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Abstract

BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and
oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic
cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However,
little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of
MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in
neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel
of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726), and
observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression
level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling,
and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2
suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither
factor fully accounts for I-BET726 sensitivity. Oral administration of [-BET726 to mouse xenograft models of human
neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a
potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as
novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and
apoptotic pathways in a context-specific manner.
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Introduction

Aberrant epigenetic regulation of transcription is a common
hallmark in cancer and other diseases [1]. Therapeutic agents
targeting chromatin “writers” (e.g. histone methyltransferases)
and “erasers” (e.g. histone deacetylases) have been developed
[1]; however, the therapeutic potential of chromatin “readers”
has remained largely unexplored. Chromatin readers bind to
specific modifications on histone tails, translating the histone
“code” into transcriptional effects by recruiting co-activator or
co-repressor complexes to target genes [2].
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The bromodomain and extra-terminal (BET) family of
proteins, including BRD2, BRD3, BRD4, and BRDT, are
chromatin reader proteins that bind via tandem bromodomains
to acetylated lysines in histone N-terminal tails [3]. BET
proteins recruit co-activator complexes to chromatin to promote
transcription of target genes. BRD4 regulates a number of
genes essential for cell growth through the recruitment and
maintenance of the pTEFb complex at gene promoters during
mitosis [4,5]. BRD2 interacts with a number of transcription
factors, including E2F family members, and regulates the
expression of several E2F-dependent cell cycle genes [6,7].
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While less is known about BRD3 and the testis-specific BRDT,
both proteins bind to acetylated histones to promote
transcription of growth-associated genes (BRD3) or chromatin
remodeling (BRDT) [8,9].

Selective inhibitors that specifically disrupt the interaction
between BET proteins and acetylated histones were recently
described [10-14]. Initial evidence for the therapeutic potential
of BET inhibitors in cancer was observed in models of NUT
midline carcinoma (NMC) [12], a rare but lethal malignancy
characterized by chromosomal translocations that express a
fusion protein encoded by the bromodomains of BRD4 (or less
frequently, BRD3) and the NUT locus [15]. BET inhibition
resulted in proliferation arrest and spontaneous differentiation
in NMC cell lines, as well as tumor growth inhibition in murine
NMC xenograft models [12]. Additionally, potent anti-
proliferative activity has been observed with a number of BET
inhibitors in models of hematologic cancer, including acute
myeloid leukemia [16,17], MLL-fusion leukemias [11], Burkitt's
lymphoma [17], multiple myeloma [18], and B-cell acute
lymphoblastic leukemia [19]. Regulation of Myc driven
transcription programs was cited as a consequence of BET
inhibition in these tumor models, with BET inhibitors directly
silencing MYC gene expression via disruption of BET protein
binding at the MYC locus [11,16-18].

MY C-family transcription factors, including Myc, N-Myc, and
L-Myc, are key regulators of cell growth and survival [20]. MYC
gene amplification is one of the most common copy-number
alterations observed in cancer [21], and over-expression or
translocation of the MYC locus is known to contribute to
deregulated Myc activity. Myc plays an important role in
hematologic cancers as well as a number of solid tumors
including breast, lung, bladder, and colon cancer [22].
Amplification or over-expression of MYCN or MYCL1 is
frequently observed in lung cancer (MYCN, MYCLT), ovarian
cancer (MYCL1), breast cancer (MYCN), and cancers of neural
origin including glioblastoma (MYCL1, MYCN),
medulloblastoma (MYCN), and neuroblastoma (MYCN) [22].
Despite the well-established role of MYC family proteins in
driving cancer cell growth, no direct MYC-targeted therapeutic
agent has advanced to clinical studies [20,23].

Given the potential therapeutic benefit of MYC-family
transcription factor inhibition in a wide variety of cancers, we
investigated the effects of BET inhibition in neuroblastoma, an
aggressive pediatric cancer associated with a high frequency of
MYCN gene amplification. Herein, we report the results of our
studies using GSK1324726A (I-BET726), a novel, potent, and
selective small molecule inhibitor of BET proteins.

Results

I-BET726 is a selective small molecule inhibitor of BET
proteins

I-BET726 is a novel small molecule inhibitor (Figure 1A) that
binds to the acetyl-lysine recognition pocket of BET family
proteins (Figure 1B). It binds with high affinity to BRD2 (1C5,=
41 nM), BRD3 (IC5= 31 nM), and BRD4 (IC5,= 22 nM), and
competes with tetra-acetylated histone H4 peptides (K5ac,
K8ac, K12ac, K16ac) for binding to the bromodomains of these
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proteins (Figure 1B, 1C). I-BET726 is highly selective for BET
family proteins (Figure 1D), exhibiting no binding affinity for any
bromodomain-containing homolog tested with the exception of
CREBBP, for which |-BET726 binds with >1000-fold lower
affinity than to BET family proteins (Figure S1 in File S1).

I-BET726 Inhibits Cell Growth and Induces Cytotoxicity
in Neuroblastoma Cell Lines

Since potent anti-proliferative activity was observed for BET
inhibitors in MYC-driven hematologic cancer models, we
screened a panel of neuroblastoma cell lines, in which MYCN
amplification is common, for effects on cell growth following |-
BET726 treatment. All neuroblastoma cell lines tested exhibited
potent growth inhibition, with a median growth ICy, value (gICs;
inhibitor concentration resulting in 50% growth inhibition) equal
to 75 nM (Figure 2A; Table S1). Analysis of I-BET726 in other
solid tumor cell lines revealed some level of anti-proliferative
activity in most, but not all, cell lines tested (Figure S2A in File
S1), which is consistent with previous reports on another BET
inhibitor [17]. However, growth inhibition in neuroblastoma cell
lines was more potent and consistent than effects observed in
any other solid tumor model, suggesting that neuroblastoma
cell lines are particularly sensitive to BET inhibition. A similar
pattern of growth inhibition in neuroblastoma was observed
with another BET inhibitor, I-BET151 (Figure S2B in File S1)
[11], albeit at a potency about 5-fold lower than I-BET726
(Figure S2C in File S1). This shift in cellular potency between I-
BET726 and I-BET151 is consistent with observations in other
solid and hematologic cancer cell lines models (data not
shown). Potent growth inhibition with I-BET726 was observed
irrespective of MYCN amplification status (Table S1) or level of
MYC or MYCN expression (Figure S3 in File S1). Additionally,
we observed no correlation between sensitivity and expression
of BRD2, BRD3, or BRD4 (Figure S4 in File S1).

Closer examination of the growth curves for neuroblastoma
cell lines, plotted as a percent of the T, value, revealed that |-
BET726 triggers net cell death, with concentration response
curves falling below the T, measurement (Figure 2B). To
examine the cell death response in more detail we determined
Y.in-To values for each growth curve. Y.-T, values are
calculated by subtracting the T, measurement (set at 100%)
from the Y-value at the bottom of the growth curve, thus
providing a measure of net cell growth (positive Y,,,,-T,) or net
cell death (negative Y ;,-T,) at the assay end point. Analysis of
average Y..,-T, values in the neuroblastoma cell line panel
indicated that all cell lines tested exhibited some level of net
cell death in response to I-BET726 (Figure 2C). Fifteen out of
seventeen cell lines exhibited >50% net cell death (Y,-T,<
-50%), with evidence of net cell death (Y < T, value) occurring
at concentrations of compound below 6 uM (Figure 2C). Similar
responses were obtained using other measures of proliferation
(Figure S5 in File S1). The cell death response observed in
neuroblastoma was more potent and consistent across cell
lines compared to other solid tumor models, again suggesting
that neuroblastoma cell lines are more broadly sensitive to BET
inhibition (Figure S6A in File S1). Importantly, a similar pattern
of net cell death was observed in the neuroblastoma cell line
panel following treatment with the BET inhibitor I-BET151
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Figure 1. I-BET726: a novel selective inhibitor of BET family proteins. (a) Chemical structure of GSK1324726A (I-BET726).
(b) Crystal structure of I-BET726 (magenta) bound to the acetyl-binding pocket of BRD4-BD1 (resolution: 1.6 A). (¢) Concentration
response curves for determination of binding affinity of I-BET726 to BRD2, BRD3, and BRD4 bromodomains by ligand displacement
detected using Time Resolved Fluorescence Resonance Energy Transfer (TR-FRET). IC;, values for BRD2, BRD3, and BRD4 are
indicated. (d) Selectivity profile of I-BET726 showing average temperature shifts (delta T,,) in degrees Celsius for a panel of
bromodomain proteins using a fluorescent thermal shift assay. N= 2 for all proteins except CREBBP (n= 4).

doi: 10.1371/journal.pone.0072967.g001
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Figure 2. I-BET726 treatment results in potent growth inhibition and cytotoxicity in neuroblastoma cell lines. (a) glCs,
values observed for I-BET726 in a panel of neuroblastoma cell lines obtained from a 6 day growth-death assay. (b) Concentration
response curves for SK-N-AS and CHP-212 from 6 day growth-death assay. Black horizontal line indicates growth in DMSO-treated
controls. Red line indicates T, value (100%). glCs, and Y,,,-T, values are indicated. Data presented as the average of two
independent curves from a single experiment, and is representative of data from three independent biological replicates. (¢) Y i-To
values observed for I-BET726 in the panel of neuroblastoma cell lines obtained from a 6 day growth-death assay. Gray bars indicate
a cytotoxic response, defined by a Y,,-T, value < -50, with evidence of net cell death (Y < T,) along the growth curve at
concentrations less than 6 uM. (d) Graph summarizing number of cells in G1 phase (as a percent of total cell population) in the
indicated neuroblastoma cell lines following treatment with a titration of I-BET726 (5 nM-20 000 nM) for 2 days based on propidium
iodide staining. V represents vehicle (DMSO) control sample. (e) Histograms generated from cell cycle analysis in the CHP-212 cell
line following 4 days treatment with the indicated concentration of I-BET726. Percentage of cells in G1 phase and sub-G1 phase are
indicated. (f) Caspase induction in the indicated neuroblastoma cell lines following treatment with a titration of I-BET726 for one,
two, or three days. Data is presented as fold induction over DMSO controls, following normalization to total cell number as
measured by CellTiter-Glo.

doi: 10.1371/journal.pone.0072967.9g002
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(Figure S6B in File S1), suggesting that the cell death response
is an on-target effect of BET inhibition. No significant
correlation was observed between MYC or MYCN expression
and cell death response to either I-BET compound (Figure S7
in File S1).

To investigate the mechanism of action of I-BET726 in
neuroblastoma, we examined changes in cell cycle progression
in three cell lines exhibiting variable responses to I-BET726:
SK-N-AS (minimal net cell death), SK-N-SH (moderate net
cell death), and CHP-212 (robust net cell death). I-BET726
treatment resulted in a concentration-dependent induction of G,
arrest in all three cell lines by 48 hours (Figure 2D). Analysis
following four days of treatment revealed an increase in the
sub-G; fraction in CHP-212 cells in the presence of 250 nM or
1 uM I-BET726 (Figure 2E), but not in SK—N-AS or SK—-N-SH
(data not shown). This observation is consistent with the
markedly higher concentration of I-BET726 required in these
cell lines to observe net cell death compared to CHP-212
(Figure 2B, Figure S8 in File S1) in the 6 day growth-death
assay.

Caspase 3/7 induction was observed in SK-N-SH and
CHP-212 cells as early as 24 hours post-treatment (Figure 2F).
Caspase induction was concentration- and time-dependent,
and qualitatively tracked with the relative amount of cytotoxicity
observed in the two cell lines in the 6 day growth-death assay
(Figure 2B, Figure S8 in File S1). In contrast, minimal caspase
activation was observed in the SK-N-AS cell line at any time
point assayed (Figure 2F). Analysis of additional cell lines
revealed induction of caspase activity after 3 days of treatment
in all cases where potent net cell death was observed in the 6
day growth-death assay (Figure S9 in File S1). Thus, apoptosis
is specifically triggered in the subset of cell lines that exhibit a
cytotoxic response to I-BET726.

I-BET726 modulates expression of genes involved in
apoptosis, signaling, and MYC-family pathways

To gain insight into the transcriptional changes induced by I-
BET726 in neuroblastoma, MYCN-amplified (CHP-212) and
non-MYCN-amplified (SK-N-SH) cell lines were treated with
100 nM or 1 uM I-BET726 for 16 hours and profiled by Illlumina
microarrays. A total of 6040 (CHP-212) or 5520 (SK-N-SH)
probes exhibited significant differential expression upon
treatment with either concentration of compound (Figure 3A,
Table S2). In CHP-212, 3003 of these probes decreased in
expression and 3037 increased in expression, with a large
degree of overlap between the two treatment groups (Figure
3B). Similar patterns of concentration-dependent up- and
down-regulation were observed in the SK-N-SH cell line
(Figure S10 in File S1). There were 765 and 790 common up-
and down-regulated genes, respectively, between the two cell
lines (Figure 3C).

To understand the biological relevance of these expression
changes, we performed functional analyses by Gene Ontology
Biological Process (GO BP) and canonical pathway enrichment
(Figure 3D, Table S3). Consistent with the potent cytotoxicity
observed in these cell lines upon prolonged treatment with |-
BET726, we observed a statistical over-representation of cell
death, apoptosis, and signal transduction pathways by GO BP
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analyses in both cell lines. Furthermore, BioCarta and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway
analyses identified a number of signaling pathways, including
MAPK, PDGF, and NGF, that are significantly enriched in the
two data sets (Figure 3D, Table S3). Concentration-dependent
expression changes in a subset of genes involved in apoptosis
and signaling were confirmed by qRT-PCR following I-BET726
(Figure 3E) and I-BET151 (Figure S11A in File S1) treatment,
further suggesting a role for these pathways in mediating
cellular response to BET inhibition.

We observed decreased expression of MYC-family genes in
both cell lines in the microarray dataset. Concentration-
dependent silencing of MYCN following |I-BET726 treatment
was confirmed by gRT-PCR in both cell lines. MYC
suppression was only observed in SK-N-SH, as CHP-212
cells do not express detectable levels of MYC (Figure 4A;
Figure S3 in File S1). Similar changes in expression of MYCN
and MYC were observed following I-BET151 treatment (Figure
S11B in File S1), further confirming a role for BET proteins in
regulating expression of these genes. Consistent with MYC-
family gene suppression, Gene Set Enrichment Analyses
(GSEA) revealed significant down-regulation of genes
associated with MYC and MYCN binding motifs, as well as a
number of MYC-family transcriptional signatures in both cell
lines following I-BET726 treatment (Figure 4B; Table S4). The
transcriptional profiles of MYC and MYCN are thought to be
largely redundant [24-28]; thus, suppression of both MYC and
MYCN likely contribute to the down-regulation of MYC/MYCN
targets in SK-N-SH, whereas in CHP-212 MYCN suppression
likely accounts for these effects. A larger number of MYC-
associated signatures were significantly down-regulated in
CHP-212 compared to SK-N-SH (Table S4), perhaps
reflecting the reduced expression of MYC-family genes and
induction of Myc/N-Myc driven pathways in the non-amplified
cell line. Nonetheless, it appears that I-BET726 suppresses
pathways associated with MYC family genes in neuroblastoma
independent of amplification status.

To further investigate the effects of I-BET726 on N-Myc
pathways, an N-Myc transcriptional regulation network was
constructed and filtered to visualize transcriptional changes
seen in our Dataset 42 genes from the N-Myc transcriptional
regulation network were regulated by I-BET726 in CHP-212
and 50 were observed in the gene lists for SK-N-SH, with an
overlap of 16 genes between the two cell lines (Figure 4C;
Table S5). Concentration-dependent changes in expression
were confirmed by gRT-PCR for a number of these N-Myc
network genes in the two cell lines with I-BET726 (Figure 4D)
and I-BET151 (Figure S11C in in File S1). Of the 8 genes
validated by qRT-PCR, 5 are also known to be regulated by
Myc [29]; thus, in SK-N-SH down-regulation of both MYC and
MYCN may contribute to these gene expression changes.

I-BET726 directly inhibits MYCN expression

We then analyzed the effect of I-BET726 treatment on MYC-
family gene expression in a number of neuroblastoma cell
lines. We consistently observed a potent, concentration-
dependent decrease in MYCN expression, independent of
MYCN amplification status (Figure 5A). High concentrations of
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Figure 4. Global transcript profiling reveals gene expression changes in MYC-family pathways. (a) gRT-PCR confirmation
of changes in MYCN and MYC expression following treatment with the indicated concentration of I-BET726. Data represent mean
value + standard deviation for three independent biological replicates. Asterisks indicate statistical significance as measured by t-
test (p <0.05). (b) GSEA enrichment plots showing the down-regulation of gene sets associated with Myc/Max and N-Myc binding
motifs in I-BET726-treated CHP-212 cells. Normalized enrichment scores (NES) and FDR q values are indicated. (c) A MYCN
transcriptional regulation network was constructed (see Materials and Methods) to depict N-Myc pathway genes that were
modulated by I-BET726 treatment. Red and blue circles represent increased and decreased expression changes, respectively.
Green, red and grey edges are shown for activation, inhibition and unspecified interaction types, respectively. (d) gRT-PCR
confirmation of a subset of genes selected from the N-Myc network analysis described in (c). Data presented as described in (a).

doi: 10.1371/journal.pone.0072967.g004
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I-BET726 almost completely silenced MYCN expression in
every cell line tested. In contrast, variable effects were
observed on MYC expression following |-BET726 treatment.
Three out of the four neuroblastoma cell lines with detectable
MYC expression were examined; one cell line exhibited potent
MYC suppression, the second showed intermediate effects,
and the third was completely insensitive (Figure S12 in File
S1). MYC down-regulation did not correlate with baseline
expression level or sensitivity in the growth-death assay (Table
S1, Figure S3 in File S1). Therefore, our observations in
neuroblastoma cell lines differ from previous observations in
hematologic cancer cell lines, where MYC suppression was
consistently observed in the context of native, translocated,
and amplified loci from a number of different tumor types
[11,16—18]. Instead, our data indicate that inhibition of MYCN
by a BET inhibitor is more ubiquitous and potent than MYC in
neuroblastoma.

To determine if MYCN suppression is due to direct regulation
of the MYCN locus by BET proteins, we analyzed recruitment
of BRD4 to the MYCN promoter by chromatin
immunoprecipitation (ChlP). BRD4 was specifically enriched at
the MYCN promoter relative to 1gG control ChIP in vehicle-
treated samples, but not at an intergenic region on
chromosome 12 (Figure 5B). Treatment with |-BET726
diminished BRD4 binding at the MYCN promoter in both non-
amplified and MYCN-amplified cell lines (Figure 5B, 5C),
indicating that direct regulation by I-BET726 remains intact
upon gene amplification. MYCN suppression was further
confirmed by Western blot in two MYCN-amplified cell lines
(Figure 5D). Taken together, these data demonstrate that I-
BET726 directly modulates MYCN transcription by inhibiting
BRD4 recruitment, and represses MYCN expression to a high
degree regardless of amplification status.

To assess the contribution of MYCN suppression to the
growth effects observed in MYCN-amplified cell lines, we
transduced CHP-212 cells with lentiviral constructs for
overexpression GFP or MYCN. MYCN expression from the
lentiviral vector was not regulated by BET proteins, as
treatment with [-BET726 produced no change in N-Myc
expression in the MYCN-transduced cells, whereas the GFP-
transduced cells exhibited down-regulation similar to that
observed in the parent line (Figure S13A in File S1; Figure 5D).
Decreased sensitivity to I-BET726 was observed when MYCN
could not be silenced (Figure 5E), with a 2.5-fold shift in gICsy,
in the MYCN- versus GFP-overexpressing cells. Notably, the
concentration of I-BET726 required to observe net cell death
was 7-fold higher in MYCN-overexpressing cells compared to
GFP controls (Figure 5F), suggesting that MYCN silencing by I-
BET726 contributes more to cytotoxicity than to growth
inhibition in this cell line. However, the extent of net cell death
at high concentrations of compound were comparable between
the two samples (Figure 5F, Figure S13B in File S1), indicating
that MYCN silencing enhances the cytotoxic response to I-
BET726, but is not required to trigger cell death. Cell cycle
analysis supports a role for MYCN silencing in sensitivity to
BET inhibition, as sub-G1 accumulation was only observed in
GFP-overexpressing cells following treatment with 5 uM I-
BET726 (Figure 5G). Similar results were obtained from
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another MYCN-amplified cell line (Figure S14 in File S1),
further indicating a contribution of MYCN silencing to the potent
cytotoxicity observed in these cell lines.

I-BET726 directly regulates expression of BCL2

Among the apoptosis-associated genes identified in the
microarray was BCL2, an anti-apoptotic gene that is highly
expressed in a number of tumor types and associated with
MYCN-amplification and unfavorable histology in
neuroblastoma [30,31]. Consistent with our analysis of MYC
family gene expression, we observed no correlation between
basal BCL2 expression and sensitivity to |-BET726 (as
measured by glCg, or Y.,-T,) in the neuroblastoma cell line
panel (Figure S15 in File S1). We assayed changes in BCL2
expression following |-BET726 treatment in a number of
neuroblastoma cell lines and observed potent and
concentration-dependent suppression of BCL2 in every cell line
tested (Figure 6A). BCL2 down-regulation was previously
observed with the BET inhibitor I-BET151 [11], which displaced
BET proteins from the BCL2 transcriptional start site in MLL-
fusion leukemia cell lines. Consistent with these observations,
we detected BRD4 enrichment at the BCL2 promoter in the
SK—-N-SH cell line (Figure 6B), and treatment with I-BET726
abrogated this interaction (Figure 6B, 6C). Analysis of two
additional neuroblastoma cell lines revealed reduced Bcl-2
protein levels upon treatment with I-BET726 (Figure 6D),
confirming the critical role of BET proteins in maintaining BCL2
expression.

We then assessed the contribution of BCL2 silencing to I-
BET726-induced cytotoxicity by analyzing responses in
CHP-212 and LA-N-2 cells transduced with lentiviral
expression vectors for GFP or BCL2. gICy, values were
comparable between GFP- and BCL2-overexpressing cells
from each cell line (Figure 6E), indicating that BCL2 silencing
has no effect on growth inhibition in either cell line. Effects on
cytotoxicity were variable. Minimal changes in sensitivity, net
cell death, or caspase induction were observed in CHP-212
upon over-expression of BCL2 (Figure 6F; Figure S16A, S16C
in File S1). In contrast, a complete loss of net cell death and
caspase induction was observed in LA-N-2 (Figure 6F; Figure
S16B, S16D in File S1). Baseline levels of Bcl-2 protein
expression in BCL2-transduced lines were much higher than in
the GFP controls (Figure 6G); as a result, the potency shifts
observed in the BCL2-overexpressing lines may over-estimate
the contribution of BCL2 silencing to responses observed in the
parent cell lines. Nonetheless, it is clear that the relative
contribution of BCL2 silencing to |-BET726 cytotoxicity in
neuroblastoma cell lines is variable and, in some cases, has
little effect on potency.

I-BET726 inhibits neuroblastoma tumor growth

To examine the therapeutic potential of I-BET726 in vivo, we
established subcutaneous xenograft models of non-MYCN-
amplified and MYCN-amplified neuroblastoma in
immunocompromised mice using the SK—-N-AS and CHP-212
cell lines, respectively. |-BET726 was administered by oral
gavage once daily at doses of 5 mg/kg or 15 mg/kg. Blood and
tumor concentrations of I-BET726 were comparable between
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Figure 5. MYCN expression is directly regulated by BRD4 and repressed by treatment with I-BET726. (a) Left: Concentration
response curve for MYCN RNA expression following 24 hour treatment with I-BET726 in the CHP-212 cell line. Data was
normalized to GAPDH and is presented as expression relative to DMSO-treated controls. Data presented as the average of two
independent curves from a single experiment, and is representative of data from three independent biological replicates. Right:
Table of IC5, and percent inhibition values for MYCN suppression following 24 hour treatment with I-BET726 in the indicated cell
lines. (b) BRD4 ChIP in the non-MYCN-amplified cell line SK-N-SH. Binding of BRD4 to the MYCN promoter or to an intergenic
region on Chromosome 12 following treatment with vehicle or 1uM I-BET726 for six hours. Data is presented as fold enrichment
over signal generated from IgG control immunoprecipitations. Data shown is from a single experiment representative of typical
results. (c) BRD4 ChIP data at the MYCN promoter, presented as percent of vehicle control signal in the non-MYCN-amplified cell
line SK-N-SH (left) and the MYCN-amplified cell line CHP-212 (right). SK-N-SH data represents the mean value * standard
deviation for three independent biological replicates. Asterisk indicates statistical significance as measured by t-test (p= 0.005).
CHP-212 data represents the mean value + standard deviation for two independent biological replicates. (d) Western blot analysis
of N-Myc expression in the MYCN-amplified cell lines CHP-212 and IMR32 following 24 or 48 hour treatment with vehicle or 1uM I-
BET726. Actin expression included as a loading control. (e) glCs, values obtained from CHP-212 cells overexpressing GFP or
MYCN following treatment with I-BET726 in a 6 day growth-death assay. Data represents the mean value + standard deviation from
four independent experiments. (f) Concentration response curves for GFP or MYCN-overexpressing CHP-212 cells from a 6 day
growth-death assay. Horizontal line indicates T, measurement (normalized to 100%). Data shown was from a single experiment
representative of typical results. (g) Left: Histograms generated from cell cycle analysis in GFP- or MYCN-overexpressing CHP-212
cells following 4 days treatment with 5 uM I-BET726. Right: Percentage of cells in subs G1, G1, S, and G2 phases from the cell
cycle experiment.

doi: 10.1371/journal.pone.0072967.g005
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Figure 6. Suppression of BCL2 expression by I-BET726. (a) Left: Concentration response curve for BCL2 RNA expression
following 24 hour treatment with I-BET726 in the CHP-212 cell line. Data was normalized to GAPDH and presented as expression
relative to DMSO-treated controls. Data presented as the average of two independent curves from a single experiment, and is
representative of data from two independent biological replicates. Right: Table of ICy, values and percent inhibition of BCL2
expression following 24 hour treatment with I-BET726. (b) BRD4 ChIP in the non-amplified neuroblastoma cell line SK—N-SH.
Binding of BRD4 to the BCL2 promoter or to an intergenic region on Chromosome 12 following treatment with vehicle or 1 uyM I-
BET726 for six hours. Data is presented as fold enrichment over signal generated from I1gG control immunoprecipitations. Data
shown was from a single experiment representative of typical results. (c) BRD4 ChIP data at the BCL2 promoter, presented as
percent of vehicle control signal. Data represent the mean value + standard deviation for three independent biological replicates.
Asterisk indicates statistical significance as measured by T-test (p= 0.002). (d) Western blot analysis of Bcl-2 expression in the
MYCN-amplified cell lines CHP-212 and IMR32 following 48 hour treatment with vehicle or 1 uM I-BET726. Tubulin expression
included as a loading control. (e) glCs, values obtained from CHP-212 or LA-N-2 cells overexpressing GFP or BCL2 following
treatment with I-BET726 in a 6 day growth-death assay. Data represents the mean value * standard deviation from three
independent experiments. (f) Y;,-T, values for CHP-212 or LA-N-2 cells overexpressing GFP or BCL2. Data represents the mean
value + standard deviation from three independent experiments. Asterisk indicates statistical significance as measured by t-test (p=
0.02). (g) Western blot analysis of Bcl-2 expression in CHP-212 or LA-N-2 cells overexpressing GFP or BCL2 following 48 hour
treatment with DMSO or 1 uM I-BET726. Actin expression included as a loading control.

doi: 10.1371/journal.pone.0072967.g006
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the two models, confirming that a similar exposure was
achieved in the two studies (Figure S17 in File S1). The 5
mg/kg dose was well-tolerated in both studies (Figure 7A).
Body weight loss was observed in some mice in the 15 mg/kg
group in both studies following repeated exposure to the
compound, and these mice were euthanized if body weight loss
exceeded 20%. Remaining mice in the 15 mg/kg groups
exhibited stable body weight throughout the duration of the
studies (Figure 7A), and exhibited no gross toxicities
associated with compound treatment.

In the SK-N-AS model, mice in the vehicle group were
euthanized on day 14 due to large tumor size (Figure 7B).
While there was no significant difference in tumor growth
between the vehicle and 5 mg/kg group, we observed 58%
tumor growth inhibition (TGI) in the 15 mg/kg group on day 14
of the study (n=9; p= 0.0060). Mice in the 15 mg/kg group were
treated for an additional 7 days before tumor volume reached a
level comparable to that observed in the vehicle group, at
which point the study was terminated. Tumors in the CHP-212
model grew much more slowly. After 42 days, tumors in
vehicle-treated mice were only half the size those in the SK—N-
AS model at the end of the study (Day 14). In the CHP-212
model, treatment with 5 mg/kg I-BET726 resulted in TGl equal
to 50% (n=8; p= 0.1816; Figure 7C), and mice in the 15 mg/kg
group exhibited a TGI of 82% at the end of the study (n=5; p
=0.0488). The enhanced sensitivity to I-BET726 at the lower
dose in the CHP-212 model is consistent with our in vitro
growth data; however caution must be taken when comparing
these two models due to both the differences in tumor growth
rate and the reduced number of animals in the 15 mg/kg dosing
groups. Nonetheless, our data confirms the sensitivity to I-
BET726 observed in these neuroblastoma cell lines in vitro.

Pharmacodynamic analyses were performed 8 hours
following the initial dose of I-BET726 in each study. Consistent
with our in vitro studies, we observed a dose-dependent
decrease in MYCN and BCL2 expression in the xenograft
models following treatment with I-BET726 (Figure 7D). SK—N-
AS cells express MYC as opposed to MYCN, and we detected
no significant decrease in MYC expression in this cell line.
Additional analysis of gene expression changes following eight
days of dosing in CHP-212 indicated that similar pathways
were affected in vitro and in vivo, as we observed expression
changes for genes involved in apoptosis as well as N-Myc
regulated genes (Figure 7E). Taken together, these data
highlight the potential of BET inhibitors such as [-BET726 as
potent anti-tumor agents in neuroblastoma, in part through the
alteration of apoptotic and N-Myc-driven pathways.

Discussion

Previous studies reported enhanced sensitivity to BET
inhibitors in hematologic cancer models with high MYC
expression due to potent MYC silencing and down-regulation of
Myc-driven transcriptional programs [16—18]. Apart from NMC,
there are few reports to date on the activity of BET inhibitors in
solid tumors, and it remains unclear whether a similar link may
exist between MYC family gene suppression and sensitivity in
solid tumor models. Here we show that a novel BET inhibitor, I-
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BET726, exhibits potent anti-proliferative activity in models of
neuroblastoma, a solid tumor associated with a high frequency
of MYCN gene amplifications. Our in vitro data suggests that
BET inhibition triggers a potent cytotoxic response in
neuroblastoma cell lines irrespective of MYCN copy number.
Similarly, I-BET726 anti-tumor activity was observed in both
non-MYCN-amplified and MYCN-amplified neuroblastoma
models. MYCN amplification occurs in approximately 20% of
primary neuroblastoma tumors and strongly correlates with
advanced stage disease and resistance to therapy [32]. Our
data suggest that BET inhibitors such as I-BET726 could serve
as novel therapeutic agents for neuroblastoma, benefitting
patients with even the most aggressive forms of the disease.

Surprisingly, MYC regulation and cellular response to BET
inhibition differ between hematologic and solid tumor models
such as neuroblastoma, as MYC suppression was variable in
MYC-expressing neuroblastoma cell lines and did not positively
correlate with sensitivity to I-BET726. These findings are
consistent with recent reports on BET inhibitor activity in lung
adenocarcinoma and glioblastoma [33,34], and suggest that
the role of BET proteins in regulating MYC expression may be
tumor type- or cell line-specific.

In contrast to MYC, potent MYCN suppression was observed
in every neuroblastoma cell line tested that expressed MYCN.
Importantly, dose-dependent inhibition of MYCN expression
was also observed in the CHP-212 xenograft model, indicating
that N-Myc driven pathways are similarly affected in vitro and in
vivo. The growth effects observed following I-BET726
treatment were consistent with a loss of N-Myc activity, as
targeted inhibition of MYCN expression was shown to trigger
growth inhibition, differentiation, and apoptosis in
neuroblastoma cell lines [35,36]. ChIP analysis confirmed
recruitment of BRD4 to the MYCN promoter. The MYCN gene
was also reported to be activated by E2F proteins [37]; given
the role of BRD2 in recruiting these proteins to chromatin, it is
possible that BRD2 also plays a critical role in MYCN
expression.

Consistent with I-BET726-mediated MYCN suppression, we
observed changes in expression of a number of known MYC-
family downstream targets in the microarray study. Recently, a
MYCN signature was proposed in neuroblastoma based upon
expression changes following knockdown of MYCN in the
MYCN-amplified IMR32 cell line that also correlated with
MYCN expression in neuroblastoma tumors [38]. Of the 157
genes identified in this signature, 35 were found to be
significantly regulated by I-BET726 in the CHP-212 microarray
study, with the majority (26 of 35) exhibiting changes consistent
with MYCN suppression. The 9 remaining overlapping genes
include 8 that are normally silenced by MYCN suppression, but
are also silenced by I-BET726 treatment, perhaps reflecting
direct silencing of these genes by BET inhibition that
supersedes any indirect effects of MYCN silencing. Taken
together, these data suggest that [-BET726 modulates
expression of genes potentially relevant for N-Myc driven tumor
biology in primary neuroblastomas. Prolonged exposure to I-
BET726 might reveal additional overlap between the two data
sets, since our microarray study was not optimized to capture
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Figure 7. Analysis of I-BET726 activity in vivo. (a) Mean absolute body weight £+ SD for mice in the SK-N-AS (left) and
CHP-212 (right) xenograft studies treated with vehicle, 5 mg/kg, or 15 mg/kg I-BET726. (b) Mean absolute tumor volumes + SEM for
SK—N-AS subcutaneous xenografts following treatment with 5 mg/kg or 15 mg/kg I-BET726. Asterisks indicate statistical
significance as measured by t-test (p <0.05). Tumor growth inhibition (TGI) for the 15 mg/kg group was 58% on day 14 (n= 9; p=
0.0060). (c) Mean absolute tumor volumes + SEM for CHP-212 subcutaneous xenografts following treatment with 5 mg/kg or 15
mg/kg I-BET726. Asterisks indicate statistical significance as measured by T-test (p <0.05). TGI for 5 mg/kg was 50% on Day 42 (n=
8; p= 0.1816). TGI for 15 mg/kg was 82% on Day 42 (n=5; p =0.0488). (d) Pharmacodynamic analysis in CHP-212 and SK-N-AS
xenografts 8 hours after initial dose of I-BET726. gRT-PCR analysis of MYCN, MYC, and BCL2 expression following |I-BET726
treatment in the indicated models. Data is presented as fold induction compared to vehicle treated controls, and represents the
average = SD of data from three animals. (e) gqRT-PCR analysis of apoptotic pathway and N-Myc pathway genes in CHP-212
xenografts 8 hours following treatment with I-BET726 on day 8 of study. Data is presented as described in (d).

doi: 10.1371/journal.pone.0072967.g007
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indirect expression changes associated with silencing of
MYCN.

Concentration-dependent  expression  changes  were
confirmed by qRT-PCR for several N-Myc target genes
including NME2, an inhibitor of differentiation located on a
region of chromosome 17q that is prone to amplification in
aggressive neuroblastomas [32,39]. 17q amplification is often
associated with MYCN-amplification, resulting in over-
expression of NME2 both through increased copy number and
increased N-Myc-mediated transcription. Two additional genes
on this region of 17q thought to promote the aggressive
phenotype, NME1 and BIRC5 (survivin), were also down-
regulated by I-BET726 in the microarray. It is currently unclear
whether these effects are due to direct inhibition of BET
proteins at these loci, indirect effects of silencing MYCN
expression, or a combination of the two mechanisms.
Understanding the mechanism of suppression at these genes
will have important implications with respect to |-BET726
activity in neuroblastoma, as direct inhibition of these genes
could potentially reverse the malignant phenotype of 17q
alterations even in the absence of MYCN amplification.

Our observations of potent BET inhibitor activity in
neuroblastoma are consistent with a recent report using a
different BET inhibitor, JQ1, which was similarly shown to
inhibit expression of MYCN and downstream N-Myc target
genes [40]. Our data support a role for MYCN silencing in
sensitivity to I-BET726, particularly with respect to cytotoxicity.
However, the lack of complete rescue from cell death upon
ectopic MYCN over-expression indicates that perturbations in
other pathways play a role in the cellular response as well. We
and others have observed BCL2 silencing upon treatment with
BET inhibitors, accompanied by a loss of BRD4 binding at the
BCL2 locus (Figure 6) [11]. Knockdown of BCL2 in
neuroblastoma cell lines triggers apoptosis [41], and ectopic
overexpression of BCL2 inhibits apoptosis [42,43]. Bcl-2 is
highly expressed in a significant percentage of primary
neuroblastoma tumors (16-52%), and expression correlates
with markers of poor prognosis including MYCN-amplification
[31,41,44]. Co-expression of BCL2 and MYCN in
neuroblastoma cell lines increases tumorigenicity and protects
cells from apoptosis [45]. Thus, silencing of BCL2 via BET
inhibition may contribute to the potent cytotoxic responses
observed in some MYCN-amplified cell lines, and perhaps be a
primary driver of cytotoxicity in other cell lines, such as SH-
SY5Y, that lack MYCN-amplification but express high levels of
BCL2[30].

It is important to note, however, that BCL2 silencing did not
predict cytotoxicity, as potent BCL2 suppression was observed
in every cell line tested regardless of response (Figure 6A).
Additionally, loss of BCL2 silencing resulted in dramatically
different effects on cytotoxicity following I-BET726 treatment in
the two cell lines analyzed (Figure 6E, F). Cytotoxicity in
response to I-BET726 may depend on a specific cell line’s
dependence on BCL2 for survival, as reflected in the
expression levels of other important pro- and anti-apoptotic
factors. A large number of expression changes were observed
in the microarray for genes involved in apoptosis; additional
investigation will be required to fully understand how these
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changes in expression translate into cellular response to I-
BET726.

GSEA revealed a significant enrichment of several terms
associated with E2F binding motifs in the SK—-N-SH cell line,
but only one in CHP-212 (Table S4). E2F signatures were
previously observed to be significantly down-regulated upon
treatment with another BET inhibitor in multiple myeloma cell
lines containing various activating genetic lesions at the MYC
locus [18]. Additionally, BRD2 has been shown to interact with
E2F family members and regulates the expression of several
E2F-dependent cell cycle genes [6,7]. It is currently unclear
whether the difference in regulation of E2F signatures between
SK—N-SH and CHP-212 is linked to their MYCN-amplification
status, or whether it may simply result from differences in basal
expression or activity of BRD2 or E2F1 in these cell lines.
Analyses in additional cell lines possessing or lacking MYCN
amplification is warranted to further characterize the
relationship between MYCN status and changes in these E2F
signatures.

The potent effects observed on BCL2 and MYCN expression
in our study highlight the potential therapeutic value of BET
inhibitors in other solid tumors driven by high expression of
these oncogenes, including small cell lung cancer,
medulloblastoma, retinoblastoma, and rhabdomyosarcoma
[22,46]. Given the potent activity already observed in
neuroblastoma and Myc-driven hematologic cancers,
characterization of BET inhibitors in these additional tumor
types is warranted.

In summary, we have identified neuroblastoma as a solid
tumor model highly sensitive to BET protein inhibition. Taken
together with previous observations of anti-tumor activity in
NMC, lung adenocarcinoma, glioblastoma, and a number of
hematologic malignancies [11,12,16-18,33,34], our study
highlights the potential of BET inhibitors like I-BET726 as
effective therapeutic agents in a wide variety of cancers.
Further investigation of the transcriptional programs regulated
by BET family proteins likely will uncover additional
mechanisms through which BET inhibitors can offer therapeutic
benefit in cancer and other diseases.

Materials and Methods

Cell lines and Reagents

Cell lines were obtained from ATCC (Manassas, VA) or
Sigma-Aldrich (St. Louis, MO) and were grown in RPMI-1640
medium containing 10% FBS, 2 mM GlutaMAX (Life
Technologies, Grand Island, NY), and 1 mM sodium pyruvate.
Antibodies and gPCR primers are listed in Methods S1.

I-BET726 Characterization

I-BET726 synthesis is described in International Patent
Number WO 2011/054848 A1. Determination of crystal
structure, binding affinity to BET proteins, and selectivity was
performed as described [10,11,13], and in Methods S1.
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Cell Line Growth-Death Assay

Cell line growth-death assays were performed as described
[47], with a few modifications. Briefly, cells were seeded into
384-well or 96-well plates at a density optimized for 6 days of
growth. The following day, T, measurements were taken using
CellTiter-Glo (CTG; Promega, Madison, WI), CellTiter-Fluor
(Promega), or CyQuant Direct (Life Technologies), following
the manufacturer's instructions. Plates were read on an
Envision (PerkinElmer, Waltham, MA), Safire 2 (Tecan,
Durham, NC), or SpectraMax Gemini EM (Molecular Devices,
Sunnyvale, CA) plate reader. Remaining plates were treated
with DMSO or a titration of I-BET726. Cells were incubated for
6 days and developed as described above. Results were
plotted as a percentage of the T, value, normalized to 100%,
versus concentration of compound. A 4-parameter equation
was used to generate concentration response curves. Growth
ICs, (9lCs) values were calculated at the mid-point of the
growth window (between DMSO and T, values). Y .-T, values
were calculated by subtracting the T, value (100%) from the
Y. value on the curve, and are a measure of net population
cell growth or death.

Cell Cycle Analysis

Samples were prepared as described [48] and analyzed on a
FACSCalibur or LSR Il flow cytometer (BD Biosciences,
Franklin Lakes, NJ). Histograms were generated and cell cycle
analysis was performed using FlowJo software (Tree Star, Inc.,
Ashland, OR).

Caspase 3/7 Assay

Cell plating and dosing were performed as described above
for the growth-death assay. CTG and Caspase-Glo 3/7
(Promega) readings were taken following the procedure
described above for CTG. Caspase-Glo 3/7 readings were
normalized to CTG readings from the same treatment group to
correct for differences in cell number. Results were plotted as
fold-induction relative to DMSO-treated samples from the
corresponding time point.

lllumina Microarray Profiling

Three biological replicates of CHP-212 or SK-N-SH cells
were treated with DMSO, 100 nM |-BET726, or 1 uM I-BET726
for 16 hours. RNA isolation and gene expression profiling were
performed at Expression Analysis (Durham, NC). Briefly, total
RNA was isolated, examined with an Agilent BioAnalyzer for
integrity and vyield, labeled, and hybridized onto the Illlumina
Human HT-12 v4 Expression BeadChip according to the
manufacturer’s instructions (lllumina, San Diego, CA). Signal
values were normalized and log, transformed. Differential
analysis of probes was performed by fitting data to linear
models and performing pair-wise contrasts of interest using a
moderated t-statistic. p-values generated were adjusted for
multiple testing by applying Benjamin Hochberg’s FDR
correction. Significant probes were filtered for detection (p<0.05
in at least sample), average fold change >2 or <-2 and FDR
<0.1. Statistical analyses were performed using the limma
package from Bioconductor (http://www.bioconductor.org/).
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Hierarchical clustering was performed on significant gene lists
using complete linkage and Pearson correlation parameters.
Functional analyses of these lists in terms of Gene Ontology
Biological Process (GO BP) or pathway enrichment were
performed at a gene-level using DAVID (http://
david.abcc.ncifcrf.gov/). Gene Set Enrichment Analysis was
performed using GenePattern [49,50]. Gene set permutations
were used to identify significantly enriched gene sets from the
c2 (curated gene sets) and c3 (motif gene sets) MSigDB
collections using the signal-to-noise metric for vehicle versus
1uM I-BET726-treated samples.

The microarray dataset has been deposited in GEO under
the accession number #GSE47386.

MYCN Transcriptional Regulation Network Analysis

A neighborhood network of MYCN interactions was
constructed using MetaCore (Thomson Reuters; http:/
portal.genego.com). The network was built using the “Expand
by one interaction” algorithm for downstream network objects
and filtered for transcriptional regulation and binding
interactions. Genes with corresponding differential expression
from our microarray dataset were highlighted.

qRT-PCR Analysis

RNA was purified using the TurboCapture 96 kit or RNEasy
Mini kit (Qiagen, Valencia, CA) and cDNA was generated using
the High Capacity cDNA Reverse Transcription kit (Life
Technologies), following the manufacturers’ instructions.
TagMan analysis was performed on an Applied Biosystems
ViiA7 real-time PCR machine, using GAPDH or HPRT as
internal controls. Relative expression compared to DMSO was
calculated using the 222t method. Concentration response
curves were generated with a 4-parameter model using XLfit
software (IDBS, Alameda, CA). Additional details for RNA
expression analysis can be found in Methods S1.

Chromatin Immunoprecipitation (ChlP)

ChIP experiments were performed as described [51].
Detailed methods for ChIP are included in Methods S1.

Western Blot Analysis

Lysates were generated in Cell Lysis buffer (Cell Signaling
Technology, Danvers, MA) containing 1x protease and
phosphatase inhibitor cocktail (Cell Signaling Technology),
following the manufacturer's protocol. Protein concentration
was determined via BCA protein assay (Thermo Scientific,
Rockford, IL), using BSA as a standard. Equivalent amounts of
protein were separated by SDS-PAGE and transferred onto
nitrocellulose membranes. Antibodies were diluted in Odyssey
blocking buffer (LI-COR Biosciences, Lincoln, NE) containing
0.05% Tween-20 at the manufacturer's recommended
dilutions. Images were obtained on an Odyssey infrared
imaging system (LI-COR Biosciences).

In vivo Studies

All studies were conducted after review by the Institutional
Animal Care and Use Committee at GSK and in accordance
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with the GSK Policy on the Care, Welfare and Treatment of
Laboratory Animals. The Institutional Animal Care and Use
Committee at GSK specifically approved these studies.
CHP-212 (1x107) or SK—N-AS (5x108) cells in 100% matrigel
(BD Biosciences) were implanted subcutaneously into the right
flank of approximately 9 week old female nude (Crl:CD-1-
Foxn1 nu) mice. Tumors were measured with calipers and
randomized using stratified sampling according to tumor size
into treatment groups of 10 mice. |I-BET726 formulated as a
spray dried dispersion was prepared as a suspension in 1%
methylcellulose vehicle. I-BET726 in vehicle or vehicle alone
was administered orally by individual body weight at 10mis/kg.
Mice were weighed and tumors were measured with calipers
twice weekly, and mice were observed daily for any adverse
treatment affects. Mice were euthanized using CO, inhalation
according to AVMA guidelines after two consecutive tumor
measurements greater than 2500mm?, or if body weight loss
greater than 20% was observed. For mouse pharmacodynamic
studies, mice were euthanized as described above. Tumors
were harvested from euthanized mice and placed in RNAlater
(Life Technologies) for RNA isolation as described in Methods
S1. Blood was collected after euthanasia via cardiac puncture.

Supporting Information

File S1. Contains Figures S1-S17.
(PDF)

Table S1. Neuroblastoma Growth-Death Analysis.
(XLS)

Table S2. Differentially Expressed Gene Lists for CHP-212
and SK-N-SH.
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