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Abstract

In this study, we compare statistical properties of ancient and modern Chinese within the

framework of weighted complex networks. We examine two language networks based on

different Chinese versions of the Records of the Grand Historian. The comparative results

show that Zipf’s law holds and that both networks are scale-free and disassortative. The

interactivity and connectivity of the two networks lead us to expect that the modern Chinese

text would have more phrases than the ancient Chinese one. Furthermore, by considering

some of the topological and weighted quantities, we find that expressions in ancient Chinese

are briefer than in modern Chinese. These observations indicate that the two languages

might have different linguistic mechanisms and combinatorial natures, which we attribute to

the stylistic differences and evolution of written Chinese.

1 Introduction

With the publication of seminal works [1,2], complex networks have become a popular

research topic in statistics, sociology, biology, and other fields over the past 20 years [3–6].

Investigation of real-world networks of various kinds has led to the study of many complex

systems from the viewpoint of complex networks including ecology [7], computation [8], cod-

ing [9], cell and molecular biology [10], protein [11], neuroscience [12–14], human brain [15–

17], and communication networks [18]. These studies indicate that understanding of the quali-

tative and quantitative characteristics of complex networks can be of great assistance in analyz-

ing a variety of complex systems.

Naturally, a human language network can also act as a kind of complex adaptive system

[19]. Chinese has been regarded as one of the most important languages in the world, with

Chinese characters playing an important role in its well-known civilization [20,21]. In modern

Chinese, a meaningful Chinese word consists of many characters, typically requiring artificial

division because the classification criterion is restricted to historical evolution. In ancient Chi-

nese, the implication of a single character is substantially different from that in modern Chi-

nese, wherein it tends to have the function of a phrase. Moreover, even the grammar and
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structure of ancient Chinese are totally different compared to modern Chinese. As the basic

unit of written Chinese, characters have a strict logical rationality of structure and have pro-

vided a deep-rooted concept in Chinese [22]. Based on the evolutionary process of Chinese,

we find that these characters have been a stable factor throughout history. Characters are

adopted for not only the analysis of the Chinese language structure evolving over time but also

the exploration of the characteristics of language organization. Therefore, focusing on the

structure of characters might help us to improve our understanding of Chinese.

Sentences in Chinese consist of characters and words in which the most correlated charac-

ters in a sentence are usually the closest [23]. Thus, Chinese language networks can be inter-

preted in terms of the adjacency relationship between characters appearing in the text. If we

treat each character unit as a point and the relationship between the units as a line, then we

can use a network to simulate the structure, function, and evolution of the language [24].

Furthermore, we can analyze the differences between two different language networks.

Recently, some scholars have explored language networks in those terms, with many impor-

tant linguistic properties being discovered by Li [20] and Liang [25]. However, they discussed

only undirected and unweighted networks, and no comparisons have been made regarding

the characteristics of different dialects or stages of Chinese. Therefore, in our research, the

main purpose is to investigate the similarities and differences between the language networks

for ancient (ALN) and modern (MLN) Chinese. Both networks are constructed in the same

manner and treated as weighted directed graphs. Some articles suggest ways to connect graphs

and network by graph entropy, graph distance measure and so on[26–31].

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the

construction of the two character networks, and in Section 3, we show the analytical results of

the two networks, such as their degree distribution and clustering. Discussion and conclusions

are presented in Section 4.

2 Character networks

Previously many researchers [32–36] have reported that written human language can be mod-

eled using complex networks. The complexity of Chinese offers several possibilities for defining

and studying complex networks. The grammar of modern Chinese derive historically from that

ancient Chinese. Ancient and modern Chinese differ somewhat in grammatical rules owing to

various social and cultural factors [37]. Therefore, to obtain more information regarding the

structural organization and dynamic evolution of Chinese, both ancient and modern Chinese

versions of the Records of the Grand Historian (104 B.C.) [38] are considered as research mate-

rial for our character networks. As noted in the Introduction, we treat both ALN and MLN as

weighted directed graphs.

Consequently, we define the networks as follows.

1. Each individual character chosen in the text represents a different network vertex.

2. If two characters are neighbors, then there is an edge between them, with the edge pointing

from the former character toward the latter, and the weight w of an edge depends on the

frequency (times) of connection between two Chinese characters appearing in the text.

3. The degree of a vertex k is equal to the number of different consequent neighbors that a

Chinese character has. In addition, the strength s of a vertex is equal to the number of times

(frequency) a Chinese character occurs in a text.

For simplicity, we overlook punctuation in our work and consider the out-degree and out-

strength of a vertex as its degree and strength, respectively. This construction results in the

Comparison of ancient and modern Chinese

PLOS ONE | https://doi.org/10.1371/journal.pone.0187854 November 10, 2017 2 / 14

https://doi.org/10.1371/journal.pone.0187854


different weighted networks ALN and MLN, respectively. We can understand the evolution of

written Chinese more fully by studying the two networks.

Some information regarding ALN and MLN can be gathered from the model construction.

The network sizes are 957,510 and 505,835, respectively, and the number of different charac-

ters is 4,877 and 4,336, respectively. The average intensity of the modern Chinese network is

almost 1.7 times as that of the ancient Chinese one. The average degree and weight of MLN are

also greater than those of ALN (Table 1). It is natural to wonder why the length of ALN is

much less than that of MLN even though the number of vertices of the two articles is nearly

the same and whether the connections of Chinese characters play a more important role in

modern than in ancient Chinese. We aim to enhance our understanding of weighted language

networks through structural analysis of ALN and MLN.

3 Analytical results

In Chinese, the most obvious clue to evolution is the dynamic relationship among the charac-

ters. Although the two character networks generate in the same manner, some stylistic differ-

ences remain with respect to the statistical characteristics of ALN and MLN (Table 1). In other

words, these differences might reflect different structural organizations and linguistic rules of

ancient and modern Chinese. More information can be collected through analysis of the

weighted networks.

In this section, we investigate and discuss some statistical parameters of the two networks.

These parameters include Zipf’s law, power law, average nearest-neighbor degree, interaction

properties, connectivity, and clustering coefficient. Motivated by these observations, we

explore the two character networks.

3.1 Zipf ‘s law distribution

Zipf’s law, a consequence of the match between structure and dynamics, states that the fre-

quency of words decays as a power function of its ranks [39, 40]. Actually, several different

mechanisms can generate Zipf-like statistics [41]. Recent findings reported a relationship

between Zipf’s law and the principle of least effort [39]. Scientists have found that Zipf’s law

usually holds in large-scale texts and applies to a variety of languages [34]. Sheng Long [42] dis-

covered that Chinese characters follow a two-part Zipf’s law, with curves that differ from the

English ones.

Fig 1 shows measurements of Zipf’s law for ALN and MLN—they all fit the two-part Zipf’s

law well. The two-part Zipf’s law of both ALN and MLN might be related to the growth and

preferential selection mechanism of characters in Chinese, indicating that Zipf’s law does not

depend on the syntactic structure of Chinese.

Furthermore, in Fig 2, we show the relationship between vertex frequencies and degrees. As

the figure shows, the frequency of a vertex is nearly proportional to its degree in both ALN and

Table 1. Some fundamental parameters of the two language networks.

Network MLN ALN

Text length 957510 505835

Num.of vertice 4877 4336

Num.of edges 227096 169160

<k> 46.56 39.01

<w> 4.22 2.99

<s> 196.33 116.66

https://doi.org/10.1371/journal.pone.0187854.t001
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MLN, indicating that characters with high degrees also often have high frequencies. Tradition-

ally, the frequency of Chinese characters has been used to judge their importance. For example,

over 85,000 Chinese characters have been created historically, but approximately 5,000 are

commonly in use, with these being regarded as more important than the others. Consequently,

it is necessary to explore the interplay between the frequency and structure of character

networks.

3.2 Power law distributions of Chinese character networks

In many networks, the power law distribution exhibits scale-free behavior. Thus, the explora-

tion of scale-free properties is important in studying character networks and can be expected

Fig 1. The distribution of Zipf’s law for the ancient Chinese version of Record of the Grand Historian (a) and its modern version (b).

https://doi.org/10.1371/journal.pone.0187854.g001

Fig 2. The frequency of characters corresponds to the values of degree k for ALN (a) and MLN (b).

https://doi.org/10.1371/journal.pone.0187854.g002
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to help us comprehend how the language maintains its relative stability in development and

evolution. We can conclude that one of our networks is a scale-free network if P(k) satisfies

the power law degree distribution

PðkÞ ¼ k� @ ð1Þ

where P(k) is the probability that a randomly chosen vertex in the network has exactly degree

k.

We also show typical plots of degree distributions, strength distributions, and distributions

of the weights of edges for the two different styles of the language network in Figs 3–5. All

these diagrams show downward-sloping lines, indicating that they follow power law

Fig 3. Degree distribution P(k) of ALN (a) and MLN (b) in the log-log scale, which all fit power-law property.

https://doi.org/10.1371/journal.pone.0187854.g003

Fig 4. Strength distribution P(s) of ALN (a) and MLN (b) in the log-log scale, which all fit power-law property.

https://doi.org/10.1371/journal.pone.0187854.g004
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distributions. From Fig 3(A) and 3(B), we can conclude that most elements of the two net-

works are connected to one or two others, and that only a few of them (the hubs) have a very

large number of links. Fig 4(A) and 4(B) imply that the majority of vertices in ALN and MLN

are of low strength, while some vertices are of high strength. From Fig 5(A) and 5(B), we can

see that the majority of the edges in both networks have low weights, while only a few of them

have high weights, indicating that the link frequencies among most vertices are small. Thus,

we can conclude that most characters have few links to others in both ALN and MLN. More-

over, the power law distribution in Fig 2 can be interpreted as indicating that the two types of

Chinese language comprise self-organizing systems, similar to many real-world networks.

3.3 Interactive analysis of Chinese character networks

Here, we propose the interaction coefficient q to measure Chinese characters’ capacity for

phrase formation. Assuming s and k respectively represent the strength and degree of vertices,

the interaction coefficient of a vertex is defined as

q ¼ s=k ð2Þ

In particular, for a phrase consisting of many characters, we expect there to be fixed con-

nections among them. In other words, the strength of a Chinese character increases with the

character’s occurrence frequency (f). However, if a character has a low degree (k), then the

character and its neighbors are more likely to form phrases. That is to say, we consider charac-

ters and their neighbors to have fairly strong interactivity.

In Fig 6, we show the relationship between the interaction coefficient and vertex strength.

Comparing Fig 6(A) and 6(B), we can see that the number of vertices in MLN that have high q

values is greater than that in ALN, and that there is a mass of vertices with q below 20, indicat-

ing that there are more phrases in modern Chinese than in ancient Chinese. In addition, the

interaction coefficient is not an increasing function of strength in each network, indicating

that vertices with high strength might simultaneously have high degree, with the result that

these vertices do not have high q values. In that case, it is difficult to form phrases in either

text, consistent with the phrase forming conditions. In particular, we list the top ten Chinese

Fig 5. Edge weight distribution P(w) of ALN (a) and MLN (b) in the log-log scale, which all fit power-law property.

https://doi.org/10.1371/journal.pone.0187854.g005
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characters with high degrees and their corresponding strength and interaction coefficients in

both ALN and MLN in Table 2. These Chinese characters with high degree and high strength

are typically called hubs and are important for both ancient and modern Chinese. We find that

these hubs have rather small q values, which can be explained by the fact that people can com-

municate conveniently by connecting hubs with meaningful characters according to syntax

rules. Additionally, the hub changes suggest the presence of stylistic differences between

ancient and modern Chinese.

3.4 Average nearest-neighbor degree

Another important source of information lies in the correlations of the degrees of the neigh-

boring vertices, one of the important indicators in the study of language network evolution

[43]. Since the entire conditional distribution P(k�|k), a given site with degree k connecting to

another site with degree k�, is often difficult to interpret, the average nearest-neighbor degree

Fig 6. Interaction coefficient q vs. vertex strength s for ALN (a) and MLN (b).

https://doi.org/10.1371/journal.pone.0187854.g006

Table 2. Chinese characters of top ten degrees and their corresponding strengths and interaction coefficients.

ALN MLN

vertex k s q vertex k s q

之 1488 13438 9.03 的 1918 29356 15.31

以 1227 7502 6.11 是 1357 10412 7.67

而 1172 6494 5.54 了 1355 11823 8.73

为 1149 7356 6.40 人 1178 9650 8.91

子 1011 6584 6.51 有 1176 8193 6.97

曰 1000 6039 6.04 在 1133 6904 6.09

王 943 8161 8.65 子 1125 8417 7.48

人 916 4772 5.21 为 1122 7544 6.72

其 882 5497 6.23 到 1006 6358 6.32

者 851 4287 5.04 国 999 13638 13.65

https://doi.org/10.1371/journal.pone.0187854.t002
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has been proposed to measure these correlations [44].

knn;i ¼
1

k
PN

i;j¼1
aijkj ð3Þ

Once averaged over classes of vertices with degree k, the average nearest-neighbor degree

can be defined as

knnðkÞ ¼
P

k�k
�Pðk�jkÞ ð4Þ

The average nearest-neighbor degree provides a probe for the degree correlation function.

If the degrees of the neighboring vertices are uncorrelated, then knn(k) is independent of k and

P(k�|k), is a function only of k�. An increase in knn(k) with k indicates that high-degree vertices

tend to be connected with other high-degree vertices. In such a case, the network is said to be

assortative. In contrast, a network is said to be disassortative if knn(k) decreases with increasing

k [42]. In fact, the assortative/disassortative properties reflect the evolution of network struc-

ture in terms of efficiency and stability.

Analogously, the weighted average nearest-neighbor degree can be expressed [45] as

kw
nn kð Þ ¼

1

si

PN
i;j¼1

wijkj ð5Þ

Such quantities are used to characterize the assortative/disassortative properties the behav-

ior of kw
nnðkÞ is an effective measure of the affinity for connecting with high- or low-degree

neighbors according to the magnitude of the actual interactions. If kw
nnðkÞ > knnðkÞ, then edges

with larger weights are pointing to neighbors with higher degrees, and kw
nnðkÞ < knnðkÞ for the

opposite case [46].

To verify global assortativity or disassortativity, we also compute the Pearson correlation

coefficient [47], which is within the interval [−1, 1]. If the network is uncorrelated, then r = 0.

Assortative networks have a value of r> 0, while disassortative networks have r < 0.

The calculated values of r are −0.2151 and −0.2083 for MLN and ALN, respectively. This

indicates that both language networks are disassortative in terms of degree. This disassortative

phenomenon in ALN and MLN can be intuitively understood to mean that high-degree verti-

ces are preferentially connected with low-degree ones, resulting in negative correlations with

regard to vertex degree. Therefore, characters with relatively high values of degree k tend to

form phrases in both texts.

Our measurements of kw
nnðkÞ, knnðkÞ and their comparisons for ALN and MLN are shown in

Fig 7. We can see that both ALN and MLN exhibit disassortative properties according to the

decreasing curves of knn(k), indicating a nontrivial correlation for the two networks [27]. In

addition, kw
nnðkÞ > knnðkÞ persists through almost the entire spectrum of degree k in ALN,

while kw
nnðkÞ < knnðkÞ retains a degree value less than approximately 10 in MLN. This indicates

that more edges with large weights appear between hubs and low-degree vertices in MLN than

in ALN. While large-weight edges between vertices indicate strong interactions between the

characters, this behavior can be interpreted as evidence that MLN displays a greater heteroge-

neity in character interactions than ALN, which might be another reason for there being more

phrases in the modern text than in the ancient one.

3.5 Architectural analysis of Chinese character networks

In this subsection, we explore in detail the architectures of the two language networks through

weighted network representations of the ancient and modern Chinese versions of the Records

of the Grand Historian and find that they exhibit different behaviors.

Comparison of ancient and modern Chinese
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3.5.1 Clustering coefficient. The first and a widely used measure of complex networks is

vertex clustering. The clustering coefficient is considered a measure of the cohesiveness and

the quantity of a network’s hierarchical structure [34]. The clustering of a vertex i is defined

[42] as

ci ¼
1

kiðki � 1Þ

P
j;h2Naijaihajh ð6Þ

where ki is the degree of vertices I and N is the total number of vertices in a network. If vertices

i and j have a connection between them, then aij = 1; otherwise, aij = 0. In addition, further

information can be obtained through the average clustering coefficient C(k), defined as

C kð Þ ¼
1

NPðkÞ
P

i=ki¼kci ð7Þ

In many real networks, the degree-dependent clustering coefficient C(k) is a decreasing

function of k, indicating that low-degree vertices generically belong to interconnected groups,

while high-degree vertices are linked to many vertices that might belong to different groups

that are not directly connected [48,49].

However, Eq (6) does not take into account the fact that in a weighted network, some

neighbors are more important than others. Barrat et al. [36] defined the weighted clustering

coefficient of a vertex i as

cw
i ¼

1

siðki � 1Þ

P
j;h2N

ðwij þ wihÞ

2
aijaihajh ð8Þ

where si is the strength of vertex i and wij is the weight of the edge between vertices i and j. In

the general case, the weighted clustering coefficient takes into account both the number of

closed triangles in the neighborhood of vertex i and their total relative weight w with respect to

strength s.

The average over vertices of a given degree k yields the quantity Cw(k) [42]. Comparison of

C(k) and Cw(k) provides global information on the correlation between weights and topology.

Fig 7. The comparisons of kwnnðkÞ and knn(k) between ALN (a) and MLN (b) under different values of degree k.

https://doi.org/10.1371/journal.pone.0187854.g007
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However, we can face two opposite cases in many real weighted networks. Edges with large

weights tend to form triples if Cw(k)> C(k), while the opposite situation indicates that the tri-

angles have less relevance [46].

Analyzing the two character networks, we can easily see that the calculated values of the net-

work clustering coefficient C are 0.1243 and 0.1197 for ALN and MLN, respectively. This indi-

cates that fewer characters are required to connect any two characters in ancient Chinese than

in modern Chinese. In this case, expressions in ancient Chinese are, in general, briefer than in

modern Chinese. Moreover, the high values of C for ALN and MLN indicate that we can

deliver or search information in networks more quickly.

We also compare C(k) and Cw(k) for ALN and MLN in Fig 8, revealing some similarities

and differences. On one hand, C(k) and Cw(k) of the two networks both fluctuate around 0.1

for degree k values less than approximately 500, indicating that ALN and MLN do not entirely

display a stronger hierarchical behavior. On the other, Cw(k)< C(k) appears for degree k val-

ues less than approximately 20 and 80 in ALN and MLN, respectively. This implies that the

clustering of low-degree vertices has less influence on the organization of MLN than on that of

ALN. Therefore, probing the clustering of ALN and MLN can be expected to help us compre-

hend the character networks’ architectures, improving our interpretation of the evolution of

written Chinese.

3.5.2 Connectivity of Chinese character networks

Measuring the connectivity of networks is the fundamental task in network research. Compar-

ison of the connectivities of different networks can reveal the similarities and differences

among the networks. Thus, in Fig 9, we compare the characters’ connections, which play an

important role in information expression, in ALN and MLN.

Fig 9(A) shows the relationship between the number Eg of edges and frequency fg of verti-

ces. (Eg and fg represent the normalized number of edges and frequency, respectively.) We

can see that there are more edges corresponding to high-frequency vertices in MLN than in

ALN. Actually, the higher the frequency of occurrence of a vertex, the more corresponding

neighbors and edges it has, and it is more likely to form a phrase with its neighbors. Thus, this

Fig 8. The comparisons of c(k) and cw(k) between ALN (a) and MLN (b) under different values of degree k.

https://doi.org/10.1371/journal.pone.0187854.g008
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difference can be attributed to more phrases appearing in the modern Chinese text than in the

ancient one.

In Fig 9(B) and 9(C), we also compare the correlations of the degrees of neighboring verti-

ces R restricted to frequency f and the number of edges E, respectively. We can see that the

parameters (values of R) of ALN are flatter than those of MLN in both figures, indicating that

the structure of MLN varies more with changes in the correlations of the degree of neighboring

vertices R compared to ALN. This shows that MLN displays greater heterogeneity in the inten-

sity of character interactions since the parameters of MLN are more dispersive than those of

ALN. These facts can be interpreted to provide evidence as to why the length of ALN is much

less than that of MLN even though the number of vertices of the two articles is nearly the

same. These results indicate that the connections between characters in the modern text have

greater intensity and density than those of the ancient one. MLN has greater connectivity than

ALN, with the result that phrases occur more in the modern Chinese text than in the ancient

one.

Fig 9. (a) The comparative results of the number of edges E between ALN and MLN restricted to the vertices’ frequency f. The correlations of the

degree of neighboring vertices R between ALN and MLN under the vertices’ frequency (b) and the number of edges (c) respectively.

https://doi.org/10.1371/journal.pone.0187854.g009
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4 Conclusion

In this study, we analyze in detail the structures of ancient and modern Chinese using

weighted network representations of different versions of the same article. We find both differ-

ences and similarities in the two forms of Chinese.

First, the ancient Chinese text is much shorter than the modern one even though the number

of the different characters of the two texts is nearly the same. In addition, the analysis of the

average nearest-neighbor degree implies that both the character networks are disassortative.

Next, through a statistical analysis of the two character networks, we find that both fit the

two-part Zipf’s law well and exhibit scale-free behavior. Meanwhile, an interactive analysis of

the character networks show that the number of interaction coefficients with high q values in

the modern Chinese version is greater than that of in the ancient version, indicating that the

modern Chinese text should have more phrases than the ancient one.

Furthermore, a clustering analysis of the two networks reveals that the ancient and modern

Chinese language networks do not entirely display a strong hierarchical behavior. The calcula-

tion of the network clustering coefficient C indicates that expressions in ancient Chinese are

briefer than those in modern Chinese.

Finally, by analyzing the architectures of the two networks, we find that connectivity in the

modern Chinese language network is greater than that in the ancient one. This might be a rea-

son why modern Chinese could construct a longer text using fewer characters compared to

ancient Chinese.

This study provides a preliminary discussion of Chinese language networks. In our future

work, more new and complex models will be considered, which we expect to provide new

clues for the formation and evolution mechanisms of other languages.
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