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The application of graph theory to brain networks has become increasingly popular in
the neuroimaging community. These investigations and analyses have led to a greater
understanding of the brain’s complex organization. More importantly, it has become
a useful tool for studying the brain under various states and conditions. With the
ever expanding popularity of network science in the neuroimaging community, there
is increasing interest to validate the measurements and calculations derived from brain
networks. Underpinning these studies is the desire to use brain networks in longitudinal
studies or as clinical biomarkers to understand changes in the brain. A highly reproducible
tool for brain imaging could potentially prove useful as a clinical tool. In this review, we
examine recent studies in network reproducibility and their implications for analysis of
brain networks.
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INTRODUCTION
The foundation of graph theory arose in
the eighteenth century when Leonhard Euler
introduced the Königsberg Bridge problem,
thus introducing the concept of vertices (or
nodes) and edges (or connections) as a way
of representing a problem. However, the field
known today as network science, did not gain
widespread popularity until the introduction of
small-world networks by Watts and Strogatz,
which described a system with regional special-
ization and efficient global information transfer
(Watts and Strogatz, 1998). The development of
scale-free networks by Barabási and Albert fur-
ther expanded the field with their work on hubs,
nodes with a high number of connections, and
how node connectivity scaled following a power
law distribution (Barabási and Albert, 1999;
Albert and Barabási, 2002). Both of these con-
cepts, small-world organization and network

hubs, have figured prominently in studies of
brain networks. While early human studies of
functional brain networks suggested a scale-free
structure (Eguíluz et al., 2005), more recent
studies describe brain networks as an exponen-
tially truncated power-law distribution (Gong
et al., 2009; Hayasaka and Laurienti, 2010). In
addition, studies have found that brain net-
work hubs localize to different areas of the
brain (Achard et al., 2006) and are implicated in
various disease states, such as Alzheimer’s dis-
ease (He et al., 2008; Supekar et al., 2008) and
schizophrenia (Lynall et al., 2010; Fornito et al.,
2012).

As an increasing number of studies are done
in brain networks, there is marked interest
in validating the measurements derived from
brain network data. Graph metric reproducibil-
ity is considered essential for test-retest pur-
poses. If the metrics derived from networks
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change significantly from scan to scan, the sta-
tistical power of these measurement is greatly
decreased, making such analyses unreliable
(Deuker et al., 2009; Telesford et al., 2010).
The main reason for focusing on reproducibil-
ity is the desire to follow graph metrics
longitudinally, particularly for detecting abnor-
malities (Vaessen et al., 2010), drug-treatment
effects (Deuker et al., 2009) or potential clinical
biomarkers (Wang et al., 2011).

In this review, we explore various studies
examining the reproducibility of graph met-
rics in brain networks for various modalities
and conditions. We will discuss the impact of
these findings and the implications of using net-
work science for studying the brain. All the
studies discussed in this review utilize the intr-
aclass correlation coefficient (ICC) to assess
reproducibility, so we will briefly discuss this
statistical method and highlight other statis-
tical tools also used by investigators. We will
then look at the reproducibility of specific graph
metrics and how particular methodologies (e.g.,
threshold level, parcellation scheme, etc.) affect
reproducibility. Finally, we will summarize the
findings and discuss future implications of these
findings.

STATISTICAL ANALYSIS
GRAPH METRIC ANALYSIS IN THE BRAIN
Brain networks are either derived from
anatomic or functional data. In the case of
anatomic data, histological samples, diffusion

Graph theory
Field of mathematics that conceives
systems as nodes and edges.

Network science
Interdisciplinary field in study of
complex systems.

Brain networks
Conception of brain as graph linking
areas by structure or function.

Reproducibility
Ability of study to be reproduced.

Intraclass correlation coefficient
Statistic that describes how strongly
measurements resemble each other.

tensor imaging (DTI), or diffusion spectral

imaging (DSI) is used to build a network.
For DTI/DSI imaging, nodes are defined as
voxels in gray matter or gray matter voxels
associated with a particular brain region
(Hagmann et al., 2008; Vaessen et al., 2010).
With each node serving as a seed, probabilistic
tractography is used to determine connections
between voxels or regions. Similarly, func-
tional networks can be built using functional
magnetic resonance imaging (fMRI) (Eguíluz
et al., 2005), electroencephalography (EEG)
(Micheloyannis et al., 2006; Stam et al., 2007),
magnetoencephalography (MEG) (Stam, 2004),
and multielectrode array (MEA) data (Srinivas
et al., 2007). In functional networks, voxels,
sensors or electrodes serve as nodes with links
determined by the strong functional coherence
of the measured signal. As diagrammed in
Figure 1, the anatomic or functional data
are used to construct a connection matrix,
which can describe the number of connections
between two nodes or the correlation between
two signals. A threshold is often applied to the
correlation matrix and binarized to produce
an adjacency matrix. From this matrix, various
graph metrics are calculated to determine
properties of the network.

INTRACLASS CORRELATION COEFFICIENT (ICC)
The ICC is a statistic used to measure the abso-
lute agreement between two measurements. It
is an appropriate statistic for comparing mul-
tiple runs of the same modality because it
compares variables that share the same group

FIGURE 1 | Schematic of brain network construction and graph metric analysis. Anatomic or functional data is
analyzed to generate a connection matrix, denoting the strength or number of connections between nodes. A
threshold is commonly applied to the connection matrix to produce a binary adjacency matrix. From this adjacency
matrix, various graph metrics, and statistical analyses can be assessed from these networks.
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or category, and measurements that are con-
sidered exchangeable (i.e., the order of the
measurements does not matter) (McGraw and
Wong, 1996; Gonzalez and Griffin, 1999).
Reproducibility studies show results in terms of
an ICC score where an ICC score of 1 denotes
complete agreement, while an ICC score of 0
denotes no agreement. The ICC scores can also
be viewed as the level of within-subject variance
compared to the between-subject variance; thus,
the higher the within-subject variance, the lower
the ICC score (Weir, 2005). The interpretation
of an ICC score is dependent on several ranges
indicating level of agreement: ICC <0.20 indi-
cates poor agreement; 0.21–0.40 indicates fair
agreement; 0.41–0.60 indicates moderate agree-
ment; 0.61–0.80 indicates strong agreement;
and >0.80 indicates almost perfect agreement
(Montgomery et al., 2002). In addition to the
ICC score, confidence intervals describe the level
of uncertainty of a particular score with wider
intervals indicating greater variation between
repeated measurements.

There are several variations of the ICC statis-
tic and the appropriate method depends on
the form of the data. When testing the repro-
ducibility of mean statistics, a one-way model
for average measurements, designated ICC(k), is
used. It is calculated as

ICC(k) = (MSB − MSW )

MSB

where MS denotes the mean square (or estimate
of variance) from a One-Way ANOVA analy-
sis: MSB is the mean square between subjects
and MSW is the mean square within subjects
(McGraw and Wong, 1996).

To quantify the reproducibility at the nodal
level, a one-way model for single measurements,
designated ICC(1), is used. It is calculated as

ICC(1) = MSB − MSW

MSB + (n − 1)MSW

where n is the number of subjects, MSB is the
mean square between subjects and MSW is the
mean square within subjects.

OTHER REPRODUCIBILITY STATISTICS
While ICC is the popular statistical measure
to assess reproducibility, one drawback is that
the ICC score is only appropriate for para-
metric data. To address this issue, distribution-
free methods like permutation resampling can
be used, providing a method to analyze non-
parametric data (Opdyke, 2003; Courrieu et al.,
2011). Additional statistics can be used to assess

reproducibility of graph metrics; these include
Bland-Altman plots and the coefficient of varia-
tion (CV). Bland-Altman plots are used to assess
repeatability, measuring the difference of means
between runs. For repeated measurements, a
mean difference of 0 indicates perfect repeata-
bility. Using a one-way analysis of variance with
the subjects treated as the factor, the within sub-
ject standard deviation (σw) is used to create a
repeatability coefficient, which denotes the 95%
limit of agreement (Bland and Altman, 1999).
Similarly, the CV utilizes the within subject
standard deviation (σw) divided by the over-
all measurement mean (μ) (Lachin, 2004). The
CV indicates the minimum percentage signal
change detectable in repeated measures (Vaessen
et al., 2010). A summary of the various statistics
used to assess reproducibility and correspond-
ing graph metrics can be found in Table 1. For
a detailed description of graph metrics and their
application to brain networks, see Bullmore and
Sporns (2009) and Telesford et al. (2011).

RESULTS
REPRODUCIBILITY IN FUNCTIONAL NETWORKS
The first reproducibility study of graph-based
brain networks was conducted using MEG data
(Deuker et al., 2009). The main goal of this study
was to test the reproducibility of graph met-
rics from MEG recordings. Reproducibility was
assessed at the global and nodal level across two
MEG recordings during resting state and an n-
back working memory task. In particular, this
study focused on what it called first-order and
second-order graph metrics, metrics derived
from a single property and multiple properties,
respectively (see Table 1 for graph metrics used
in studies). Constructing networks from wavelet
analysis, global reproducibility was high in lower
frequency bands, particularly the α-band dur-
ing the n-back working memory task. However,
in the resting state, global reproducibility was
poor, except in the α-band, which was high for
several metrics. A highlight of this study was
that ICC scores were variable across the brain,
thus despite the global ICC score, the nodal ICC
score could greatly differ (Figure 2). In addi-
tion, during task, nodal ICC scores improved as
subjects learned the task. The main finding in
this study was that reproducibility varied across
frequency bands, and showed the highest ICC
scores in the lower frequency bands, particularly
in the α-band.

Similar findings were reported by Telesford
et al. (2010), which investigated reproducibility
in voxel-based fMRI networks for an executive
function task. High ICC scores for average
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Table 1 | Graph metric reproducibility studies.

Study Modality Task Reproducibility Graph metrics investigated

statistic

Deuker et al., 2009 MEG n-back (working
memory)

ICC Average mutual information (MI)
Clustering coefficient (C)

Resting state Path length (L)
Synchronizability (S)
Global efficiency (Eglob)
Cost efficiency (CE)
Small-world (σ)
Assortativity (r )
Hierarchy (β)

Vaessen et al., 2010 DTI N/A B-A plot Density
CV Nodal strength
ICC Nodal diversity

Edge diversity
Global connectivity
Local connectivity
Global-local
Dynamics
Mixing
Robustness
Topophysical
Physical

Telesford et al.,
2010

fMRI Executive function
task

B-A plot Degree (K )
ICC Clustering coefficient (C)

Path length (L)
Global efficiency (Eglob)
Local efficiency (Eloc)

Bassett et al., 2011 DSI/DTI N/A CV Clustering coefficient (C)
ICC Degree (K )
ρ Path length (L)

Schwarz and
McGonigle, 2011

fMRI Resting state ICC Clustering coefficient (C)
Assortativity (r )
Local efficiency (Eloc)
Global efficiency (Eglob)
Modularity (Q)

Wang et al., 2011 fMRI Resting state ICC Connectivity strength
ρ Clustering coefficient (C)

Path length (L)
Gamma (γ)
Lambda (λ)
Small-world (σ)
Global efficiency (Eglob)
Local efficiency(Eloc)
Assortativity (r )
Hierarchy (β)
Synchronization
Modularity (Q)
Number of modules

Braun et al., 2012 fMRI Resting state ICC Small-world (σ)
Clustering coefficient (C)
Local efficiency (Eloc)
Path length (L)
Global efficiency (Eglob)
Hierarchy (β)
Assortativity (r )
Modularity (Q)

(Continued)
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Table 1 | Continued

Study Modality Task Reproducibility Graph metrics investigated

statistic

Liang et al., 2012 fMRI Resting state ICC Clustering coefficient (C)
Path length (L)
Gamma (γ)
Lambda (λ)
Small-world (σ)
Local efficiency (Eloc)
Global efficiency (Eglob)
Assortativity (r )
Hierarchy (β)

This table indicates the modality, task, reproducibility statistics, and graph metrics measured to assess reproducibility

of graph metrics in brain networks. In every study the intraclass correlation coefficient (ICC) statistic was used; Bland-

Altman plots (B-A plot), coefficient of variation (CV) and Pearson’s correlation coefficient (ρ) were also used to assess

reproducibility.

FIGURE 2 | Reliability (ICC) of network efficiency on a nodal (sensor) level, for the α-band. While ICC scores
were generally low and high during the resting state and n-back working memory task, respectively, reproducibility
showed spatial variation across the brain. This image was adapted from Deuker et al. (2009).

metrics were found for all graph metrics
assessed, except for degree. The distribution of
degree follows a truncated power law (Achard
et al., 2006; He et al., 2007; Gong et al., 2009;
Hayasaka and Laurienti, 2010), and voxel-wise
reproducibility showed variation of ICC score
across the brain. In particular, it was found
that ICC scores were higher in nodes with
high degree compared to those with low degree
(Figure 3); the link between higher ICC score
for nodes with higher degree/strength was also
noted in resting state fMRI networks (Wang
et al., 2011) and structural networks (Bassett
et al., 2011).

Subsequent fMRI network reproducibility
studies focused on the resting state (Schwarz
and McGonigle, 2011; Wang et al., 2011; Braun
et al., 2012; Liang et al., 2012), which found
results consistent with the MEG findings by
Deuker et al. (2009). In each study, resting
state fMRI yielded poor to moderate repro-
ducibility for average metrics; however, depend-
ing on the preprocessing steps used the mea-
sured ICC score varied considerably. Perhaps
the greatest influence on ICC score came
from global signal regression. Studies where
global signal regression was used reported poor

ICC scores (Schwarz and McGonigle, 2011;
Wang et al., 2011; Liang et al., 2012), com-
pared to ICC scores when it was not used
(Schwarz and McGonigle, 2011; Liang et al.,
2012). Additionally, while most studies used the
Pearson’s correlation coefficient to determine
links in the network, partial correlations were
also used, but produced lower ICC scores (Liang
et al., 2012). In terms of preprocessing, using
Pearson’s correlation coefficient with regression
of signal from white matter and cerebrospinal
fluid, six-degree motion parameters, but with-
out global signal regression yielded higher
reproducibility (Schwarz and McGonigle, 2011;
Liang et al., 2012). Other factors that affected
reproducibility was the use of smoothing, which
increased ICC scores (Telesford et al., 2010), and
sparsity level, which tended to give increased
ICC scores for metrics like degree as the net-
work became more dense (Telesford et al., 2010;
Braun et al., 2012).

Another topic that received considerable
attention in the literature was the inclu-
sion of negative correlations (Schwarz and
McGonigle, 2011; Wang et al., 2011; Braun
et al., 2012). Schwarz and McGonigle investi-
gated how inclusion of the negative tail affected
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FIGURE 3 | Subject degree map reflects

consistency of high degree nodes (top 25% in

orange and yellow) and low degree nodes (bottom

75% in blue and green) across subjects. ICC scores
at the nodal level were found to be consistent with
region of high degree in the brain. This image was
adapted from Telesford et al. (2010).

reproducibility. In addition, different thresh-
olding schemes were investigated. Inclusion of
negative correlations was found to decrease
reproducibility; this study also reported that uti-
lizing equal thresholds for all subjects yielded
higher reproducibility than using the same spar-
sity for each subject. Nonetheless, as this study
noted, using the same threshold for each subject
can produce different graphs for each subject,
thus the properties across networks can greatly
vary (van Wijk et al., 2010). Similar results
of low reproducibility when negative correla-
tions were included were also reported by Wang
et al. (2011) and Braun et al. (2012). Overall,
reproducibility in resting state networks was at
best moderate, but generally poor. Despite these
results, spatial variation of reproducibility was
in line with the reproducibility results reported
in task-based fMRI networks.

REPRODUCIBILITY IN STRUCTURAL NETWORKS
While the first study of graph metric repro-
ducibility was conducted using MEG (Deuker
et al., 2009), the first structural reproducibility
study was done using DTI (Vaessen et al., 2010).
This study calculated the ICC score for network
metrics between two diffusion scans during

the same month using a different number of
diffusion gradient directions and a change in
gradient amplitude. For average graph metrics,
weighted degree and path length showed mod-
erate to strong reproducibility, while cluster-
ing coefficient showed more variability for ICC
score. However, the number of directions and
gradient amplitude did not appear to signif-
icantly affect the ICC score for these met-
rics. The CV values revealed that node degree
and clustering coefficient did not exhibit great
variability, but connection strength showed
more variability for pairs of brain regions.
Nonetheless, Bland-Altman plots suggested that
these metrics (degree, path length, clustering,
and strength) were found to be repeatable for
gradient directions and amplitude. The results
from the Bland-Altman plots matched those
found by Telesford et al. for all metrics except
degree, which found degree to be repeatable,
but the data was heteroscedastic as the vari-
ance increased with the mean (Telesford et al.,
2010). However, the differences in these findings
may reflect choice of modality (DTI vs. fMRI)
or size of the network. The key finding for this
study was that while different gradient acquisi-
tion schemes did significantly affect the number
of long range tracts and density of brain net-
works, the reproducibility of graph metrics were
not affected.

Similar results were reported in a later study
by Bassett et al. (2011). In this study, DTI and
DSI were done to compare reproducibility for
the respective scanning techniques. While both
techniques showed high similarity from scan to
scan by a Pearson’s correlation of the weighted
matrix, DTI appeared to show better repro-
ducibility than DSI. DTI also had lower CV
values than DSI for most metrics, suggesting
that there was less variability for DTI. Similar
to findings highlighted in MEG (Deuker et al.,
2009) and fMRI (Telesford et al., 2010; Wang
et al., 2011), there was nodal/spatial variation
in the ICC scores with increased reproducibility
reported for nodes of higher strength or degree.
Another key finding in this study was simple
graph metrics based on a single property were
more reproducible than metrics based on mul-
tiple properties, which is line with findings by
Deuker et al. (2009).

DISCUSSION
The general finding across these studies sug-
gests variable findings for network reproducibil-
ity; however, task-based functional networks
have higher reproducibility (Deuker et al.,
2009; Telesford et al., 2010) than resting
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state networks (Schwarz and McGonigle, 2011;
Wang et al., 2011; Braun et al., 2012; Liang
et al., 2012). Perhaps the biggest influences on
reproducibility in resting state networks are pre-
processing steps with choice of atlas (Wang
et al., 2011), correlation metric (Liang et al.,
2012), inclusion or exclusion of negative con-
nections (Schwarz and McGonigle, 2011; Wang
et al., 2011), and whether to regress global sig-
nal (Schwarz and McGonigle, 2011; Liang et al.,
2012).

The choice of graph metric can influence the
expected reproducibility. Simpler graph metrics,
which depended on a single property, yielded
higher ICC scores, while those with multiple
properties yielded lower ICC scores (Deuker
et al., 2009; Bassett et al., 2011; Braun et al.,
2012). Although Telesford et al. only studied
simple graph metrics, nodal ICC scores were
further found to be influenced by metrics that
were degree-dependent (e.g., degree and cluster-
ing coefficient), compared to metrics with prop-
erties derived from the overall network (e.g.,
global efficiency and path length) (Telesford
et al., 2010). Wang et al. noted that nodes with
higher reproducibility were consistent with the
default mode network (Wang et al., 2011); as
these nodes tend to have higher degree during
the resting state (Hagmann et al., 2008), it is
likely these results are in line with the degree-
dependent reproducibility findings.

Reproducibility measures for graph met-
rics can certainly be used for simple graph
metrics, and sometimes for more complex
graph measures. However, for certain mea-
sures, such analyses are not suitable, particularly
modularity-type analyses. A modularity analy-
sis is a method designed to find the commu-
nity structure in a network (Newman, 2006).
The value of Q gives a sense of how strong
the modular structure is in comparison to a

Complex systems
A system marked by nonlinear,
emergent properties.

random network. However, running modular-
ity analyses multiple times will give a varying
number of communities and values for Q. The
results of this analysis are a function of the
algorithm as opposed to a property of the net-
work. Modularity reproducibility was reported
in several studies comparing Q and number of
communities (Schwarz and McGonigle, 2011;
Wang et al., 2011; Braun et al., 2012); how-
ever, one could easily have a network that varies
between scans, yet finds the same number of
communities with similar Q values. While these
networks may be considerably different, a high
ICC score in this case would be misleading.
Despite the low ICC scores for resting state fMRI
for modularity, a more appropriate measure

to assess community structure consistency is
scaled inclusivity (Steen et al., 2011). However,
the subject of quantifying community struc-
ture consistency is still a topic requiring further
exploration.

Wang et al. devoted much of their study
to the comparison of different parcellation
schemes for the brain, comparing the AAL
atlas, Harvard-Oxford atlas, and a selective ROI-
based atlas (Wang et al., 2011). Although the
ROI atlas was shown to have the lowest repro-
ducibility, it is important to understand why
this parcellation approach should be avoided
from a conceptual standpoint. While some
studies have shown brain network organiza-
tion consistent with known functional brain
anatomy (Power et al., 2011), such an approach
introduces bias into the measured networks.
ROI-based networks can identify interactions
between specified nodes; however, this selective
schema greatly limits interpretation because it
neglects brain regions that may exert a greater
influence on the network. Even if these ROI-
based atlases yield higher reproducibility or
match putative functional networks, full brain
coverage, as achieved by the AAL atlas, Harvard-
Oxford atlas, or voxel-based networks (van Den
Heuvel et al., 2008; Hayasaka and Laurienti,
2010) is essential to reliably interpret brain net-
work organization.

Another topic that warrants attention is the
focus on individual edges in a network. In sev-
eral studies, the Pearson’s correlation was used
in a variety of ways: to show similarity from
run to run (Bassett et al., 2011; Wang et al.,
2011); for performing ICC analysis on the cor-
relation matrix itself (Wang et al., 2011); and
to determine the consistency of edges across
subjects (Schwarz and McGonigle, 2011). While
these analyses highlight strong edges that appear
across a population, focusing on specific edge
is misleading when studying complex systems.
A network represents an interdependent system
where edges between nodes are influenced by
other nodes in the system. The presence of an
edge in one network may be influenced by a
specific connectivity pattern, yet this edge may
also be present in another network with a differ-
ent connectivity pattern. In essence, individual
edges do not determine the organization of a
particular brain network.

While most nodes had low reproducibility,
this may reflect inherent differences in con-
nectivity from subject to subject. Despite these
inherent differences, certain network topolo-
gies, like the default mode network, consistently
arise. Since edge relationships are often analyzed
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to understand network topology, methods that
assess differences in community structure differ-
ences may be more applicable. The central idea
here is that by focusing on individual edges, sys-
tem interdependence is ignored. Even if most
edges have low reproducibility, particular fea-
tures in a network may still be consistent across
the population variability in network topology
can still yield the same patterns in a network.

CONCLUSION
Network science has become increasingly pop-
ular, and the increasing use of graph the-
ory based approaches to neuroimaging has
made reproducibility of these networks more
important. Generally, reproducibility was found
to be moderate or poor for resting state
functional networks while task-based func-
tional networks exhibited high reproducibility.
Moreover, structural networks tended toward
moderate to strong reproducibility. Perhaps
the most interesting finding was the spatial

variation of reproducibility at the nodal level.
Reproducibility appears to have degree/strength
dependence, which is useful due to the focus on
hub structure in many network studies.

Nevertheless, the inherent problem in all
reproducibility studies of the brain lies in the
question of knowing truth. Is poor reproducibil-
ity a systemic problem with the tools being used,
or does the physiological architecture of the
brain itself exhibit high variability from run to
run? The measurement in a system can be per-
fectly reproducible, yet physiological changes in
the brain can make network metrics less stable.
However, it should be noted that when treat-
ing the brain as a complex system, it may not
be possible to answer such questions with the
current tools available. Given the emphasis on
independence in many statistical analyses, it is
reasonable that a network, being an interde-
pendent system, may require more sophisticated
tools of analysis to detect changes within a group
or subjects.
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