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The antiparkinsonian ropinirole and pramipexole are D3 receptor- (D3R-) preferring dopaminergic (DA) agonists used as
adjunctive therapeutics for the treatment resistant depression (TRD). While the exact antidepressant mechanism of action
remains uncertain, a role for D3R in the restoration of impaired neuroplasticity occurring in TRD has been proposed. Since
D3R agonists are highly expressed on DA neurons in humans, we studied the effect of ropinirole and pramipexole on structural
plasticity using a translational model of human-inducible pluripotent stem cells (hiPSCs). Two hiPSC clones from healthy
donors were differentiated into midbrain DA neurons. Ropinirole and pramipexole produced dose-dependent increases of
dendritic arborization and soma size after 3 days of culture, effects antagonized by the selective D3R antagonists
SB277011-A and S33084 and by the mTOR pathway kinase inhibitors LY294002 and rapamycin. All treatments were also
effective in attenuating the D3R-dependent increase of p70S6-kinase phosphorylation. Immunoneutralisation of BDNF,
inhibition of TrkB receptors, and blockade of MEK-ERK signaling likewise prevented ropinirole-induced structural plasticity,
suggesting a critical interaction between BDNF and D3R signaling pathways. The highly similar profiles of data acquired
with DA neurons derived from two hiPSC clones underpin their reliability for characterization of pharmacological agents
acting via dopaminergic mechanisms.

1. Introduction

Ropinirole and pramipexole are nonergoline dopaminergic
agonists indicated for the treatment of Parkinson’s disease
and restless leg syndrome (RLS) [1, 2]. Improvement of

depressive symptoms has also been consistently seen in these
patients [3, 4], while controlled clinical trials demonstrated
antidepressant efficacy mainly as adjunctive treatment in
insufficiently responsive patients with mood disorders [5–8].
The latter observations are consistent with experimental data
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showing marked effects of these and other dopaminergic
agonists in animalmodels of antidepressant properties [9–11].

Ropinirole and pramipexole behave as high efficacy
agonists at D2 and D3 dopamine receptors (D2R and D3R),
displaying a preference for D3R [2, 12, 13]. While a role
of postsynaptic D2R in the rapid antidepressant actions of
D2/D3 agonists has been demonstrated in experimental
models [14], the significance of D3R sites remains less clear,
in particular as regards to their long-term effects [9, 10].
The notion that D3R may fulfill a contrasting role com-
pared with D2R is supported by differences in intracellular
signaling cascades and fine control of dopaminergic trans-
mission [15–18], as well as by their differential cerebral
distribution, regulation, and functional segregation [19].
For example, in rodents, antagonism of D2R and D3R in
the frontal cortex disrupts and promotes cognitive func-
tion, respectively [19–21].

Of particular interest are D3 autoreceptors expressed
in DA neurons [22]: PET imaging studies in humans using
D3R-selective ligands showed that the ventral mesencepha-
lon expresses mainly if not uniquely D3R [19, 23]. A poten-
tial role of D3 autoreceptors in the actions of ropinirole and
pramipexole is supported by two large imaging studies in
Parkinson’s patients: chronic treatment with either ropinir-
ole or pramipexole revealed evidence for attenuation in the
progressive reduction of DA neuron markers [24, 25].
Despite some methodological questions concerning the
interpretation, these results are compatible with D3R-
dependent neurorestorative effects associated with the
preservation of DA terminals in surviving neurons, as exper-
imentally shown in rodent models [26, 27]. In support of
possible neurorestorative effects, we previously showed that
D3R-preferential DA agonists increase dendrite arborization
and soma size in cultured mouse mesencephalic DA neurons
by activation of the mammalian target of rapamycin (mTOR)
and extracellular signal-regulated kinase (ERK) [16, 28, 29],
two molecular pathways critical for cell growth and struc-
tural remodeling [30]. This is of particular relevance to the
long-term influence of ropinirole and pramipexole upon
depression, in particular anhedonia, which is characterized
in rodents by deficient dopaminergic transmission [31]
and reduced neuroplasticity [32, 33].

One reservation with these and other studies performed
in animal models is that they only partially recapitulate
human cellular biology [34]. An alternative translational
paradigm is offered by human-inducible pluripotent stem
cells (hiPSCs) [35]. Several laboratories have developed
protocols to differentiate hiPSCs into midbrain DA neurons
[36, 37]. Over the last few years, this approach has been used
for modeling CNS disorders, including rare monogenetic
forms of Parkinson’s disease [36, 38, 39]. Conversely,
comparatively few studies have been dedicated to the phar-
macology of antiparkinsonian drugs [38, 39] and the actions
of ropinirole and pramipexole at hiPSCs differentiated into
DA neurons have never, to our knowledge, been investigated.

In light of the abovementioned, the present work studied
the putative role of D3R in the influence of ropinirole and
pramipexole upon structural plasticity in midbrain DA neu-
rons derived from hiPSCs. A high degree of coherence was

found in the responses of two clones acquired from different
donors. Both ropinirole and pramipexole increased dendritic
arborization and soma size in human DA neurons via BDNF
and mTOR signaling, underpinning observations in mouse
mesencephalic DA neurons. These results support the
relevance of D3 autoreceptors on dopaminergic neurons in
the long-term neuroplastic actions of DA agonists and also
the use of hiPSC-derived DA neurons as a translational
model to study novel treatments for CNS disorders involving
dopaminergic pathways.

2. Materials and Methods

2.1. Animals. CD1 mice were provided by Charles River
Laboratories (Calco, Italy). Animal care was in accordance
with the European Community Council Directive of Septem-
ber 2010 (2010/63/EU) with the approval of the Institutional
Animal Care and Use Committee of the University of Brescia
and in line with the Italian law. Mice breeding was performed
to achieve timed pregnancy with the accuracy of ±0.5 days.
The embryonic day (E) was determined by considering the
day of insemination (determined by vaginal plug) as E0.5.

2.2. Pharmacological Agents. Ropinirole, pramipexole, phar-
macological inhibitors, and receptor antagonists used in the
present study are detailed in Supplementary Table S1. For
each vehicle treatment, solvents required by specific drugs
were used at the same dilution used for the active treatment.

2.3. Mouse Primary Mesencephalic Cultures. Primary mesen-
cephalic cultures were prepared as previously described [16].
Ventral mesencephalon tissues were dissected from E12.5
CD1 mouse embryos and mechanically dissociated in Accu-
max (Sigma-Aldrich, Milan, Italy). Cells were counted and
seeded on poly-D-lysine/laminin-coated cover slides
(Sigma-Aldrich) (5× 104/ml) in Neurobasal medium
(Gibco-Invitrogen, Carlsbad, CA) with the addiction of
2mM glutamine (EuroClone) and B27 supplement (Gibco-
Invitrogen). Cultures were maintained at 37°C in a humidi-
fied atmosphere of 5% CO2 and 95% air. Pharmacological
treatments were conducted at least 5 days after seeding.

2.4. Human Fibroblasts. Dermal biopsies were obtained from
healthy donors following the approval of the local ethics
committee (CEIOC—Fatebenefratelli Hospital “San Gio-
vanni di Dio,” Brescia, Italy, 44/2001 and 39/2005) and
informed consent for use in research applications. CP01
fibroblasts from the dermal biopsy of a 40-year-old healthy
Caucasian female donor were used at passage 3 for the repro-
gramming to hiPSCs. Fibroblasts were cultured in DMEM
containing 10% FBS.

2.5. Human iPSC Generation. Lentivirus production and
human fibroblast reprogramming to hiPSCs were performed
according to Maherali et al. [40] (see Supplementary Mate-
rials (available here) and Methods). Methods for the charac-
terization of hiPSCs are described in Supplementary
Materials and Methods.
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2.6. Dopaminergic Differentiation of Human iPSCs. Human
iPSCs were induced to differentiate into floorplate- (FP-)
derived midbrain DA neurons using dual SMAD inhibition
and FP induction protocol [37] with minor modifications
(Figure 1(a)). Human iPSCs were dissociated with Accutase™
(StemCell Technologies), seeded (3× 104 cells/cm2) on
Matrigel-coated plates in Knockout Serum Replacement
(KSR) medium containing Knockout™ DMEM, 15% KSR,
GlutaMAX™, and 10μM 2-mercaptoethanol, in the presence
of LDN193189 (0.1μM, Stemgent, Cambridge, MA),
SB431542 (10μM, Tocris Bioscience, Bristol, UK), Shh
C25II (0.1μg/ml, R&D Systems), Purmorphamine (2μM,
Stemgent), fibroblast growth factor 8 (0.1μg/ml, R&D
Systems), and CHIR99021 (3μM, Stemgent). From day 5,
KSR medium was gradually shifted to N2 medium
(Knockout DMEM/F12, N2 supplement, and GlutaMAX,
all from Gibco-Invitrogen). On day 11, the medium was
changed to Neurobasal/B27/GlutaMAX™ supplemented
with CHIR99021, brain-derived neurotrophic factor (BDNF;
20 ng/ml, R&D Systems), ascorbic acid (AA; 0.2mM, Sigma-
Aldrich), dibutyryl cAMP (cAMP; 0.5mM, Sigma-Aldrich),
transforming growth factor type β3 (TGFβ3; 1 ng/ml, R&D
Systems), glial cell line-derived neurotrophic factor (GDNF;
20 ng/ml, R&D Systems), and DAPT (10nM, Tocris
Bioscience). On day 21, cells were dissociated and seeded
(5× 104 cells/cm2) on plates precoated with polyornithine
(15μg/ml), fibronectin (2μg/ml), and laminin (1μg/ml) (all
from Sigma-Aldrich) and cultured in the same medium until
day 70, when they were used for biochemical studies. For
morphological studies, on day 21, cells were seeded on plates
precoated with polyornithine/fibronectin/laminin and cocul-
tured with mouse primary cortical astrocytes [41] that were
isolated and cultured according to Sorg and Magistretti [42].
Human iPSC-derived DA neurons were used for pharmaco-
logical studies, immunofluorescence, immunocytochemistry,
and morphological analysis starting from day 70. Three days
before pharmacological treatments, BDNF, AA, cAMP,
TGFβ3, GDNF, and DAPT were gradually removed from the
culture. Criteria to define DA neurons at day 70 were the
following: neuronal morphology, coexpression of TH/
MAP2, coexpression of TH/dopamine transporter (DAT),
coexpression of TH/vesicular monoamine-associated trans-
porter 2 (VMAT2), coexpression of TH/AMPAR subunit
GluR2, and functional dopamine release and uptake from
cultures containing DA neurons.

2.7. In Vitro Pharmacological Experiments. All pharmacolog-
ical treatments were performed from day 70 in culture. For
morphological studies, neuronal cultures were exposed
72 hrs to the DA agonists ropinirole or pramipexole. Phar-
macological inhibitors and receptor antagonists were added
to the cultures 20min prior treatment with DA agonists,
and cultures were fixed at the end of the treatment. For
Western blot and immunofluorescence analysis of p70S6K
phosphorylation, cultures were exposed to DA agonists for
periods ranging from 2 to 60min. For inhibition experi-
ments, pharmacological inhibitors and receptor antagonists
were added to the cultures 20min prior treatment with DA
agonists and analyses were performed 2min after exposure.

2.8. Immunofluorescence and Immunocytochemistry. Immu-
nofluorescence of hiPSCs, embryoid bodies (EBs), and
hiPSC-derived DA neurons is described in Supplementary
Materials and Methods. Immunocytochemistry of DA
neurons for morphological analysis was performed using
anti-tyrosine hydroxylase (TH) rabbit polyclonal antibody
(pAb; Santa Cruz Biotechnology, Santa Cruz, CA)
(Supplementary Table S2), followed by incubation with a
biotinylated goat anti-rabbit antibody (Jackson ImmunoRe-
search) (Supplementary Table S3), as previously described
[16, 28]. Immunofluorescence quantification of p-p70S6K
in dopaminergic (TH+/MAP2+) and nondopaminergic
(TH−/MAP2+) neurons was performed using ImageJ 2.0.0–
rc-59/1.51k software. Measures of pixel intensity and area
with respect to background intensity and cell surface, respec-
tively, were calculated according to the following formula:
(intensity of sample stained cell/area of sample stained
cell)− (intensity of the sample of background/area of sample
background). To minimize the inherent variability in the
immunofluorescence procedure, cover slides from the same
experiment were processed simultaneously.

2.9. Computer-Assisted Morphological Analysis. Digital
images were acquired with an Olympus IX51 microscope
connected to an Olympus (Hamburg, Germany) digital
camera and a PC. Morphometric measurements were
performed by a blinded examiner on digitalized images using
Image-Pro Plus software (Media Cybernetics, Bethesda,
MD). Morphological indicators of structural plasticity were
considered: (i) the maximal dendrite length, (ii) the number
of primary dendrites, and (iii) the soma area [16]. The
maximal dendrite length was defined as the distance from
the soma (hillock base) to the tip of the longest dendrite for
each neuron; dendrites shorter than 20μm were excluded
from the analysis. Primary dendrites were defined as those
directly stemming from the soma. The soma area was
assessed by measuring the surface (μm2) included by the
external perimeter drawn on the cell membrane of neurons
identified by TH+ staining. Two cover slides per treatment
groups were examined to obtain measurements from at least
30–50 neurons. Each experiment was repeated three times.

2.10. Western Blotting. Western blotting was performed
as previously described [28], at different time points
(2–60min) following challenge with ropinirole (10μM)
and/or after pretreatments with either D3R antagonists
SB277011-A (100 nM), S33084 (10 nM), MEK inhibitor
PD98059 (10μM), or PI3-K inhibitor LY294002 (10μM).
Primary antibodies used were the following: anti-p-
p70S6K mouse monoclonal antibody (mAb), anti-p70S6K
rabbit mAb (all from Cell Signaling Technology, Danvers,
MA), anti-TH rabbit pAb (Merck Millipore), and anti-α-
Tubulin mouse mAb (Sigma-Aldrich) (Supplementary
Table S2). In each experiment, the same membrane was
processed in the following order: incubation with anti-p-
p70S6K antibody, incubation with anti-p70S6K antibody,
stripping with the Re-Blot Plus Strong Solution (Merck
Millipore), incubation with anti-TH antibody, and final incu-
bation with anti-α-Tubulin antibody. After the incubation
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with primary antibodies, blots were incubated with appropri-
ate horseradish peroxidase-conjugated secondary antibodies
(Santa Cruz Biotechnology) (Supplementary Table S3) and
developed using a chemiluminescent substrate (ECL, LiteA-
blot Extend; EuroClone). Specific bands were analyzed by
densitometric scanning of the exposed film using Gel-Pro
analyzer software (Media Cybernetics). In each experiment,
the specific signal of p-p70S6K protein was normalised to
the corresponding p70S6K signal and then to the level of
TH and α-Tubulin measured in the same preparation.

2.11. Measurement of Dopamine Release. The dopamine
released in the culture medium was determined by the HPLC
method coupled with electrochemical detection used for the
assay of dopamine in rodent brain with minor modifications
[43]. Human iPSC-derived DA neurons cultured for 70 days
were incubated with either vehicle or the dopamine reuptake
inhibitor GBR12935 (30nM) (Sigma-Aldrich) up to 24 hrs.
Fractions of medium were collected at different time points,
that is, at 0, 3, 6, 9, and 24hrs after incubation. 2M HClO4
containing 0.5% Na2S2O5 and 1% Na2EDTA (all from
Sigma-Aldrich) was diluted at 1 : 20 in each fraction. Samples
were kept at −80°C until HPLC assay. HPLC consisted of a
constant flow LC20-AD pump (Shimadzu, Italy) and a
Coulochem II electrochemical detector equipped with a dual
electrode 5011 analytical cell (ESA, Chelmsford, MA). Poten-
tial settings were E1‐175mV and E2‐300mV. Twenty-five
microliter samples were injected into the HPLC with a
refrigerated (5°C) autosampler (Midas, Spark Holland, The
Netherlands). Dopamine was separated through an Accucore
XL C18 column, 150× 3mm, particle size 4μm (Thermo
Fisher Scientific) protected with a guard column (NewGuard
RP-18, 7μm, 15× 3.2mm; Perkin Elmer, Italy). The column
was maintained at 40°C. Mobile phase consisted of 5 g/l
anhydrous CH3COONa, 3.57 g/l citric acid, 112mg/l
Na2EDTA, 200mg/l sodium octane sulfate, and 70ml/l
CH3OH. Flow rate was 0.5ml/min. Assay was calibrated
daily by injecting 2.5, 25, and 250 fmol/25μl DA made up
in HClO4 0.2M plus 0.05% Na2S2O5 and 0.1% Na2EDTA.
The detection limit was 2 fmol on the column (signal-to-
noise ratio 2).

2.12. RNA Extraction and RT-PCR Analysis. RNA extraction
and RT-PCR analysis are described in Supplementary Mate-
rials and Methods. Sequences of individual primer pairs and
melting temperature (Tm) are detailed in Supplementary
Table S4.

2.13. Statistical Analysis.Data were expressed as mean± stan-
dard error of the mean (SEM) if not stated otherwise. Signif-
icant differences from control conditions were determined
using either one-way or two-way analysis of variance
(ANOVA) followed by posteriori Bonferroni’s test for multi-
ple comparisons provided by GraphPad Prism, version 6.0
software package (GraphPad Software, San Diego, CA).

3. Results

3.1. Generation of Human iPSCs and Differentiation into
Mature DA Neurons. CP01 human fibroblasts from a healthy

donor were reprogrammed according to the protocol of
Maherali et al. [40] (Supplementary Figure S1A), resulting
in several hiPSC colonies, including a clone called F3. In
the present study, F3 hiPSCs were fully characterized: details
are described in Supplementary Results and in Supplemen-
tary Figures S1 and S2. F3 and NAS2, previously published
hiPSC clones from a healthy donor [36], were differentiated
into midbrain DA neurons via floor plate induction as pub-
lished by Kriks et al. [37] with minor modifications
(Figure 1(a)). Dopaminergic differentiation of F3 hiPSCs is
shown in Figures 1(b)–1(j). At day 11, immunofluorescence
analysis of F3 midbrain floor plate precursors showed the
distinctive coexpression of the floor plate marker FOXA2
and the roof plate marker LMX1-A [37]. At day 21, cells were
plated on a mouse astrocyte feeder layer, and at day 30,
MAP2+-TH+ neurons were present. At day 70, most TH+

neurons consistently coexpressed the dopamine transporter
(DAT), the AMPAR subunit GluR2, and vesicular
monoamine-associated transporter 2 (VMAT2), indicating
a mature DA neuronal phenotype (Figures 1(b)–1(f)).
GABAergic and glutamatergic neurons identified by expres-
sion of GAD67 and VGLUT2, respectively, were also present
in the cultures (Figures 1(g) and 1(h)). Cell count indicated
30%± 5% of TH+ neurons, 23%± 4% of GAD67+ neurons,
and 28%± 6% of VGLUT2+ neurons costained with anti-
MAP2 antibody. Semiquantitative RT-PCR analysis con-
firmed the expression of LMX1-A, LMX1-B, FOXA2,
ENGRAILED 1 (EN1), TH and Dopa decarboxylase
(DDC), G protein-coupled inwardly rectifying potassium
channel (GIRK2) from day 11, and NURR1 from day 19.
The mRNAs for Oct3/4 and Nanog, markers of pluripotency,
progressively decreased during differentiation (Figure 1(i)).
D2R mRNA was detectable from day 11 of differentiation,
while D3R mRNA was expressed at the iPSC stage, not
detectable at day 11 of differentiation while it started to
appear again from day 19 (Figure 1(j)). Dopaminergic differ-
entiation using NAS2 hiPSCs is represented in Supplemen-
tary Figure S3.

The neurochemical evidence of a functional DAT uptake
of DA neurons cultured for 70 days was obtained by measur-
ing the level of dopamine in the culture supernatant by HPLC
following incubation with the DAT inhibitor GBR12935 or
vehicle over a time course up to 24hrs (Figure 1(k)). Two-
way ANOVA showed a highly significant treatment effect
(F(1,20) = 47, p < 0 0001), time effect (F(4,20) = 91, p < 0 0001),
and interaction effect (F(4,20) = 11, p < 0 0001), indicating a
time-dependent pharmacological inhibition of DAT func-
tions. These results indicate spontaneous release of dopa-
mine, as shown by the progressive increase of dopamine
levels after vehicle over time, and an active uptake of extracel-
lular dopamine as shown by the strong increase of dopamine
levels after GBR12935, as expected by mature DA neurons.

3.2. Effects of Ropinirole on Structural Plasticity of hiPSC-
Derived and Mouse Mesencephalic DA Neurons. DA neurons
derived from F3 and NAS2 hiPSCs were exposed to ropinir-
ole for 72 hrs. In parallel experiments, primary cultures of
mouse mesencephalic DA neurons known to respond to
D3-preferential DA agonists [16], were also tested for
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Figure 1: Differentiation of F3 human iPSCs in dopaminergic neurons. (a) Diagram of the time and conditions used for the differentiation of
dopaminergic neurons from hiPSCs. (b–f) Representative images of dual immunofluorescence indicating coexpression of (b) LMX1-A
(green) and FOXA2 (red) in dopaminergic progenitors at day 11; (c) TH (green) and MAP2 (red) in neurons at day 30; (d) TH (green)
and DAT (red); (e) TH (red) and GLUR2 (green); and (f) TH (green) and VMAT2 (red) in DA neurons at day 70. (g, h) Dual
immunofluorescence of (g) TH (red) and GAD67 (green) and (h) TH (red) and VGLUT2 (green) in neuronal cultures at day 70. Cell
nuclei were stained with DAPI (blue). Scale bar: (b, c) = 40μm; (d, e, g, and h) = 20μm; and (f) = 10μm. (i, j) Semiquantitative RT-PCR
analysis of (i) gene expression at the iPSC stage and at day 11, 19, 50, and 70 of dopaminergic differentiation and (j) expression of D2 and
D3 receptors at the iPSC stage and at day 11, 19, 70, 80, and 90 of dopaminergic differentiation (negative controls contain PCR Master
Mix and primers, but no cDNA). (k) Dopamine level measured by HPLC in the supernatant of F3 DA cultures (day 70) following
incubation with the DAT inhibitor GBR12935 (GBR) or vehicle (V) over a time course (0, 3, 6, 9, and 24 hrs after administration). Data
are expressed as mean± SEM (∗∗∗p < 0 001 versus vehicle at 24 hrs, ∗p < 0 05 versus vehicle at 9 hrs, and °°°p < 0 001 and °°p < 0 01 versus
the corresponding treatment (GBR or V) at time 0 h; post hoc Bonferroni’s test). KSR, knockout serum replacement; LDN, LDN193189;
SB, SB431542; Shh, Shh C25II; FGF8, fibroblast growth factor 8; Purm, purmorphamine; CHIR, CHIR99021; BDNF, brain-derived
neurotrophic factor; AA, ascorbic acid; cAMP, dibutyryl cAMP; TGFβ, transforming growth factor type β3; GDNF, glial cell line-derived
neurotrophic factor.
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72 hrs (Figures 2(a)–2(l)). No changes in structural plasticity
were observed between basal measurements and measure-
ments after 72 hrs when cultures were exposed to vehicle
(Figures 2(d)–2(l), shaded areas). Conversely, ropinirole
(0.1–20μM) produced a dose-dependent effect on structural
plasticity 72 hrs after the beginning of treatment
(Figures 2(d)–2(l)). Two-way ANOVA indicated a significant
treatment main effect for the maximal length of dendrites
[F(4,435) = 21.86, p < 0 0001], number of primary dendrites
[F(4,735) = 17.96, p < 0 0001], and soma area [F(4,585) = 22.21,
p < 0 0001], as well as a significant main effect of DA neuron
type (i.e., F3 or NAS2 or mouse) for the maximal length of
dendrites [F(2,435) = 31.94, p < 0 0001], number of primary
dendrites [F(2,735) = 3.89, p < 0 05], and soma area
[F(2,585) = 84.75, p < 0 0001], while interaction was never sig-
nificant. Within each culture, post hoc multiple comparisons
indicated that the treatment effect versus vehicle started at
the dose of 10μM (p < 0 05 or lower); no difference was
observed between F3 and NAS2, while mouse mesencephalic
DA neurons were consistently smaller than human DA neu-
rons (p < 0 05 or lower, Bonferroni’s test).

3.3. Rapid Activation of mTOR Pathway Induced by
Ropinirole Is Mediated through D3R Signaling. D3Rs are
known to activate the intracellular pathway of MEK-ERK
[15, 16] and PI3K-Akt [28, 29], leading to a mTOR-
dependent increase of phosphorylated p70S6K (p-p70S6K)
[28, 30]. The effect of ropinirole (10μM) on p-p70S6K in
hiPSC-derived DA neurons was investigated by Western blot
and immunofluorescence analysis. In acute experiments,
using Western blot quantification, ropinirole significantly
increased p-p70S6K after 2min in both F3 and NAS2
hiPSC-derived DA cultures (Figures 3(a) and 3(d)), as sup-
ported by the significant main effect of time [F(5,28) = 14.00,
p < 0 0001] and the nonsignificant main effect of DA neuron
type and interaction. The role of D3R was investigated by
pretreatments with the selective D3R antagonists
SB277011-A (100nM) [44] and S33084 (10 nM) [45]. Both
antagonists blocked the effect of ropinirole on p-p70S6K as
measured by Western blot in F3 cultures (Figures 3(b) and
3(c)) and NAS2 cultures (Supplementary Figure S4A and
B) at 2min after exposure. Two-way ANOVA indicated the
significant treatment main effect of SB277011-A and
S33084 [F(2,42) = 13.36, p < 0 0001] and [F(2,42) = 17.44, p <
0 0001], respectively, while no significant DA neuron type
main effect and interactions were observed. The potential
involvement of MEK-ERK and PI3K-Akt pathways in medi-
ating the effects of ropinirole on p-p70S6K was studied using
a MEK inhibitor PD98059 (10μM) and a PI3-K inhibitor
LY294002 (10μM). Pretreatment with both inhibitors sepa-
rately blocked the effects of ropinirole measured in F3 cul-
tures (Figures 3(e) and 3(f)) and NAS2 cultures
(Supplementary Figure S4I and J). Two-way ANOVA of
Western blots showed a significant treatment effect of
PD98059 and LY294002 [F(2,42) = 14.05, p < 0 0001] and
[F(2,27) = 10.90, p < 0 0001], respectively, while no significant
DA neuron type effect or interaction was observed. No effects
on p-p70S6K were observed when SB277011-A, S33084,
PD98059, or LY294002 was incubated with vehicle.

Parallel immunofluorescence experiments of F3 and
NAS2 hiPSC-derived DA cultures showed that ropinirole sig-
nificantly increased the levels of p-p70S6K in TH+ neurons
(Figures 3(i) and 3(o); Supplementary Figure S4D and L),
partially accounting for the increases observed in the West-
ern blot studies. In addition, ropinirole increased p-p70S6K
in TH− neurons, as expected since D3Rs are expressed also
in non DA neurons [22]. Pretreatments with either
SB277011-A or S33084 prevented the increase of p-p70S6K
in TH+ as well as TH− neurons following exposure to ropinir-
ole in both F3 cultures (Figures 3(j) and 3(k)) and NAS2
cultures (Supplementary Figure S4E and F). Pretreatment
with the MEK inhibitor PD98059 or the PI3-K inhibitor
LY294002 blocked the effects of ropinirole measured in F3
cultures (Figures 3(p) and 3(q)) and NAS2 cultures (Supple-
mentary Figure S4M and N). No effects on p-p70S6K were
observed when SB277011-A, S33084, PD98059, or
LY294002 was incubated with vehicle (Figures 3(l), 3(m),
3(r), and 3(s); Supplementary Figure S4G, H, O, and P).
These observations were supported by the results of semi-
quantitative image analysis of p-p70S6K fluorescence
intensity in TH+ neurons [two-way ANOVA interaction:
F(4,240) = 8.8, p < 0 0001; treatment factor: F(4,240) = 8.4, p <
0 001; and inhibition factor: F(1,240) = 5.9, p < 0 02] and in
TH− neurons [two-way ANOVA interaction: F(4,240) = 5.9,
p < 0 0002; treatment factor: F(4,240) = 4.9, p < 0 001; and
inhibition factor: F(1,240) = 20.5, p < 0 0001] (Figure 3(g)).

3.4. Structural Plasticity Induced by Ropinirole Depends
on mTOR-Mediated D3R Signaling. The role of D3R-
dependent signaling in structural plasticity produced by
ropinirole in human DA neurons was investigated
72 hrs after either the pharmacological blockade of D3R
or the inhibition of the intracellular pathways leading
to mTOR activation.

The effects of ropinirole versus vehicle on F3 hiPSC-
derived DA neurons were significantly (p < 0 01, Bonferro-
ni’s test) attenuated by pretreatment with SB277011-A
(50 nM), S33084 (10 nM), and the nonselective D2/D3R
antagonist sulpiride (5μM), but not by the D1R antagonist
SCH23390 (1μM) (Figures 4(a)–4(c)), as supported by the
significant two-way ANOVA interaction obtained on the
maximal length of dendrites [F(4,290) = 5.4, p < 0 0001], num-
ber of primary dendrites [F(4,490) = 4.9, p < 0 0001], and soma
area [F(4,390) = 4.3, p < 0 001]. No changes were seen when
DA antagonists were dosed in the presence of vehicle.

The effects of ropinirole on structural plasticity were pre-
vented by inhibition of the intracellular pathways using
PD98059 (10μM), LY294002 (10μM), and the mTORC1
inhibitor rapamycin (20 nM). All kinase inhibitors signifi-
cantly (p < 0 01, Bonferroni’s test) counteracted the effects
of ropinirole on all three structural plasticity parameters
(Figures 4(d)–4(f)), as supported by the significant two-way
ANOVA interaction obtained on the maximal length of
dendrites [F(3,232) = 11.0, p < 0 0001], number of primary
dendrites [F(3,392) = 6.6, p < 0 0001], and soma area
[F(3,312) = 5.1, p < 0 001]. No changes were seen when the
kinase inhibitors were dosed in the presence of vehicle. Full
tabular results of ANOVA are reported in Table 1.
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Figure 2: Ropinirole promotes structural plasticity of human iPSC-derived and mouse mesencephalic DA neurons. (a–c) Representative
photomicrographs of human F3, human NAS2 (70 days in culture), and mouse mesencephalic DA neurons (7 days in culture) 72 hrs after
exposure to vehicle or to 10μM ropinirole. Scale bar: 30μm. (d–l) Concentration-response curves of the effect of ropinirole on maximal
length of dendrites, number of primary dendrites, and soma area of (d–f) human F3 DA neurons, (g–i) human NAS2 DA neurons, and
(j–l) mouse mesencephalic DA neurons. Shaded areas: (d–f) light blue, (g–i) light green, and (j–l) light red show no significant changes in
structural plasticity between basal measurements and measurements after 72 hrs when cultures were exposed to vehicle. Data are
expressed as mean± SEM (∗∗∗p < 0 001, ∗∗p < 0 01, and ∗p < 0 05 versus vehicle (0); post hoc Bonferroni’s test).
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Figure 3: Ropinirole increases phosphorylation of p70S6K in human iPSC-derived DA neurons via activation of D3 receptor. (a, d) Time
course of phosphorylated p70S6K (p-p70S6K) induced by ropinirole (10 μM) in (a) F3 and (d) NAS2 DA cultures, respectively, at 0, 2, 5,
10, 30, and 60min and analysed by densitometry of Western blots (n = 6) (top panels); the specific levels of p-p70S6K were normalised to
the corresponding p70S6K, TH, and tubulin levels. The densitometric values are represented as the percentage of vehicle values. (lower
panels) Representative Western blots. (b, c) Blockade of p-p70S6K induced by ropinirole (10 μM) in F3 DA neurons after pretreatment
(20min) with the D3R antagonists (b) SB277011-A (100 nM) or (c) S33084 (10 nM) assessed after 2min and analyzed by densitometry of
Western blots (n = 3) (top panels). (lower panels) Representative Western blots. (h–m) Representative photomicrographs of F3 DA
neurons showing p-p70S6K increase in the soma and dendrites of TH+ neurons 2min after ropinirole (10 μM) following pretreatment
with vehicle (i). (j) Blockade of p-p70S6K by pretreatment (20min) with either SB277011-A (100 nM) or (k) S33084 (10 nM) followed by
ropinirole (2min). (h) Vehicle; (l) SB277011-A alone; and (m) S33084 alone. TH (green) and p-p70S6K (red). Cell nuclei were stained
with DAPI (blue). (e, f) Blockade of p-p70S6K induced by ropinirole (10 μM) in F3 DA neurons after pretreatment (20min) with (e) the
MEK inhibitor PD98059 (10 μM) or (f) the PI3-K inhibitor LY294002 (10 μM) assessed after 2min and analyzed by densitometry of
Western blots (n = 3) (top panels). (lower panels) Representative Western blots. (n–s) Representative photomicrographs of F3 DA
neurons showing p-p70S6K increase in the soma and dendrites of TH+ neurons 2min after ropinirole (10 μM) following pretreatment
with vehicle (o). (p) Blockade of p-p70S6K by pretreatment (20min) with PD98059 (10 μM) or (q) LY294002 (10μM) followed by
ropinirole (2min). (n) Vehicle; (r) PD98059 alone; and (s) LY294002 alone. TH (green) and p-p70S6K (red). Cell nuclei were stained with
DAPI (blue). Scale bar: 20 μm. (g) Semiquantitative image analysis of p-p70S6K fluorescence intensity in TH+ and TH− neurons. All data
are expressed as mean values± SEM (∗∗∗p < 0 001, ∗∗p < 0 01, and ∗p < 0 05 versus vehicle; ooop < 0 001, oop < 0 01, and op < 0 05
versus ropinirole; post hoc Bonferroni’s test). V, vehicle; R, ropinirole; SB, SB277011-A; S33, S33084; PD, PD98059; LY, LY294002.
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Figure 4: Structural plasticity induced by ropinirole in human iPSC-derived DA neurons is prevented by D3R antagonists, by MEK-ERK and
PI3K-mTOR inhibitors and by BDNF-TrkB signaling inhibitors. (a–c) Inhibition of the effects of ropinirole (10 μM) on structural plasticity of
F3 DA neurons following pretreatment (20min) with the D3R antagonists SB277011-A (50 nM) and S33084 (10 nM) or the D2/D3R
antagonist sulpiride (5 μM) assessed as (a) maximal dendrite length, (b) number of primary dendrites, and (c) soma area after 72 hrs.
Pretreatment (20min) with the D1R antagonist SCH23390 (1 μM) was ineffective. (d–f) Inhibition of the effects of ropinirole (10 μM) on
structural plasticity of F3 DA neurons following pretreatment (20min) with PD98059 (10 μM), LY294002 (10 μM), or rapamycin (20 nM),
assessed as (d) maximal dendrite length, (e) number of primary dendrites, and (f) soma area after 72 hrs. (g–i) Inhibition of the effects of
ropinirole (10 μM) on structural plasticity of F3 DA neurons following pretreatment (20min) with an anti-BDNF blocking antibody (α-
BDNF) (10 μg/ml), a TrkB-Fc Chimera (TrkB-Fc) (5 μg/ml), the TrkB-phosphorylation inhibitor K252a (200 nM), and the TrkB-Src
phosphorylation inhibitor PP2 (10 μM), assessed as (g) maximal dendrite length, (h) number of primary dendrites, and (i) soma area after
72 hrs. When antagonists and inhibitors were tested with the vehicle, no changes of structural plasticity were visualized. In all panels,
values are represented as mean± SEM (∗∗∗p < 0 001, ∗∗p < 0 01, and ∗p < 0 05 versus vehicle; °°°p < 0 001 and °°p < 0 01 versus ropinirole;
post hoc Bonferroni’s test). V, vehicle; R, ropinirole; SB, SB277011-A; S33, S33084; SULP, sulpiride; SCH, SCH23390; PD, PD98059; LY,
LY294002; RAP, rapamycin, α-BDNF, anti-BDNF blocking antibody; TrkB-Fc, TrkB-Fc Chimera.
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Similar results were obtained in parallel experiments
testing NAS2 DA neurons with DA antagonists (Supple-
mentary Figure S5A–C) and kinase inhibitors (Supplemen-
tary Figure S5D–F), as supported by statistical analysis
(Supplementary Table S5).

3.5. BDNF-TrkB Signaling Is Involved in Structural Plasticity
Induced by Ropinirole. Four different approaches were used
to block BDNF-TrkB signaling: immunoneutralization of
extracellular BDNF using an anti-BDNF blocking antibody
(α-BDNF), scavenging of extracellular BDNF using a TrkB-
Fc Chimera, blockade of TrkB receptor using K252a [46],
and inhibition of TrkB dependent Src phosphorylation
using PP2. Pretreatments with all BDNF-TrkB signaling
inhibitors antagonized the effects of ropinirole on all three
structural plasticity parameters in both F3 DA neurons
(Figures 4(g)–4(i)) and NAS2 DA neurons (Supplementary
Figure S5G–I), as supported by the significant two-way
ANOVA interaction obtained on the maximal length of
dendrites [F(4,290) = 12.0, p < 0 0001], number of primary den-
drites [F(4,490) = 3.5, p < 0 001], and soma area [F(4,390) = 7.0,
p < 0 0001]. No changes were seen when BDNF-TrkB signal-
ing blockers were dosed in the presence of vehicle. Full tabular
results of ANOVA are reported in Table 1.

Similar results were obtained in parallel experiments test-
ing NAS2 DA neurons with BDNF-TrkB signaling inhibitors
(Supplementary Figure S5G–I), as supported by statistical
analysis (Supplementary Table S5).

3.6. Effects of Pramipexole on Structural Plasticity of hiPSC-
Derived DA Neurons. Pramipexole (0.01–10μM) produced
a dose-dependent effect on structural plasticity of F3 DA
neurons 72hrs after the beginning of treatment. One-way
ANOVA indicated a significant dose-dependent effect for
the maximal length of dendrites [F(4,145) = 5.57, p < 0 001],
number of primary dendrites [F(4,245) = 4.23, p < 0 01], and
soma area [F(4,195) = 6.19, p < 0 0001], the lowest effective
dose on dendritic length being 0.1μM (Figures 5(a)–5(c)).
No changes in structural plasticity were observed between
basal measurements and measurements after 72 hrs when

cultures were exposed to vehicle (Figures 5(a)–5(c), shaded
areas). The effects of pramipexole versus vehicle were signif-
icantly (p < 0 05 or lower, Bonferroni’s test) attenuated by
pretreatment with SB277011-A (50 nM) and S33084
(10 nM), but not by the D1R antagonist SCH23390 (1μM)
(Figures 5(d)–5(f)), as supported by the significant two-way
ANOVA interaction obtained on the maximal length of den-
drites [F(43,232) = 4.6, p < 0 005], number of primary dendrites
[F(3,392) = 3.7,p < 0 02], and somaarea [F(3,312) = 3.6,p < 0 02].
No changes were seen when theDA antagonists were dosed in
the presence of vehicle.

The effects of pramipexole on structural plasticity were
prevented by inhibition of the intracellular pathways using
PD98059 (10μM), LY294002 (10μM), and the mTORC1
inhibitor rapamycin (20 nM). All kinase inhibitors signifi-
cantly (p < 0 05 or lower, Bonferroni’s test) counteracted
the effects of pramipexole on all three structural plasticity
parameters (Figures 5(g)–5(i)), as supported by the signifi-
cant two-way ANOVA interaction obtained on the maximal
length of dendrites [F(3,232) = 3.1, p < 0 05], number of pri-
mary dendrites [F(3,392) = 4.3, p < 0 005], and soma area
[F(3,312) = 3.8, p < 0 01]. No changes were seen when the
kinase inhibitors were dosed in the presence of vehicle.

3.7. Correlation between the Results Obtained with the Two
Human iPSC Clones. Correlation analysis between the mean
values of all experiments performed in the DA neurons from
the two hiPSC clones (d.f. = 38) was strong and highly signifi-
cant for themaximal length of dendrites (r = 0 872, p < 0 001),
number of primary dendrites (r = 0 966, p < 0 001), and
soma area (r = 0 891, p < 0 001).

4. Discussion

In the present investigation, the D3R-preferential DA ago-
nists ropinirole and pramipexole produced dose-dependent
increases of dendrite outgrowth and soma area of DA neu-
rons derived from human iPSCs. These effects were medi-
ated through BDNF-TrkB and mTOR signaling, key
mechanisms known to control dendritic complexity and soma

Table 1: Statistical analysis of the effects produced by D3R antagonists, by MEK-ERK and PI3K-mTOR inhibitors, and by BDNF-TrkB
signaling inhibitors on ropinirole-induced structural plasticity in F3 DA neurons.

Experiments Two-way ANOVA Max dendrite length Number primary dendrites Soma area

(DA antag.)1 X (Rop/Veh)

Interaction F(4,290) = 5.4
∗∗∗ F(4,490) = 4.9

∗∗∗ F(4,390) = 4.3
∗∗

Antagonist factor F(4,290) = 6.8
∗∗∗ F(4,490) = 2.8

∗ F(4,390) = 3.8
∗∗

Ropinirole factor F(1,290) = 7.6
∗∗ F(1,490) = 7.2

∗∗ F(1,390) = 7.7
∗∗

(mTOR inh.)2 X (Rop/Veh)

Interaction F(3,232) = 3.5
∗ F(3,392) = 4.9

∗∗ F(3,312) = 2.9
∗

Inhibitor factor F(3,232) = 4.5
∗∗ F(3,392) = 3.7

∗ F(3,312) = 4
∗∗

Ropinirole factor F(1,232) = 7.7
∗∗ F(1,392) = 4

∗ F(1,312) = 6.1
∗

(TrkB inh.)3 X (Rop/Veh)

Interaction F(4,290) = 3.5
∗ F(4,490) = 5.4

∗∗∗ F(4,390) = 2.9
∗

Inhibitor factor F(4,290) = 6.3
∗∗∗ F(4,490) = 2.8

∗ F(4,390) = 4.1
∗∗

Ropinirole factor F(1,290) = 5.7
∗ F(1,490) = 4.4

∗ F(1,390) = 10
∗∗

1DA antagonists: sulpiride, SB277011-A, S33084, and SCH23390. 2mTOR inhibitors: PD98059, LY294002, and rapamycin. 3TrkB inhibitors: α-BDNF, TrkB-Fc
Chimera, K252a, and PP2. The original values represented as mean ± SEM can be found in Figure 4. Two way ANOVA: ∗∗∗p < 0 001; ∗∗p < 0 01; and ∗p < 0 05.
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Figure 5: Structural plasticity induced by pramipexole in human iPSC-derived DA neurons is prevented by D3R antagonists and by MEK-
ERK and PI3K-mTOR inhibitors. (a–c) Concentration-response curves of pramipexole effects on (a) maximal length of dendrites, (b) number
of primary dendrites, and (c) soma area of human F3 DA neurons. Shaded areas (a–c), light grey, show no significant changes in structural
plasticity between basal measurements and measurements after 72 hrs when cultures were exposed to vehicle. Data are expressed as mean
± SEM (∗∗∗p < 0 001, ∗∗p < 0 01, and ∗p < 0 05 versus vehicle (0); post hoc Bonferroni’s test). (d–f) Inhibition of the effects of pramipexole
(10 μM) on structural plasticity following pretreatment (20min) with either SB277011-A (50 nM) or S33084 (10 nM); (d) maximal
dendrite length, (e) number of primary dendrites, and (f) soma area after 72 hrs. Pretreatment (20min) with SCH23390 (1 μM) was
ineffective. (g–i) Inhibition of the effects of pramipexole (10 μM) on structural plasticity following pretreatment (20min) with PD98059
(10 μM), LY294002 (10 μM), or rapamycin (20 nM); (g) maximal dendrite length, (h) number of primary dendrites, and (i) soma area
after 72 hrs. No changes of structural plasticity were visualized when antagonists and inhibitors were tested with the vehicle. Data are
expressed as mean± SEM (∗∗∗p < 0 001, ∗∗p < 0 01, and ∗p < 0 05 versus vehicle; °°°p < 0 001, °°p < 0 01, and °p < 0 05 versus pramipexole;
post hoc Bonferroni’s test). V, vehicle; PPX, pramipexole; SB, SB277011-A; S33, S33084; SCH, SCH23390; PD, PD98059; LY, LY294002;
RAP, rapamycin.
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size [30, 47, 48], of which the functional status is impaired in
mood disorders [33, 49] and Parkinson’s disease [50].

The pharmacological responses of human DA neurons
differentiated from the iPSCs of twohealthy donors essentially
overlapped and were highly correlated. The influence of ropi-
nirole upon structural plasticity in these human DA neurons
was similar to that seen in mouse primary DA neurons, the
main difference being a systematically larger degree of den-
dritic arborization and soma size in the former. The present
data are well aligned with evidence that D3R-preferential DA
agonists, such as 7-OH-DPATand quinpirole, elicit structural
plasticity in rodent DA neurons, effects blocked by D3R-
selective antagonists in vitro [16] and in vivo [27] and absent
in D3R knockout mice [16, 28]. In the present investigation,
we exposed hiPSC-derivedDAneurons to low concentrations
of ropinirole and pramipexole, allowing the higher affinity for
D3R to exert a preferential role versus D2R [16]; we likewise
showed blockade of ropinirole- and pramipexole-induced
structural plasticity by preincubation with the highly selective
D3R antagonists SB277011-A and S33084.

Ropinirole produced a rapid and D3R-dependent activa-
tion (within 2min) of mTOR signaling in DA neurons as
measured by Western blot and immunofluorescence quanti-
fication of p-p70S6K. Recruitment of mTOR signaling was
blocked by pretreatment with SB277011-A or S33084. In line
with these observations, transient increases of phosphoryla-
tion in the PI3K-Akt-mTOR pathway were previously
observed in mouse DA neurons with agents that directly or
indirectly activated D3R [28, 51]. In the present study, we
showed that intracellular kinase inhibitors known to block
the mTOR signaling, such as rapamycin or LY294002, abro-
gated both the p70S6K transient phosphorylation and the
long-term structural plasticity. Similar results were obtained
with the MEK inhibitor PD98059, suggesting crosstalk
between Ras-ERK and PI3K-mTOR pathways, as described
in other cellular systems [30]. The critical role of D3R is also
supported by observations in D3R KO mice in which DA
agonists are unable to increase p70S6K phosphorylation
and produce long-term structural plasticity [28]. The differ-
ence between transient and long-term effects would be that
ropinirole and pramipexole trigger transient activation of
p70S6K over a constrained time frame that leads to longer-
term downstream-sustained processes, such as protein syn-
thesis, necessary for structural plasticity changes. A similar
time-restricted phenomenon was described for LTP in rat
hippocampal preparations [52]. In this work, the increase
of p70S6K phosphorylation observed in neurons during the
LTP induction (tetanization) was blocked by brief exposures
to mTOR pathway inhibitors only before induction, but not
afterward, when LTP was already established.

SinceRas-ERKandPI3K-mTORpathways are also consti-
tutive elementsof theBDNF-TrkB signaling,we explored their
role in structural plasticity produced by ropinirole. The appli-
cation of four different modalities of BDNF-TrkB pathway
disruption resulted in structural plasticity blockade in human
DA neurons, as previously described in rat telencephalic neu-
rons [46, 48]. These data indicate that active BDNF-TrkB sig-
naling is necessary for D3R-dependent structural plasticity in
human DA neurons. Interestingly, the behavioural relevance

of reciprocal crosstalk between these two crucial pathways in
DA neurons was recently demonstrated in rats with a unilat-
eral nigrostriatal lesion of DA projections [53]. It must be
pointed that the degree and duration of enhanced BDNF
expression are critical factors since the excessive and pro-
longed increase of BDNF-TrkB signaling in rodent VTA has
been linked to vulnerability to stress [54]. However, other pre-
clinical studies showed an association between low levels of
BDNF inVTAwith anhedonia [55], while patients withmood
disorders were characterized by low TrkB expression in post-
mortem striatum [56] and low circulating levels of BDNF
[49]. Indeed, increased BDNF signaling was recognized as a
necessary step for the antidepressant effects of ketamine [57].
Hence, BDNF-TrkB signaling may play a critical role in the
long-term structural plasticity of D3-preferential agonists in
human DA neurons, possibly contributing to their clinical
antidepressant effects so far described for telencephalic neu-
rons [33, 58].An involvement ofD3R inmooddisorders is fur-
ther supported by recent positive trials in insufficiently
responsive patients withmood disorders treated with caripra-
zine, a D2R/D3R partial agonist with a 10-fold preferential
affinity to D3R [59, 60]. The intrinsic activity of cariprazine
at D3R (Emax 70%) is comparable to that of aripiprazole,
another D2R/D3R partial agonist that is approved for the
adjunctive treatment of major depression [61]. As recently
suggested, both cariprazine and aripiprazolemay exert antide-
pressant effects viaD3R-mediated recruitment ofBDNF-TrkB
signaling [62, 63]. However, a role of their serotonergic prop-
erties and postsynaptic D2R influence on depressed states
should not be neglected [60, 61].

A limitation of the present study is the use of hiPSCs
from healthy donors. Further studies in DA neurons differ-
entiated from hiPSCs derived from patients affected by mood
disorders would be of particular interest for enhancing our
understanding of how DA agonists influence neuroplasticity
under pathological conditions and whether they may be able
to restore putative deficits. In this article, we chose to focus
on DA neurons from healthy donors in order to systemati-
cally characterize the pharmacologic response of clinically
active drugs that were previously tested in rodents so to val-
idate the approach.

In conclusion, the present investigation demonstrates that
ropinirole and pramipexole increase structural plasticity in
human iPSC-derived DA neurons via D3R-dependent mech-
anisms and recruitment of BDNF-TrkB andmTOR signaling.

These pharmacological/biological mechanisms were
remarkably conserved between mouse and human, the only
observed difference between species being the neuronal size.

These data support the translational use of human iPSC-
derived DA neurons as a possible experimental model for the
assessment of pharmacologic agents targeting disorders char-
acterized by a disruption of dopaminergic transmission.
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