tissue lesions into normal, dysplasia, and

cancer categories, and validated the accuracy at 86.5% using 200

WSIs in the testing set. The core strength of RMDL lies in its

instance recalibration module, which autonomously identifies

crucial instances for image-level forecasting. However, the

application of AI model with a two-stage algorithm may

significantly influence on pathologists in diagnosing cancer, which

neglected the potential interaction between local tiles.

With the creation of exceptionally efficient algorithms, some

pathology laboratories are adopting the routine utilization of digital

slides in the format of WSIs as part of their daily diagnostic

procedures (50–52). Song et al. (53) proposed a CNN of the

DeepLab v3 network trained with 2123 pixel-level gastric cancer

WSIs from 1500 GC patients, and the performance of the model

exhibited nearly 100% sensitivity and 80.6% specificity for gastric

carcinoma detection on 3,212 WSIs in the test cohort. It may assist

pathologists in enhancing diagnostic precision and averting

misdiagnoses in their everyday tasks. In another study, they

assessed the support provided by the DL model in assisting

pathologists with diagnosing gastric carcinoma, through the

design of a comprehensive multireader multicase examination

(54). The results showed that the assistance of DL model indeed

enhanced the accuracy and efficiency of pathologists in

distinguishing between malignant and benign lesions. However,

with the assistantance of the DL model, the specificity of GC

detection remains unaffected. In another analogous investigation,

Lan et al. established a DL-driven pathological auxiliary diagnostic

system based on 2,020 stomach H&E-stained WSIs (55). With the

assistance of this system, pathologists experience a substantial

decrease in the average false-negative rate and average false-

positive rate and a reduction in the time of diagnosis. The

incorporation of AI in disease diagnosis necessitates a careful and

considered approach (56, 57). The consequences of false positive

and false negative cases have far-reaching implications for patient

welfare and should not be underestimated (58, 59).

In the creation of simple AI-assisted diagnostic system,

attaining a minimal false-negative rate holds the same significance

as ensuring a high level of accuracy. Tung et al. (60) constructed a

DL algorithm based on the YOLOv4 network structure to identify

GC regions from endoscopic biopsy WSIs, and obtained a detection

accuracy of 91%, with a sensitivity of 96.6% and a specificity of

89.6%. The advantageous features of this system are its ability to

inspect all GC regions in an image and reduced false-negative rate.

Zhu et al. created an endoscopic gastric biopsy assistant system
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TABLE 1 Characteristics of the application of AI for the detection and pathological diagnosis in gastric cancer.

erformance
etrics

External Valida-
tion Dataset/
WSIs/No. of
Patients (n)

External
Validation
Result

Ref.

erall concordance
te: 0.556

NS NS (42)

ccuracy: 0.910 In-house/3450/1772 accuracy: 0.946 (43)

ccuracy: 0.932
UC: 0.994

NS NS (44)

UC: 0.980
In-house /500/NC,
TCGA-STAD/475/NC

AUC:
0.974
AUC:0.924

(45)

curacy:0.960 NS NS (46)

UC: 0.995
ecificity: 0.981
nsitivity: 0.991

In-house/7432/5379

AUC: 0.979,
Specificity:
0.975,
Sensitivity:
0.967

(47)

curacy: 0.699 NS NS (48)

curacy: 0.814 NS NS (48)

curacy: 0.865 NS NS (49)

UC: 0.945
curacy: 0.833

In-house /595/355 In-
house /987-541

AUC:0.990
AUC:0.996

(53)

curacy: 0.918 NS NS (55)

nsitivity: 0.966
ecificity: 0.896

NS NS (60)

S In-house /2003/NC AUC: 0·979 (61)
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Author Year Country AI Model
Specimen
type

Training and Vali-
dation Data Set/
WSIs/No. of
Patients (n)

Aim
of
Classification

Pixel
Levels

P
M

Yoshida 2018 Japan NC biopsies In-house/3062/3062
carcinoma,
adenoma, or
no malignancy

1024×1024
o
ra

Abe 2022 Japan GoogLeNet biopsies In-house /4511/984
Japanese
Classification

224×224 a

Fan 2022 China ResNet50 biopsies In-house /260/173
Japanese
Classification

mixed size∗
a
A

Iizuka 2020 Japan inception-v3 biopsies In-house/4128/NC
ADC, adenoma,
and non-neoplastic

512×512 A

Ko 2022 Korea DenseNet201 biopsies In-house/1762/NC
NFD, Dysplasia,
and Malignant

256×256 ac

Park 2021 South Korea NC
surgical
sections
biopsies

In-house/2434/2278
adenomas
and carcinomas

NC
A
Sp
Se

Sharma 2017 Germany
self-
designed
CNN

surgical
sections

In-house/NC/454
HER2+ tumor,
HER2− tumor and
non-tumor

512×512 ac

Sharma 2017 Germany
self-
designed
CNN

surgical
sections

In-house/NC/454
Necrotic and
non-necrotic.

512×512 ac

Wang 2019 China RMDL NC In-house/608/NC
normal, dysplasia,
and cancer

NC ac

Song 2020 China DeepLab v3
surgical
sections
biopsies

In-house/2123/1500
malignant
and benign

320×320
A
ac

Lan 2023 China DeepLabv3+
surgical
sections
biopsies

In-house/1668/1294
malignant
and benign

512×512 ac

Tung 2022 China YOLOv4 biopsies In-house/NC/50
malignant
and benign

1024×1024
se
sp

Zhu 2022 China DCNN, GCN biopsies In-house/2618/NC WHO classification 512 × 512 N
v
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TABLE 1 Continued
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DB/600/NC
normal
and abnormal

80×80 accuracy: 0.968

NS NS (62)120×120 accuracy: 0.982

160×160 accuracy: 0.991

GC/166/166 Lauren classification 224 x 224 AUC:0.930
In-house/361/361 In-
house/251/251

NS (65)

e/2919/NC
ADC, adenoma,
and non-neoplastic

512×512 average AUC: 0.97 NS NS (66)

e/1150/NC
Differentiation
grade

224×224 NS In-house/719/NC AUC:0.975 (67)

290/NC

normal, tubular
ADC, mucinous
ADC, and
papillary ADC.

224×224 accuracy:0.947 NS NS (68)

e/70/70
Differentiation
grade

1024×1024 AUC:0.910 NS NS (69)

e/467/467
Differentiation
grade

224×224 accuracy:0.986 NS NS (70)
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Veldhuizen 2023 Germany ResNet-50 NC TCGA-

Kanavati 2021 Japan InceptionV3 biopsies In-hou

Tsuneki 2022 Japan EfficientNetB1 ESD In-hou

Fu 2022 China StoHisNet NC SEED/4

Ning 2023 China NC
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sections

In-hou

Su 2022 China ResNet-18
surgical
sections

In-hou
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bonding DCNN and graph convolutional networks for assisting

pathologists in delineating crucial regions for diagnosis in gastric

biopsy WSIs (61). This highlights the possibility and advantages of

using AI system in the clinical routine work in routine practice

scenarios. In 2023, Yong and colleagues propounded an assemblage

DL model built uponbtransfer learning principles from multiple

pre-trained architectures, including MobileNet, DenseNet,

EfficientNet, InceptionV3, and Xception for gastric lesion

categorization (62). The observations revealed that the ensemble

model attained an advanced accuracy ranging from 97.72 to 99.20%

which was verified on lower resolutionWSIs from GasHisSDB. This

demonstrates the potential of AI in classifying the pathological low-

resolution images for cost reduction.

In intricate pathological assessments, gastric lesions should be

subdivided into different histological subtypes rather than simply

categorized as malignant or benign (63). As a highly heterogeneous

disease, GC could be divided into two primary histological

subcategories within the Lauren classification system (64).

Veldhuizen et al. (65) sought to develop a classifier based on

attention-based deep multiple-instance learning to distinguish

between intestinal and diffuse type GC WSIs. The results

demonstrated that the classifier achieved strong discriminatory

performance (mean AUROC 0.93 ± 0.07). Furthermore, in

comparison to the pathologist-based Lauren classification, the

DL-based classifier exhibited improved stratification of the 5-year

survival rates for GC patients. However, in two independent

external validations, the DL-classifier performed unsatisfactorily.

There are 54% of the samples that the DL-classifier identified as

intestinal type while pathologist initially classified as diffuse type.

These results showed that the progression of AI may enhance the

diagnostic accuracy among pathologists and reduce observer

disagreement in GC histological classification. In a similar study,

GC histological patterns were categorized into diffuse-type

adenocarcinoma (ADC) and others on H&E-stained slides using a

CNN framework to train four individual models. The best model

achieved the AUROC of 0.95–0.99 in five validation groups (66).

Another gastric ADC classification DL model was developed by

Tsuneki et al. and achieved an AUROC of 0.975 for classifying

endoscopic submucosal dissection (ESD) WSIs into poorly

differentiated ADCs and others (differentiated and non-tumor)

(67). These show the promise of AI in accurately distinguishing

poorly differentiated adenocarcinoma for improved clinical

decision-making and outcomes. In a different study, Fu et al.

created a novel architecture, StoHisNet, combining transformer

and a CNN to classify GC WSIs into four subtypes (tubular,

mucinous, and papillary adenocarcinoma, non-tumor), with a

classification accuracy of 94.69% (68). Ning et al. utilized the U-

Net algorithm and QuPath software to identify differentiated and

undifferentiated lesions in WSIs of mixed-type GC (69). Finally, in

the research of Su et al., a CNN-based DL-model was established to

recognize the degree of tumor differentiation and status of

microsatellite instability (MSI) in GC HE-stained WSIs, achieving

F1 values of 0.86 and 0.89 for poor-differentiated ADC and well-

differentiated ADC sorting, respectively and an accuracy of 83.87%

for predicting MSI status (70).
Frontiers in Oncology 06
4 Application of AI in molecular
phenotype prediction of GC

Histological classification has been shown to be insufficient for

identifying actionable molecular targets (71). In acknowledgment of

limitations, extensive molecular profiling has given rise to a variety

of classifications based on molecular characteristics to uncover the

clinical features and biological characteristics to inform therapeutic

decision-making and prognosis of GC patients (72–75). Harnessing

AI holds the potential to ease the burden of molecular property

testing to alleviate the pressure on pathologists (76–79). The

application of AI in molecular phenotype prediction of GC are

summarized in Table 2.

With the advancement of AI technology, it has demonstrated

promising results and the potential to predict MSI status in a cost-

effective manner (80). In 2019, Kather et al. yielded the first entirely

automated DL system based on the Resnet-18 framework to infer

MSI status from GC histopathological images, with an AUC of 0.81

in the TCGA cohort and an AUC of 0.69 in the external validation

cohort (81). Molecular phenotype prediction using AI and

pathomics holds significant promise for enhancing the early

management of GC. Subsequently several similar studies

integrating advanced technical DL algorithms have provided

further insights into the efficacy of ML for predicting MSI status

in GC histological WSIs, and the model exhibited performances

with AUCs ranging from 0.54 to 0.90 (82–86). This demonstrates

the effectiveness of AI algorithms in accurately differentiating MSI

status. AI has been applied widely to predict molecular categories

directly from GC H&E-stained slices and exhibited equivalent

performance compared with identification staining methods

noticed on WHO rules (87). Such evidence highlights the

potential of AI in areas like molecular identification and

phenotype prediction, paving the way for advancements in

personalized medicine.

EBV-associated GCs are recognized as molecularly and

pathologically distinct from those EBV-negative. Numerous

studies have demonstrated the efficacy of AI in predicting

Epstein–Barr virus (EBV) status. Jeong et al., trained a DL

classifier to detect the EBV status from H&E stained digital WSIs

based on the InceptionV3 architecture, with the accuracy of 0.92

(88). In another research, a ResNet18-based CNN framework was

adopted to identify EBV status through GC H&E-stained WSIs and

obtained an AUC of 0.85 (89). In line with these findings, Vuong

et al., first proposed a CNN model based on EfficientNet to evaluate

the EBV status of H&E–stainedWSIs from biopsy specimens of GC,

and achieved admirable performance with an accuracy of 0.938

(90). This showcases the potential of AI in analyzing intricate

patterns in medical imaging and discovering virus infection

status. Moreover, Zheng et al. (91), proposed a human−machine

collaboration approach that combined a DCNN model and

pathologists for EBV prediction. With the collaboration of

pathologists, the model attained the AUC ranging from 0.945 to

0.969 for predicting GC EBV status. This suggests the potential of

human-AI fusion strategy in identifying EBV status and its role in

revealing new insights into identify complex molecular subtypes.
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TABLE 2 Characteristics of the application of AI in molecular phenotype prediction of gastric cancer.

Performance
Metrics

External Valida-
tion Dataset/
WSIs/No. of
Patients (n)

External
Validation
Result

Ref.

AUC:0.81 In-house/NC/185 AUC:0.89 (81)

AUC:0.745

NS NS (82)

AUC:0.810

AUC:0.80 NS NS (83)

AUC:0.902 In-house/NC/383 AUC:0.874 (84)

AUC:0.898

NS NS (85)

AUC:0.764

AUC: 0.76 NS NS (86)

ACC:0.99 In-house/60/NC ACC:0.92 (88)

AUC:0.85 NS NS (89)

ACC:0.937 In-house/286/286 ACC:0.947 (90)

AUC:0.969
In-house/417/417 AUC:0.941

(91)
TCGA/258/239 AUC:0.895

AUC:0.661-0.858 In-house/NC/96 AUC:0.597-0.666 (92)

NC TCGA/NC/351 AUC: 0.809

(93)

NC TCGA/NC/351 AUC:0.837
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Author Year Country AI Model
Specimen

type

Training and Vali-
dation Data Set/

WSIs/No. of
Patients (n)

Aim
of study

Pixel
Levels

Kather 2019 Germany ResNet18 NC TCGA/315/315
predicting
MSI status

224x224

Muti 2021 Germany shufflenet surgical sections

9 In-house,TCGA/NC/2823
predicting
MSI status

512x512

9 In-house,TCGA/NC/2823
predicting
EBV status

Zhu 2022 China ResNet-18 NC TCGA/285/285
predicting
MSI status

224x224

Lee 2022 South Korea. Inception-v3 NC TCGA/NC/331
predicting
MSI status

360×360

Wang 2022 Australia
EfficientNet-
b1

NC TCGA/332/295

predicting
MSI status

224x224
predicting
EBV status

Schmauch 2020 USA ResNet50 NC TCGA/323/NC
predicting
MSI status

224x224

Jeong 2022 Korea InceptionV3 NC TCGA, in-house/427/NC
predicting
EBV status

512×512

Zhang 2021 USA Resnet18 NC TCGA/NC/122
predicting
EBV status

512×512

Vuong 2022 Korea EfficientNet surgical sections In-house/24/NC
predicting
EBV status

256×256

Zheng 2022 China EBVNet surgical sections In-house/1006/727
predicting
EBV status

512x512

Jang 2021 South Korea Inception-v3 NC TCGA/NC/NC
predicting
gene mutation

360x360

Saldanha 2022 Germany RetCCL surgical sections

In-house/NC/1210
predicting
MSI status

NC

In-house/NC/1211
predicting
EBV status

NC

NS, not specified. NC, not clear.
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AI systems offer a cost-effective and time-efficient alternative

for detecting gene mutations from histologic image (92). A

multistep CNN networks based on the Inception-v3 architecture

were trained to assess the mutational status of 5 genes (CDH1,

ERBB2, KRAS, PIK3CA, and TP53) in GC, with CDH1 and

PIK3CA exhibiting the highest accuracies of 0.847 and 0.834,

respectively, for frozen WSIs and KRAS and CDH1 having the

best accuracies of 0.894 and 0.820, respectively, for formalin-fixed

paraffin-embedded tissue WSIs (93). This indicates the potential of

AI in identifying genetic alterations from H&E-stained slides,

potentially offering an alternative from genomics research.

However, due to high tumor heterogeneity, DL-based models

seem to have poorer performance in GC than in other carcinomas

(94). To address these challenges, swarm learning (SL), a

decentralized ML robust, was employed to acquire highly

predictable AI-classifiers for MSI and Epstein–Barr virus (EBV)

status prediction in GC digital WSIs (95). These studies collectively

demonstrate analyzing the morphology of a lesion and its

microenvironment by AI could improve the accuracy of

molecular phenotype predictions, potentially resulting in more

personalized therapeutic approaches, particularly beneficial in

resource-limited settings. Although the potential to implement

molecular phenotype prediction from digitized H&E-stained

tissue is promising, substantial validation is still necessary to

determine the clinical utility of AI-pipelines.
5 Application of AI in determining
GC prognosis

5.1 Prediction of lymph node metastasis

Lymph node metastases (LNM) stands as a key prognostic

indicator for individuals diagnosed with GC (96, 97). Pathologically

evaluating lymph nodes plays an essential role in ascertaining

clinical staging and directing treatment interventions (98, 99). AI-

based algorithm has the potential to alleviate pathologists’ workload

while enhancing diagnostic accuracy. Currently, only a few studies

have explored the application of artificial intelligence in evaluating

LNM in lymph node WSIs. DL methods could extract information

not only to predict LNM and patient outcomes from primary GC

tissue (100) but also to explore prognostic features from WSI from

LNs (101). Hu et al. proposed a cascade DL-based system for

detecting and quantifying LNM in WSI of LNs, which achieved

effectively performance for patients after neoadjuvant therapy

(102). This underscores the effectiveness of the AI approach for

automated lymph node metastatic quantification and identification.

In the similar study, Huang et al. introduced an enhanced streaming

CNN algorithm trained on gigapixel images of LN-level WSIs to

detect LNM. The results showed that with the assistance of the AI

model, the sensitivity of detecting micrometastases, and isolated

tumor cells have been increased, with a less review time. However,

in another study, different results were observed. The AI-diagnostic

model has the potential to enhance the sensitivity of pathologists in

identifying micrometastases, but the review time has extended
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(103). In comparison to manually review LNs microscopically,

AI-based digital pathology systems provide easier input

acquisition, greater diagnostic accuracy, and better scalability for

clinical application.

Lymphovascular invasion (LVI) is a histomorphological feature

indicating LNM in primary GC tissues (104, 105). In 2023, Lee et al.

proposed an ensemble DL algorithm based on the ConViT and

YOLOX architectures for detecting LVI foci from GC

histopathology images, achieved an AUC of 0.9438 in the external

validation cohort (106). In a similar study, hard negative mining

algorithm was used to develop a DL model for lymphatic invasion

screening with GC digital WSIs (107). In summary, the design of AI

in identifying metastatic cells opens avenues for reviewing LNM

and managing gastric cancer patients.
5.2 Prediction of survival and
therapeutic responsiveness

The function of AI should not be confined to replicating

pathologists’ assessments. Some studies indicated that the

significance of AI has the capability to predict patient outcomes

from histopathological slides. Huang et al. trained a CNN model,

MIL-GC, for predicting the outcomes of patients with GC by

analyzing WSIs (108). This stratification is crucial as it correlates

with different survival rates, thereby providing prognostic insights

that can inform clinical decision-making. Some studies have

explored the connection between cancer pathological features and

treatment responsiveness (109, 110). Chen et al. proposed a

signature to predict GC patient outcomes and adjuvant

chemotherapy responses based on pathomic features extracted

from H&E-stained images via AI-based image analysis techniques

(111). Zhou et al. applied three DL algorithms to create an ensemble

model for predicting the effectiveness of neoadjuvant chemotherapy

from WSIs of GC patients (112). In another investigation, a DL-

based network and corresponding digital pathology signature score

were presented from WSIs for the assessment of GC patient

outcomes and adjuvant treatment (113). These advanced AI

models aid in the nuanced understanding of GC pathology,

leading to better-informed prognosis and management plans.
5.3 Prediction of cancer recurrence

Despite the implementation of multimodal treatment strategies,

the recurrence of GC remains a prevalent issue (114). Consequently,

numerous ongoing studies are dedicated to identifying individuals

at risk of recurrence following treatment. In 2023, the first pathomic

signature was developed to predict peritoneal recurrence in GC

patients with serosal invasion from digital H&E-stained images

(115) by handcrafted feature-based approach. However, this

approach could be both complex and time-consuming to use.

Zhang et al. introduced a novel graph neural network, AGCNet,

designed for predicting cancer recurrence by analyzing cancerous

tissue WSIs. The network demonstrated notable effectiveness with

an accuracy of 81.81% in bladder cancer, 69.66% in pancreatic
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cancer, and 81.96% in GC (116). AI as a collaborative tool offers a

promising approach for cancer recurrence prediction and expands

the application of digital pathology images.
6 Application of AI in GC
immuno-oncology

Immuno-oncology is a field focused on the interaction between

tumors and the immune system, delving into harnessing the

immune system’s ability to combat cancer (117). Over the past

three decades, remarkable progress has been made, underpinned by

the emergence of innovative immunotherapies and their clinical

triumphs, which have significantly revolutionized cancer treatment

paradigms, such as immune checkpoint inhibitors, and CAR-T cell

therapy (118). Researchers have extensively explored the

appl icat ion of AI in forecast ing the effect iveness of

immunotherapy (119). In 2023, Wei et al., constructed a DL-

based stratification system by analyzing GC WSIs to identify

molecular phenotypic features associated with immunotherapy

responses, including molecular subtypes, immune checkpoints,

genetic mutations, and the intricacies of signaling pathways (120).

AI-based pathomic methods emerge as predictors of

immunotherapy response, offering valuable insights for making

informed treatment decisions. The tumor mutational burden

(TMB) is a pivotal predictive biomarker, associated with the

effectiveness of immunotherapy in GC patients (121). Li et al.,

developed a DL multimodal fusion model that combined GC WSI

features with omics information for TMB prediction, with a notable

AUC of 0.971 (122). This study demonstrated that multimodal

approaches could enhance the efficiency of prediction models

compared to unimodal algorithms, representing a promising

direction for future AI-pathology research.

7 Application of large language
models and generative AI in pathology

With the rise of large language models (LLMs) and the broader

field of generative AI, computational pathology is poised to enter a

new frontier. LLMs and generative AI can assist in extracting crucial

information and automatic generating pathology reports (123).

Choi et al., demonstrated that following LLMs to extract

structured information from pathology reports can save

significant time and costs compared to manual methods (124). In

another study, ChatGPT was used to detect adenomas in 100

colorectal polyp photomicrographs, with sensitivity of 74% and

specificity of 36% (125). This indicates the promise of LLMs in areas

like diagnosis, though its limitations, emphasizing the need for

expertise in pathology. “PathChat”, a Generative AI Copilot, was

presented for assisting human pathology (126).It has the potential

to significantly impact pathology education, research, and human-

in-the-loop clinical decision-making. While the initial results are

promising, there are abundant opportunities for further growth.

The path forward in exploring LLMs and generative AI applications

within the field of pathology is both challenging and intriguing.
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8 Future directions and perspectives

The use of AI in gastric cancer (GC) pathology is showing a

trend of dynamic growth worldwide (127, 128). In this review, we

have outlined the primary research directions in the application of

AI to GC pathology. The incorporation of AI has commenced

demonstrating promising outcomes in augmenting diagnostic

precision, forecasting patient prognoses, and uncovering

innovative therapeutic targets in GC. The published data

generally suggest that the application of AI in oncological

histopathology could become feasible for routine clinical

workflows in the foreseeable future (129, 130). However, several

challenges need to be addressed to fully realize the potential of AI in

this field (131).

Firstly, the demographic differences in GC prevalence must be

considered. AI models developed and trained on datasets from

specific populations may not perform well on others. Therefore, it is

crucial to ensure diverse and representative training datasets that

encompass various demographic and ethnic backgrounds.

Histopathological heterogeneity presents another layer of

complexity. GC can exhibit significant variability in their

histological and molecular characteristics, which complicates the

development of generalizable AI models. To tackle this, integrating

multi-modal data analyses, combining histopathological

information with other fields such as radiomics (132, 133),

genomics (134) and proteomics, could provide a more holistic

view for improving model accuracy and patient-specific predictions.

Additionally, one of the primary issues is the lack of

transparency in AI models, often referred to as the “black box”

problem, making it difficult to interpret their decisions directly (135,

136). Developing explainable AI (XAI) methods such as ablation

study, visualization, that provide insights into how AI models arrive

at their conclusions is essential. These methods can help bridge the

gap between AI and clinical practice, ensuring that AI tools are both

reliable and interpretable. Another challenge is data scarcity. The

development of robust AI models requires large datasets, which are

often unavailable, especially for rare cancer subtypes. Federated

learning, a decentralized approach where models are trained across

multiple centers without sharing patient data, could support

collaborative efforts across institutions to share and pool data and

overcome data scarcity while preserving privacy. For AI tools to be

widely adopted, Ethical and legal Considerations must be seamlessly

integrated into clinical workflows. This involves developing

intuitive interfaces and ensuring that AI systems can work

alongside existing diagnostic tools. Conducting clinical trials and

pilot studies will be essential to validate the effectiveness of AI in

real-world settings.

And to ensure protection of patient data, robust encryption,

strict access control, data anonymization, and continuous

monitoring must be implemented, in compliance with regulations

like HIPAA and GDPR. Anyone aiming to develop or implement

AI solutions in clinical practice must comply with the strict

regulatory controls and safeguards (137, 138). And AI-model

performance validation should be a dynamic and continuous

effort, focused on maintaining the quality and reliability of the

results provided by AI tools. Therefore, regular audits are
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recommended to identify and correct any biases within AI systems

(139). Furthermore, the advancement of AI in pathology in clinical

practice also require ongoing collaboration between pathologists,

data scientists, software engineers, and regulatory bodies. Such

interdisciplinary efforts are crucial for overcoming technical

challenges and ensuring that AI tools are developed with clinical

applicability in mind. Finally, The potential of AI in the field of GC

histopathology has not yet been fully realized, such as dissecting

mutation prediction (140), and developing pan-cancer AI-

foundation models for cancer detection and biomarker prediction

(141), remain under explored.
9 Conclusion

In conclusion, this review summarizes the applications of AI in

the diagnosis, histopathological classification, prognosis, and

treatment response assessment of GC. AI holds significant

potential to address the challenges of objectivity and inter-

observer variability in histopathology, underscoring the

importance of further research to facilitate its integration into

routine clinical practice for GC patients.
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