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Abstract: This research outlines a digital imaging method under development to systemize a rapid
in-field corrosion evaluation measure, to evaluate and monitor the degree of corrosion on target
corrosion-prone parts on light-duty vehicles. This procedure uses digital imaging to study and
compare corrosion levels of 228 vehicles that were treated with aftermarket applications of corrosion
prevention products versus 141 vehicles that were untreated. It introduces a Corrosion Index (CI)
as a common measure. Single-factor and two-factor analysis of variance (ANOVA) of the digitally-
based corrosion measurements show statistically significant correlations between CI and treatment
(treated versus untreated), as well as CI, vehicle age, and treatment. The ANOVA results show
that the aftermarket-treated vehicles have statistically significantly less corrosion than the untreated
vehicles, demonstrating that digital image analysis is a viable method of measuring corrosion on
corrosion-prone vehicle parts, offering the potential to monitor and track the performance/efficacy of
aftermarket corrosion treatment in real-time.
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1. Introduction

In 1999, corrosion cost the US transportation industry an estimated USD 29.7 billion
annually, with the corrosion of motor vehicles accounting for 79% of this cost or USD
23.4 billion [1]. Corrosion increases the cost of maintaining a vehicle, and can lead to
depreciation in value, reduced reliability, safety issues, increased premature repair, and
the loss of recoverable and recyclable materials [2]. In North America, corrosion is a major
concern for vehicles, especially in the regions of southern Canada and the northern United
States, because of the high humidity and the use of roadway de-icing chemicals: both
accelerate corrosion significantly [3]. Despite decades of advances in improving corrosion
resistance in vehicles, a vibrant industry of aftermarket corrosion protection was developed.
At the widespread consumer level, however, there has been no practical development on
how to assess the effectiveness of corrosion protection on in-use vehicles that is timely,
resource-efficient, and easily implemented by industry participants. As a result, assessing
corrosion on vehicles remains largely an ad-hoc exercise based on visual observations
about the “rust on a vehicle”. Instead, the research presented herein lays out the important
first step in promoting a field-deployable corrosion measurement approach for consumer
vehicles.

The findings from an extensive literature survey of previous work in the field are
discussed in the following subsections.

1.1. Corrosion Prevention and Development

Since the 1970s, advances in coating technologies and materials were introduced by
automobile manufacturers to prevent corrosion on vehicles. In addition to corrosion pro-
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tection, other critical factors driving these advancements include aesthetic characteristics,
mass production, cost and environmental requirements, and appearance and durability [4].
Modern automotive coating methods consist of at least five main steps:

1. Pretreatment of the welded sheet metal automotive body structure, i.e., body-in-white
(BIW);

2. Electrodeposition (ED) of the anti-corrosion or rust prevention layer on the metal
underbody and frames;

3. Sealer application on seams and underbody (i.e., underbody coating or UBC);
4. Primer application;
5. Topcoat applications, i.e., basecoat and clearcoat [4].

Pretreatment removes and cleans excess metals from the body-in-white (BIW) sheet
metal surfaces and forms an appropriate surface structure to facilitate the bonding of the
electrodeposited ferroalloy zinc-plating corrosion-protection layer [4]. Applying polyvinyl
chloride (PVC) or urethane sealers on seams and underbody promotes anti-corrosion, seals
water leaks, and minimizes chipping and vibrational noise. Applying surface primers (i.e.,
water-borne, solvent-borne, or powder) promotes adhesion between the coated surface
and basecoat, and improves weather resistance, painted surface appearance, and chipping
resistance [4]. The application of the basecoat followed by the clear coat further pro-
vides the desired surface properties of color, appearance, gloss, smoothness, and weather
resistance [4].

All modern vehicles, when sold, have received anti-corrosion treatment at the man-
ufacturing stage: there are no truly untreated modern vehicles. However, many vehicles
exhibit corrosion at some point during their life, depending on conditions of use: the
manufacturer-applied protection can degrade if the vehicle is exposed to harsh driving
conditions. Therefore, despite the advancements in manufacturing automotive coatings, a
variety of aftermarket “anti-rust” products were developed that vehicle owners can choose
from and use to help protect their vehicles from corrosion. The variety of aftermarket
products includes spray-on rust inhibitors, anti-rust under-coating sealants, spray-on salt
removers, and cathodic or anodic protection devices.

Spray-on rust inhibitors typically consist of applying a mineral-based oil that creeps
into door seams, folds, joints, and weld spots where corrosion commonly starts. Oil-based
sprays displace moisture and can be applied to wet surfaces [5]. This, combined with
a thicker gel-type oil for the underbody, wheel wells, and rocker panels, help provide
protection against corrosion, including electrical components and brake and fuel lines [5].

Sealants containing tar, wax, or polymers are a “one time” corrosion inhibition ap-
plication typically applied as a coating on the vehicle underbody [5]. Sealants provide
a protective barrier against the water and road salt, but unlike light oil sprays, they do
not penetrate as deeply into metal folds, seams, etc., where rust typically begins. Sealant
treatments are commonly sold through car dealerships and, to be effective, must be applied
when the vehicle is clean and dry [5].

Electronic rust inhibitors (for example, cathodic or anodic protection devices) are
another anti-corrosion option typically sold by auto dealers [5]. Although electronic
rust inhibitors effectively prevent corrosion of active metals in continuous contact with
water, such as on bridges and boats, their effectiveness on vehicles over time has not been
proven [5,6].

Fleet vehicle operators often employ aftermarket treatment on the assumption that
the added protection can extend the useful service lives of their heavily used vehicles.
Moreover, aftermarket corrosion protection can add longevity and resale value and even
enhance the recoverability of vehicle parts for salvage by warding off extensive corrosion—a
key consideration given the average life of an active vehicle is now just over 12 years [7].

However, evaluating the effectiveness of an anti-corrosion process, and assessing the
degree of corrosion on a vehicle, remains an industry-wide challenge. There is no single
method for evaluating corrosion on vehicles at the consumer or aftermarket level that
has been adopted industry-wide. While there are laboratory-based approaches to study



Materials 2022, 15, 3053 3 of 19

corrosion generation and progression, measuring corrosion of vehicles in practice largely
consists of the owner or an automotive technician visually inspecting and then assessing
the corrosion, usually on an ad-hoc basis. There is no common, rapid testing that has been
adopted widely in the aftermarket segment.

Corrosion testing and measurement are commonly conducted using effective lab-based
corrosion testing methods (see Section 1.2) and/or using specialized field measurement
techniques, such as radiography, ultrasonic testing, and eddy current, as well as digital
image analysis or simple visual observation (see Section 1.3).

1.2. Lab-Based Corrosion Testing

A variety of standardized lab-based corrosion testing methods are used to check the
corrosion resistance of materials and surface coatings and may be carried out in environ-
mental test chambers. Salt spray and salt fog testing, conducted in environmental test
chambers, use high-saline environments to measure the corrosion resistance of products,
materials, paints, and coatings over extended periods [6]. Salt spray chambers, in general,
are not used to predict the corrosion resistance of a material or coating because it does not
replicate real-world corrosive conditions [6,8]. Instead, the salt spray test is used to validate
the suitability of metal and/or a coating for corrosion resistance service [6,8]. In addition,
it is used in a QA/QC (quality analysis/quality control) role, such as for monitoring the
effectiveness of an automotive coating production process (e.g., pretreatment and paint-
ing, electroplating, galvanizing, etc.), permitting relatively quick comparisons to be made
between actual and expected corrosion resistance [6,8].

Shi et al. [2], for example, tested the performance of anti-corrosion coating products,
spray-on corrosion inhibitors, and salt remover products, readily available on the market,
to evaluate their performance to minimize the corrosive effects of chloride de-icers on
DOT (Department of Transportation) winter application equipment and vehicles. Electro-
chemical impedance spectroscopy (EIS) and linear polarization (LP) were used to test the
performance of each of the products in preventing corrosion of carbon steel test coupons
when exposed to MgCl2 solutions. In one series of tests, the corrosion protection perfor-
mance of the products was studied by immersing treated test coupons in MgCl2 solutions
for two weeks, continuously, followed by EIS measurements. In other tests, product-treated
test coupons were cyclically immersed in MgCl2 solutions for 40 min, followed by EIS and
LP measurements, then air-dried for 22 h, and subsequently power-washed, with this cycle
repeated eight times. After several weeks of testing, Shi et al. [2] clearly demonstrated
certain aftermarket anti-corrosion products outperformed others.

Xi and Xie [9] conducted several rounds of experiments to evaluate the relative corro-
siveness of two commonly used de-icing chemicals, NaCl and MgCl2, on common metal
coupons used by the automobile industry, including stainless steel, SS410 and SS304L,
aluminum, Al2024 and Al5086, and coated automobile body sheet metal. The first round of
tests used the SAE (Society of Automotive Engineers) J2334 test compared to the ASTM
B117 test, and the second round compared the SAE J2334 test to the North Pacific States
(PNS) modified NACE (National Association of Corrosion Engineers) TM-01-69 test [9].

The SAE J2334 test [10] involved the accelerated cyclical testing of a metal speci-
men placed in an environmental chamber, exposing the sample to a simulated in-service
changing environment, i.e., changing humidity (humid stage), salt application, and evap-
oration (dry stage). The ASTM B117 test is a continuous salt-spray test performed in an
environment-controllable salt spray chamber [11]. The PNS-modified NACE TM-01-69
test was an immersion corrosion testing procedure that simulates the repetitive exposure
of metals to chemical de-icers by cyclically immersing metal coupon samples in chemical
de-icer solutions for 10 min followed by 50 min exposure in air over a total test period of
72 h [9]. In all three testing methods, corrosion rates were determined, as material loss in
mils per year (mpy), according to the following equation, as specified in ASTM G28 [12]:

Corrosion Rate, mpy =
K × W

A × T × D
,
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where:

K = the constant 3.45 × 106 mils per year (mpy),
T = exposure time, in hours,
A = area in cm2,
W = mass loss in grams,
D = density of the material tested in g/cm2.

In the various tests conducted, Xi and Xie [9] found conflicting results. In the Phase 1
tests, the SAE J2334 test indicated that MgCl2 was more corrosive than NaCl, but the ASTM
B117 test showed that MgCl2 was less corrosive than NaCl. Similarly, in the Phase 2 tests, the
SAE J2334 test indicated MgCl2 to be more corrosive than NaCl (consistent with the Phase I
testing), but the NACE TM-01-69 test was found MgCl2 is less corrosive than NaCl [9].
Additional systematic testing, using adjustments to the experimental test parameters (e.g.,
change in chemical solution concentration used for SAE J2334; modification of testing
temperature, immersion time, testing period for NACE TM-01-69, etc.), showed that the
inconsistencies in the test results were not the result of differences in chloride solution
concentration, different immersion times, testing periods, or testing temperatures [9].
Instead, the inconsistencies were the result of different moisture conditions and differences
in the properties of the two salts under high humidity conditions. Xi and Xie [9] concluded
that, depending on the in-service environmental conditions that automotive components
are exposed to, MgCl2 is more corrosive than NaCl in a humid environment, and NaCl is
more corrosive under immersion and in an arid environment.

Lab-based corrosion testing methods are, therefore, useful for evaluating the incidence
of corrosion on metals, under simulated varying environmental conditions, with and with-
out the presence of de-icing chemicals. They are also likely more applicable to evaluating
specific corrosion prevention technologies on a general performance level. Lab-based
corrosion testing methods, however, have limitations; they cannot be used practically to
measure corrosion on individual vehicles under real-time field conditions or constraints.
The challenge remains: how to develop and deploy a practical field assessment method for
vehicle corrosion.

1.3. Corrosion Measurement in the Field

For the vast majority of practical situations, vehicle corrosion is commonly evaluated
by visual inspection. A technician observes the car and informs the customer which part
is rusted and what problems could arise [13]. At a minimum, the vehicle owner might
simply observe rust developing. Visual assessment of corrosion, however, is unlikely to be
reliable or consistent because of: (1) the lack of measurement and performance standards;
(2) questionable accuracy and effectiveness, depending on a technician’s or observer’s
experience; and (3) the variability of results as a consequence of different environmental
conditions such as illumination [14]. Even the technician’s state of mind could be an
influencing factor during the assessment process [13].

There are various materials testing approaches for assessing corrosion that was previ-
ously explored. Bardal and Drugli [8] discussed corrosion detection methods, including
visual inspection, radiography, ultrasonic testing, and eddy current. Radiography uses
short wave electromagnetic beams generated from radioactive isotopes to detect the thick-
ness of the material [8]. Ultrasonic testing is similar to radiography but uses ultrasonic
waves (sonic wave frequencies of 1–6 MHz) instead of electromagnetic beams [8]. The
eddy current method that is useful for detecting corrosion cracking and pitting processes is
based on the generation of electrical eddy currents in the surface of a metallic object placed
in a field of an electrical coil fed with an alternating current (typically 10 kHz) [8,15]. When
the energized coil is scanned across the material surface, the presence of any flaws (such as
corrosion) and changes in the material’s physical properties, geometry, and conductivity,
will interrupt or reduce the eddy current flow, causing a reduction in the loading on the
coil and increasing its effective impedance. Consequently, by monitoring the voltage across
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the coil, changes in amplitude and phase shift can be used to show changes in material
properties, including the presence of corrosion [8,15].

Bardal and Drugli [8] discussed the suitability of these methods in accessible ver-
sus non-accessible areas. Although radiography is suitable for both accessible and non-
accessible surfaces, visual inspection is only suitable for accessible surfaces. The ultrasonic
and eddy current methods are helpful for inspecting non-accessible areas but are not ap-
plicable for accessible surfaces [8]. Given the practical constraints, however, to efficiently
and cost-effectively assess corrosion on consumer vehicles, and because corrosion is of-
ten first detected visually by the owner or an automotive technician, a method based on
photographic inspection likely offers the most advantages [13].

Furthermore, corrosion may not appear to cover a significant area on the surface but
instead may penetrate below the surface, reducing the metal thickness and producing a
color change and/or higher surface roughness [13]. Determining whether these parame-
ters are suitable corrosion indicators or not requires data that measure such occurrences.
Currently, three alternative methods are considered to be effective for measuring corrosion
on vehicles: (1) thickness analysis; (2) surface-roughness analysis; and (3) digital image
analysis [13]:

1. Thickness analysis

This method focuses on the amount of metal lost due to corrosion. Eddy current
instruments were successfully used for detecting the thickness of rust in aluminum al-
loy skins and adjacent fastener/rivet holes of aircraft [16–18]. Corrosion thickness can
be measured by this type of instrument because corrosion products are not electrically
conductive [19]. Although eddy current instruments are effectively used for detecting rust
or cracks in aluminum alloys surfaces, corrosion in steel is not normally detectable with
eddy currents [19]. Consequently, eddy current method detection would not be considered
suitable for measuring total corrosion on a vehicle (which remains predominantly steel).

2. Surface-roughness analysis

In order to measure the surface roughness of a vehicle part, particularly the bottom
of the vehicle, a suitable surface roughness tester is needed that will be portable, is a
non-contact, areal-type tester, and can measure a suitable range of roughness [13]. A small
portable handheld device is preferred to facilitate measurements on both the vehicle’s sides
and underside. The surface of a vehicle may have dust, mud, or grease on it, which can
interfere with or damage the tester. Moreover, physical contact with a testing device may,
in turn, damage the surface of the vehicle. With an areal-type instrument, the degree of
surface roughness is measured over an arbitrary rectangular range, giving a more accurate
grasp of the state of the surface [13].

The range of roughness that can be measured by the instrument should be large
enough (e.g., almost smooth to very rough) to accommodate the differences in roughness
that may be found on a rusted metal surface. Some rusted surfaces may have a large
surface roughness that, ironically, can be too rough to be measured by some roughness
measurement devices. Depending on the testing device, the surface roughness may only be
measured successfully on a metal surface that is slightly rusted. Since the experiment to
measure the actual roughness of a rusted metal surface has yet to be undertaken, parameters
from other metal surfaces can be used as references. For example, a metal surface prepared
by sawing will have an average roughness, Ra, in the range of 1.6 to 25 µm [20].

3. Digital Image Analysis

Digital image analysis was successfully used by prior researchers to study corrosion on
different machines and products made of metal. In civil and structural applications, it can
detect the rust on steel structures, such as bridges and external and internal steel parts of
boat hulls [21–24]. Electric power companies used digital analysis to assess the reusability
of steel utility pole crossarms based on their corroded condition [14]. This method involves
using specialized image analysis software to detect and extract information from a digital
picture (e.g., texture, color, size), which is then analyzed to isolate the rusted area within
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the picture. This method is considered a fast, convenient, and objective measure of the rust
on surfaces [25]. Khayatazad et al. [24] present probably the most comprehensive approach
to date using digital image analysis. Their analysis involves assessing the corrosion on
31 images representing corroded steel surfaces. In their approach, the reference mask had
to be manually generated, and it is not fully explained if their procedure is easily adaptable
to on-site deployment. Nevertheless, their outcomes strongly support a digital imaging
method.

1.4. Review Summary and Objectives

Based on the review presented in Sections 1.2 and 1.3, there are several conclusions and
interpretations that can be made of the existing state of corrosion assessment. First, from
an operational perspective, any field-based approach for measuring corrosion must be:

• Time-efficient. The technician assessing corrosion should be able to perform the
assessment within a matter of minutes;

• Conceptually understandable. The technician should be able to grasp the basic ap-
proach of the corrosion technique and, if necessary, explain the fundamental premise
to a vehicle owner, who also must, in turn, be able to understand and appreciate
what is taking place. From this perspective, while it may be desirable to undertake a
detailed corrosion assessment at the surface and below the surface for accuracy and
precision, from an aftermarket or consumer perspective, this may not be necessary or
even desirable: an approximate but workable measure of corrosion may be sufficient
for the typical vehicle owner;

• Operationally functional. The mechanics of facilitating the assessment and the ac-
tual physical procedure performed by a technician (or even vehicle owner) must be
able to conform to relatively restricted operating space (e.g., under a raised vehicle;
unencumbered or untethered device; easy to repeat actions in tight spaces, etc.).

Given the advantages and disadvantages of the current corrosion assessment methods,
combined with the need for an on-site assessment, a digital imaging approach is favored.
Not only is it important to demonstrate that digital imaging techniques can be used to
image, interpret and quantify corrosion in the field quickly, but that the resulting corrosion
measurements can be used to monitor corrosion progression in real-time reliably, for
example, year-to-year. It is not necessary to monitor corrosion over the entire vehicle.
Instead, changes in corrosion can be monitored on specific parts that tend to be the most
corrosion-prone, for example, body parts and underbody parts. These essentially serve
as a proxy measurement for vehicle corrosion. A reliable, rapid digital-imaging method
to quantify vehicle corrosion in the field offers the possibility to study and compare the
effectiveness of aftermarket anti-corrosion products in real-time.

Based on the relative merits and challenges of prior methods for vehicles, a digital
imaging process could assess vehicle corrosion using the following general steps:

1. Take pictures of the corroded parts and materials using a digital camera or camera-
enabled device;

2. Analyze the digital images using software to evaluate the corrosion level by:

a. Detecting the presence of rusted areas in each digital image taken of each
vehicle part;

b. Determining the extent of rust and calculating the total rusted area versus
non-rusted area within each image.

3. Evaluate the overall corroded condition of the vehicles studied relative to vehicle
make, model, model year, history of corrosion treatment, history of vehicle use and
care, and so forth.

The overall objective of the research described herein was to develop a preliminary
metric and accompanying methodology using a digital imaging and analysis process in
the field, to assess the extent of corrosion on a vehicle’s target corrosion-prone parts. This
metric can be used to track the effectiveness of aftermarket corrosion prevention and
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treatment applications [13] and provide vehicle owners with an objective assessment of the
corroded condition of their vehicle over time. This research compares corrosion measured
on a population of randomly-sampled vehicles that were treated with an aftermarket anti-
corrosion product, Krown T40 “Rust Protect”, versus corrosion measured on a population
of randomly-sampled, untreated vehicles. The fundamental research demonstrates that
digital imaging and measurement of corrosion on corrosion-prone light-duty vehicle parts
that received aftermarket corrosion treatment can be used to quantify and identify a
statistically significant change in corrosion relative to (1) corrosion treatment (i.e., treated
versus untreated) and (2) time (i.e., vehicle age).

The authors’ approach is unique because: (1) a large database of hundreds of images
from multiple vehicles and vehicles parts were employed in the research, and (2), rather
than focusing on the typical steel “samples” or representative testing plates that were cor-
roded in lab-based tests, the authors’ investigation method focused on corrosion measured
on actual vehicle parts. The resulting imagery used in this research reflects the corrosion,
the adjacent parts, and the operating environment as a technician would encounter the
situation in real-time.

2. Materials and Methods

The research involves collecting data on a random sample of both treated and un-
treated vehicles using digital imaging and customer questionnaires. As previously men-
tioned, all modern vehicles, when sold, have received anti-corrosion treatment at the
manufacturing stage: technically, there are no truly untreated modern vehicles. However,
aftermarket corrosion treatment continues to serve a legitimate demand to further the pro-
tection of vehicles against corrosion. This research focuses on the aftermarket scenarios: the
term “treated” refers exclusively to only aftermarket applications of corrosion prevention
products and/or processes on a vehicle, while “untreated” refers to vehicles that have only
had the anti-corrosion treatment provided by the manufacturer (Hu, 2016), not applications
of aftermarket corrosion-prevention products.

Data were collected during two sampling campaigns (referred to as Phases I and II)
between 2014 and 2016. Data from a total of 228 Krown-treated vehicles were collected
through the course of the two sampling campaigns (67 during the Phase 1 sampling and
another 161 during Phase II). Data from another 141 untreated vehicles were similarly
collected (104 during the Phase 1 sampling and another 37 during Phase II); both treated
and untreated vehicles varied in make, model, and model year.

The data on the 228 Krown-treated vehicles were collected at three Krown facilities in
Ontario. The 141 untreated vehicles that were sampled consisted of high-salvage end-of-life
vehicles collected for recycling at Standard Auto Wreckers and A&L Auto Recyclers in
Ontario, as well as untreated vehicles brought into the Krown facilities for first-time Krown
treatment or other automotive services (e.g., tire rotation; oil change).

With the exception of the end-of-life vehicles sampled at the automotive recycling
facilities, vehicle owners were surveyed about the history of each vehicle, including driving
practices (e.g., city versus highway), driving conditions (e.g., exposure to salted winter
roadways or unpaved/gravel roadways), storage, corrosion protection, maintenance, and
repair. These survey activities were reviewed and approved by the University of Windsor’s
Research Ethics Board.

The treated vehicles have a history of being previously treated with Krown’s T40 “Rust
Protect” solvent-free, oil-based corrosion prevention product. A small number of these
Krown-treated vehicles may have also had an alternative aftermarket corrosion protection
method used on them (i.e., undercoating and/or cathodic/anodic protection devices).

For example, in the Phase II customer surveys, the Krown customers were asked what
corrosion protection methods had been used on their vehicles. Eighty-seven percent of the
Phase II participating Krown customers responded with the corrosion protection history
of their vehicles. Of these respondents, less than 7% had used an alternative corrosion
protection method on their vehicle in addition to the Krown spray treatment. As illustrated
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in Figure 1, the majority of the responding Krown customers (93%) only had Krown spray
treatment. A little less than 6% of the responding Krown customers had their vehicles spray-
treated and undercoated, and less than 2% had used a combination of spray-treatment
and cathodic/anodic protection. Even though a small fraction of vehicles had received
a combination of corrosion treatments, they were still treated. Hence for this research, a
treated vehicle was defined as one having been treated with Krown’s T40, with or without
the use of an alternative aftermarket corrosion protection method.
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Figure 1. Proportions of Phase II surveyed customers’ vehicles having received different combinations
of corrosion treatments.

Data collection on each vehicle involved inspecting and photographing observed
corrosion on 17 targeted part types that are known to typically corrode: 11 body panel part
types and 6 underbody part types (refer to Table 1 and Figure 2).

Table 1. Targeted corrosion-prone part types used for corrosion assessment.

Body Panels: Underbody:

1. Hood 12. Front Crossmember

2. Right Fender 13. Rear Crossmember

3. Left Fender 14. Left Front Control Arm

4. Left Front Door 15. Right Front Control Arm

5. Right Front Door 16. Left Rear Control Arm

6. Left Rear Door 17. Right Rear Control Arm

7. Right Rear Door

8. Left Quarter Panel

9. Right Quarter Panel

10. Left Rocker Panel

11. Right Rocker Panel
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Figure 2. Corrosion-prone body panels and underbody parts used for corrosion study.

2.1. Measurement Process

Digital pictures of the target vehicle parts were taken with either a Nikon Coolpix P700
or a Canon PowerShot G5X camera, and each was equipped with an Aputure Amaran AL-
H160 On-Camera LED light assembly. The angle, proper lighting, and clarity (resolution) of
the photos taken were key parameters affecting the quality of the data. During the sampling
program, sufficient time had to be given to each vehicle (approximately 20–25 min were
allotted for analyzing each vehicle), and the lighting was adjusted so that the corroded
areas were clearly visible to facilitate an accurate analysis.

When taking the digital images of the vehicle parts, a metric “T-scale” ruler was used
as a reference scale, permitting the measurement of distances and area (see Figure 3). The
resulting digital images were then each analyzed using a freeware image analysis software
package, AnalyzingDigitalImages (ADI), initially developed by John Pickle and Jacqueline
Kirtley (Museum of Science, Boston) and updated by Dan Gullage (STEM Education
Institute, University of Massachusetts Amherst) [26].

ADI is part of the image analysis software application, Digital Earth Watch (DEW),
which in turn is part of the Global Systems Science curriculum [27], an interdisciplinary,
integrated course for high school students emphasizing how scientists work together to
understand significant problems of global impact. The DEW software suite provides, for ex-
ample, digital image analysis tools to analyze Earth images, qualitatively and quantitatively,
for changes in ecosystems over time (e.g., deforestation, urban growth, etc.) [27].
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These same software tools can be readily applied to the measurement of corrosion in
digital images of vehicle parts. When an image is opened in the software, the image may
be trimmed or resized, if necessary, to facilitate faster processing speeds. Image scale may
be set using, for example, a known distance represented in the image, areas of corrosion
may be outlined using a “Polygon Tool”, and then the corrosion area is automatically
calculated. Figure 4 shows an example of how the ADI software was used to identify,
manually delineate, and analyze an area of corrosion in a digital image.

Areas of corrosion in an image that had to be measured were identified visually, based
mainly on color. As illustrated in Figure 5, the measurement process involved (1) loading a
photo of a part into the ADI software, (2) trimming or resizing the image if necessary to
facilitate faster processing speeds, (3) setting the image scale (i.e., Calibration of Pixel Size),
(4) outlining the area to be measured using the Polygon Tool, (5) saving the resulting area
measurement (and associated picture number, part type name, etc.) to a text file (for later
import into a spreadsheet file for data computation), (6) saving the picture with the area
outlined to a.jpg file (as documentation of areas accounted for in CI measurements), and
(7) repetition of steps (4)–(6) for each and every area of corrosion that must be accounted
for on the particular part in the image. This process was repeated for every photo taken.
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Figure 5. Flowchart of process used to measure corrosion in digital images of vehicle parts, using
ADI software.
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For each picture loaded into the ADI software, (1) the pixel length of the 30 cm long
T-scale showing in the image was measured, hence setting the image scale in pixels/cm (i.e.,
Calibration of Pixel Size), (2) each area of visible corrosion was manually outlined using
the software’s Polygon Tool, establishing its corroded area in (pixels)2, and (3) subsequent
conversion and reporting of the area in cm2, according to the following equation:

Area of Corrosion Measured, cm2 =
Corroded Area in Image, (pixels)2

Area Calibration Factor, (pixels/cm)2

2.2. Corrosion Assessment

Corrosion on the body panels was identified, measured, and classified according to
three different categories of corrosion severity: blistering, surface rust, and perforations [28].
Blistering is considered the mildest form of corrosion because the paint is still present and
offers some protection, even though corrosion has started beneath the painted surface.
Surface rust is more severe because the protective coatings have essentially failed, and the
metal is now exposed and corroding. Perforation is the most severe because the metal has
lost part of its integrity and, for the perforated area, no longer offers any protection.

Corrosion on the underbody parts was identified, classified, and measured as surface
rust because the underbody parts did not have painted surfaces, and are not subject to
blistering, and showed no evidence of perforations [13].

The corrosion measurements are based on the overall Corrosion Index (CI) equation
developed by Hu [13]:

CI = (P × Wp) + (B × Wb) + (S × Ws) (1)

where

P = perforation area;
Wp = weighting factor assigned to perforations;
B = blister area;
Wb = weighting factor assigned to blistering;
S = surface rust area;
Ws = weighting factor assigned to surface rust; and
Wp = Wb = Ws = 1.

All areas were measured in cm2. The weighting factors represent the severity of each
corrosion category compared to one another. For the Phase I and II research, weighting
factors of “1” were used, representing the simplest relationship where blistering, surface
rust, and perforation are assumed to have equal severity [13]. The authors acknowledge
that the use of equal weighting is simplistic: this initial assumption was used given
the uncertainty in creating a consumer-appropriate metric that was previously untried.
There were also practical limitations in the testing capability. Finally, vehicle owners may
pragmatically only be concerned about corrosion when it is visible. Nevertheless, the use
of alternate weighting factor values can be explored in future research.

3. Results and Analysis

The corroded area measurements determined for each part type for the 369 vehicles
sampled were subsequently summarized and analyzed using Excel and Minitab. The
corrosion measurements for each vehicle were summed by a group of part types, specifically,
(a) Body Panels, (b) Underbody parts, and (c) Underbody + Body Panels (i.e., Total), and
expressed as the Corrosion Index (CI) in cm2.

3.1. Single-Factor ANOVA: Corrosion Index versus Treatment

The Corrosion Index values for each of the part type groups for the treated and
untreated vehicles were statistically analyzed using a single-factor (a.k.a. one-way) analysis
of variance (ANOVA) and compared to identify significant correlations between Corrosion
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Index and whether the vehicle was treated or untreated. ANOVA was used to test if the
means of the two groups were significantly different or not. Figure 6 graphically illustrates
the single-factor ANOVA results, comparing mean Corrosion Indices versus treatment,
calculated for the treated vehicles (T) and untreated vehicles (UT) for each part type group.

Materials 2022, 15, x FOR PEER REVIEW 14 of 20 
 

 

esis, “that all means are equal”, and the alternative hypothesis, “at least one mean is dif-
ferent”, were tested using a level of significance, α = 0.05. o determine the significance of 
the null hypothesis, the probability value, p, was compared to α: 
• If p ≤ α, the null hypothesis is rejected in favor of the alternative hypothesis. Meaning 

the differences between the means are statistically significant; 
• If p > α, accept the null hypothesis as true, i.e., the differences between the means are 

not statistically significant. 

 
Figure 6. Interval plot for Body Panel corrosion, Underbody corrosion and Total Corrosion (i.e., 
Underbody+Body Panels) comparing treated (T) versus untreated (UT) vehicles (p < 0.001). 

Table 2. Summary of statistics for single-factor ANOVA analysis of corrosion index versus treat-
ment for treated and untreated vehicles. 

ANOVA Scenario 1 2 3 

ANOVA Statistics 
Total Body Panel 

Corrosion vs. 
Treatment 

Total Underbody 
Corrosion vs. 

Treatment 

Total Under-
body + Body 

Panel Corrosion 
vs. Treatment 

Significance level α 0.05 0.05 0.05 
F-value 28.87 83.41 85.19 
p-value <0.001 <0.001 <0.001 

R2 0.0729 0.1852 0.1884 
Adjusted R2 0.0704 0.1830 0.1862 

Sample Count—Treated 228 228 228 
Sample Count—Untreated 141 141 141 

Mean—Treated 35.2 342.0 377.2 
Means—Untreated 239.6 1233 1473 

Standard Deviation of the Mean—
Treated 

185.1 535.7 612.8 

Standard Deviation of the Mean—Un-
treated 

524.5 1307 1615 

Figure 6. Interval plot for Body Panel corrosion, Underbody corrosion and Total Corrosion (i.e.,
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Table 2 summarizes the one-way ANOVA analysis statistics for the three scenarios of
corrosion index versus treatment. In each one-way ANOVA analysis, the null hypothesis,
“that all means are equal”, and the alternative hypothesis, “at least one mean is different”,
were tested using a level of significance, α = 0.05. o determine the significance of the null
hypothesis, the probability value, p, was compared to α:

• If p ≤ α, the null hypothesis is rejected in favor of the alternative hypothesis. Meaning
the differences between the means are statistically significant;

• If p > α, accept the null hypothesis as true, i.e., the differences between the means are
not statistically significant.

The Corrosion Index means shown in Figure 6 are all calculated with a 95% confidence.
The error bars in the graph represent the standard error of the mean (SEM). In all three
scenarios, p < 0.001, and since p < α in each case, the difference between the means for
the treated versus untreated vehicles is statistically significant. In all three scenarios,
the graph shows that the corrosion-prone parts of the treated vehicles statistically have
significantly less corrosion than the corrosion-prone parts of the untreated vehicles. Based
on the corrosion index means, the untreated Body Panels had 6.8 times more measurable
corrosion than the treated Body Panels, and the untreated Underbody parts had 3.6 times
more measurable corrosion than the treated Underbody parts. The combined untreated
Underbody + Body Panels had 3.9 times more corrosion than the treated Underbody + Body
Panels.

The underbody corrosion index dominates the combined Underbody + Body Panel
corrosion index simply because significantly more corrosion was measured on the Un-
derbody parts than on the Body Panels. The treated Underbody parts had, on average,
9.7 times more corrosion than the treated Body Panels. The untreated Underbody parts
had 5.2 times more corrosion, on average than the untreated Body Panels.
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Table 2. Summary of statistics for single-factor ANOVA analysis of corrosion index versus treatment
for treated and untreated vehicles.

ANOVA Scenario 1 2 3

ANOVA Statistics Total Body Panel
Corrosion vs. Treatment

Total Underbody
Corrosion vs. Treatment

Total Underbody + Body
Panel Corrosion vs. Treatment

Significance level α 0.05 0.05 0.05

F-value 28.87 83.41 85.19

p-value <0.001 <0.001 <0.001

R2 0.0729 0.1852 0.1884

Adjusted R2 0.0704 0.1830 0.1862

Sample Count—Treated 228 228 228

Sample Count—Untreated 141 141 141

Mean—Treated 35.2 342.0 377.2

Means—Untreated 239.6 1233 1473

Standard Deviation of the
Mean—Treated 185.1 535.7 612.8

Standard Deviation of the
Mean—Untreated 524.5 1307 1615

3.2. Two-Factor ANOVA: Corrosion Index versus Vehicle Age Group and Treatment

Two-factor (a.k.a. two-way) ANOVA was used to establish if there is an interaction
between the two independent variables, vehicle age (by age group) and treatment (i.e.,
treated and untreated), on the dependent variable, corrosion index. Figure 7 graphically
illustrates the comparison of the mean corrosion indices for Underbody + Body Panels of
the treated vehicles (T) and untreated vehicles (UT), plotted against the four vehicle age
groups, ≤4 yrs, 5–8 yrs, 9–12 yrs, and ≥13 yrs. Table 3 summarizes the two-factor ANOVA
analysis statistics for the three scenarios of corrosion index versus treatment. Again, the
Corrosion Index means are all calculated with a 95% confidence interval and α = 0.05.
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Table 3. Summary of statistics for two-factor ANOVA analysis of corrosion index versus vehicle age
group and treatment for treated and untreated vehicles.

Underbody + Body Panel Corrosion vs. Treatment

ANOVA Statistics Treated Untreated

Significance level α 0.05

F-value 18.78

P-value <0.001

R2 0.4655

Adjusted R2 0.4551

Sample Count, by
Age Group

A. ≤4 yrs 19 32

B. 5–8 yrs 81 36

C. 9–12 yrs 86 30

D. ≥13 yrs 42 43

Mean, by Age Group

A. ≤4 yrs 238.98 113.93

B. 5–8 yrs 265.92 845.80

C. 9–12 yrs 342.28 1848.95

D. ≥13 yrs 725.70 2746.06

The graph demonstrates that for vehicles up to 4 years of age, there is no statistically
significant difference in the amount of corrosion measured on the treated versus untreated
vehicles, as indicated by the way the error bars for the treated vehicles overlap those for the
untreated vehicle. The lack of a statistically significant difference in measured corrosion on
the treated and untreated vehicles within this age group is likely due to the effectiveness of
the OEM corrosion prevention measures applied when these early model vehicles were
manufactured. From the ages of 5 to 13 years and beyond, however, the graphs show
that, statistically, significantly less corrosion was measured on the treated vehicles than the
untreated vehicles. Although the amount of corrosion increases with vehicle age for both
the treated and untreated vehicles, the increase in corrosion with increasing vehicle age is
greater on average for the untreated vehicles than for the treated.

4. Discussion

By using analysis of variance (ANOVA), the preliminary statistical analyses of the
Corrosion Index (CI) values for the Body Panels, the Underbody parts, and the Under-
body + Body Panels for treated and untreated vehicles identified statistically significant
correlations between Corrosion Index and treatment (treated versus untreated) as well as be-
tween Corrosion index, vehicle age group, and treatment. The ANOVA results demonstrate
that the corrosion measurements made using the digital image analysis methodology are
statistically significant. Less corrosion was measured on the treated corrosion-prone vehicle
parts than on the untreated corrosion-prone vehicle parts, confirming that the digital image
analysis process applied in this research is a viable method of measuring corrosion on
vehicles. The ability to measure and track the effectiveness of corrosion prevention is critical
given the increasing life of active vehicles and the consequences of preventable corrosion.
The results presented are directly applicable to assessing actual vehicle components that
corrode in the environment.

Error Sources

During the course of the research, several researchers were tasked with taking the
pictures and processing them using the ADI software. Although the different personnel
received direct training to consistently identify the parts of interest, use the equipment
to take the pictures, and use the software to process the images, there were nevertheless
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observational errors associated with the predominantly manual interpretation of the digital
imaging and analysis. As a result, these operator-associated errors were suspected of
contributing to variances in the CI measurements, as suggested by the error bars shown in
Figures 5 and 6. Sources of errors include, for example:

• Misidentification of a part; for example, a rear axle being mistaken for a rear cross-
member;

• Pictures were taken at angles that deviated from 90◦ to the observation plane;
• Differences in how the corroded area measurements in the digital images could be

undertaken. For example, in one method, corroded areas on a part are measured
directly with the ADI software and were then summed. In a second method, corrosion-
free areas were measured, summed, and subtracted from the overall part area. The
operator’s interpretation of what was corroded or not corroded, as well as how
precisely the areas of corrosion in the digital images were manually delineated using
the measurement tools in the ADI software, could also differ.

• The use of an alternative aftermarket corrosion protection method, i.e., undercoating
and/or cathodic/anodic protection devices, in combination with the Krown’s T40
corrosion treatment, may also introduce a bias in the comparisons between treated
and untreated populations. According to the Phase II survey respondents (response
rate = 87%), only 7% of the vehicles had received a combination of aftermarket cor-
rosion treatments. To alleviate this source of bias, we defined treated vehicles as all
vehicles having been treated with Krown’s T40, with or without the use of an alter-
native aftermarket corrosion protection method. In the future, such biases may be
avoided by obtaining more samples of that group of vehicles and including the prior
treatment as a factor in the ANOVA.

As part of ongoing follow-up research, observational error sources are being reviewed,
assessed, and corrective steps were identified to improve the measurement accuracy and
repeatability. Nevertheless, even with the potential discrepancies in the corrosion mea-
surements made with the mostly manual digital image analysis process, there is a clear
statistically-significant trend identified, showing significantly less corrosion observed on
treated vehicle parts than on untreated parts.

5. Conclusions

The ultimate objective of this research was to incorporate this process into a system
that would be readily accessible to automotive technicians in the field to (1) rapidly assess
and facilitate monitoring of the corrosion condition of different treated vehicles over time
and (2) track the performance/efficacy of aftermarket corrosion treatment.

The following summarizes future follow-up research activities being undertaken:

1. Statistical analyses are being performed to study and identify factors with a significant
influence on corrosion of treated versus untreated vehicles, as well as factors that
do not. For example, ANOVA and/or correlation analyses will be performed to
determine if any of the following factors significantly affect the incidence of corrosion
on the targeted corrosion-prone parts of the treated and untreated vehicles:

• Vehicle age;
• Driving practices (e.g., city versus highway);
• Driving conditions (e.g., exposure to salted winter roadways or unpaved/gravel

roadways);
• Storage practices (e.g., in a garage or not);
• Maintenance practices (e.g., frequency of washing), etc.;
• Using combinations of alternative aftermarket corrosion protection methods.

2. Corrosion correlation analyses are being performed to determine if specific Body
Panel or Underbody parts, or a combination of parts, can serve as a proxy for overall
corrosion on a vehicle: in other words, can measuring one select part describe the state
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of corrosion for the entire vehicle meaningfully, and thus save measuring multiple
body parts;

3. Additional analysis techniques, such as the automated interpretation and assessment
of color in digital images using a computer-based algorithm, are under development
to reduce the reliance on the operator and thus decrease errors introduced by human
judgment. While accepted imaging techniques were used, future research will focus
on refining the capability to distinguish corrosion better using, for example, improved
corrosion color recognition and analysis, as well as the development of a mobile
platform for field deployment. Other possible corrosion assessment techniques, such
as AI and Machine Learning (ML) approaches, will also be investigated in future
research activities;

4. The research provides statistically significant confirmation that the optical method
of digitally recording and measuring corrosion on specified corrosion-prone parts of
vehicles is feasible and that, in terms of corrosion, untreated vehicles fare worse in
general than aftermarket-treated vehicles. Nevertheless, the method that has been
developed for measuring vehicle corrosion would benefit from additional studies
to mitigate errors. The corrosion measurement method can be refined, and error
sources reduced. The resulting refined methodology would be tested and validated by
sampling and analyzing the corrosion on another group/population of vehicles, e.g.,
160 aftermarket corrosion treated vehicles and 160 untreated vehicles, with 40 vehicles
in each of the four age groups, ≤4 yrs, 5–8 yrs, 9–12 yrs and ≥13 yrs. Two-way
ANOVA would be used to determine if the refined method gives results with similar
CI versus age-group trends and reduced confidence interval error bars.

The anticipated overall objective of future research will be to determine whether
changes in corrosion occurrence on a vehicle can be measured and monitored over time
using the digital imaging analysis techniques tested in this research. Although all modern
vehicles receive anti-corrosion treatment at the manufacturing stage, the effectiveness of the
OEM-applied treatments and coatings can deteriorate over time if, for example, the vehicle
coatings become chipped, exposing the underlying bare steel to oxygen and humidity.
Therefore, aftermarket corrosion prevention products help minimize the development
of corrosion and its progression; however, aftermarket solutions often require annual or
periodic maintenance and renewal.

The potential to image, assess, and track the progress of ongoing treatment versus
the extent of corrosion (e.g., increasing significantly, increasing minimally, no change)
can provide insight into the circumstances where substantial aftermarket treatment can
make a notable difference in maintaining the safe, operational longevity of the vehicle.
Such tracking of corrosion over time would be of practical use to an individual vehicle
owner by demonstrating how a straightforward and relatively low-cost option such as
aftermarket corrosion treatment can add value and operational robustness to the vehicle.
Further, this practical application would be of particular interest to fleet operators in order
to better manage and prolong the useful service life of multiple vehicles that may be
operating in harsh environments. The facilities referenced in this research often treat fleet
vehicles, and the capability to demonstrate the real and measured results of aftermarket
corrosion prevention would assist significantly in developing and justifying effective fleet
maintenance routines.
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