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Abstract

The TB Portals program provides a publicly accessible repository of TB case data contain-

ing multi-modal information such as case clinical characteristics, pathogen genomics, and

radiomics. The real-world resource contains over 3400 TB cases, primarily drug resistant

cases, and CT images with radiologist annotations are available for many of these cases.

The breadth of data collected offers a patient-centric view into the etiology of the disease

including the temporal context of the available imaging information. Here, we analyze a

cohort of new TB cases with available radiologist observations of CTs taken around the time

of initial registration of the case into the database and with available follow up to treatment

outcome of cured or died. Follow up ranged from 5 weeks to a little over 2 years consistent

with the longest treatment regimens for drug resistant TB and cases were registered within

the years 2008 to 2019. The radiologist observations were incorporated into machine learn-

ing pipelines to test various class balancing strategies on the performance of predictive

models. The modeling results support that the radiologist observations are predictive of

treatment outcome. Moreover, inferential statistical analysis identifies markers of TB dis-

ease spread as having an association with poor treatment outcome including presence of

radiologist observations in both lungs, swollen lymph nodes, multiple cavities, and large cav-

ities. While the initial results are promising, further data collection is needed to incorporate

methods to mitigate potential confounding such as including additional model covariates or

matching cohorts on covariates of interest (e.g. demographics, BMI, comorbidity, TB sub-

type, etc.). Nonetheless, the preliminary results highlight the utility of the resource for

hypothesis generation and exploration of potential biomarkers of TB disease severity and

support these additional data collection efforts.
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Introduction

TB is a global pandemic resulting in approximately 9 million new cases and 1.5 million deaths

each year [1]. The emergence of drug resistance where up to ~20% of TB isolates globally are

estimated to be resistant to a major drug [2] threatens to exacerbate the pandemic especially

the emergence of totally drug-resistant TB now endemic in specific countries. Out of cases that

are not totally drug resistant, drug resistance varies from mono resistant to a first line drug to

extensively drug resistant (XDR) to isoniazid and rifampin, as well as any fluoroquinolone and

one or more of three injectable second-line drugs (i.e., amikacin, kanamycin, or capreomycin).

Drug resistance is associated with poorer outcomes and higher costs of care compared to drug

sensitive TB with treatment success at ~55% globally and Multi- or Extensively Drug-resistant

TB (M/XDR-TB) having a cost of care up to 25 times that of drug sensitive cases [3,4].

CT imaging is routinely collected during the management of TB to assess patient disease

status [5]. Moreover, the use of mobile radiology can improve detection and screening of TB

cases in harder to reach populations [6]. Such distributed approaches support distant diagnosis

and remote monitoring of disease severity through the analysis of the resulting data via

machine learning and other emerging approaches. Radiologist observations are the gold stan-

dard reference upon which CT images have been interpreted for clinical insights and action-

able information historically [7]. These observations contain pertinent insights to inform

patient risk and may have less of a barrier to interpretation than emerging approaches such as

deep learning since they are often captured in a common, clinical vernacular. Prior research

has demonstrated the utility of radiologist observations from images for assessing patient risk.

For example, CT scans were predictive of treatment outcome [8,9], bilateral lung involvement

in active TB showed higher risk of underlying diabetes millitis [10], and pulmonary TB

patients with chest CT findings of cavity, consolidation, bronchiectasis, upper lobe involve-

ment, multiple lobe involvement, and lymphadenopathy indicated a higher risk for smear-pos-

itive TB [11].

The Office of Cyber Infrastructure and Computational Biology established the TB Portals

program as an international collaboration to support TB data sharing and data science facili-

tating the biomedical research community’s efforts to understand the real-world impact of TB

[12]. The TB Portals program contains a publicly available repository of TB case data capturing

multi-modal information such as case clinical characteristics, pathogen genomics, and radio-

mics that can provide a unique understanding of TB disease etiology over time. As of Novem-

ber 2020, the TB Portals resource contains over 3400 TB cases, primarily drug resistant cases,

many of which contain associated CT images with radiologist annotations. While other clinical

image resources exist with large numbers of images, TB Portals offers a patient-centric

resource that captures the temporal context of each case associated with the CT images includ-

ing drug resistance status of the case, the drugs administered, and the pathogen identified.

External collaborators can request data access through a data use agreement (DUA) and down-

load publicly shared data supporting reproducibility and open-science.

In this study, we sought to leverage the available radiologist observations for CT images in

the TB Portals repository to assess their utility for predicting patient treatment outcome inde-

pendent of other case characteristics or data modalities the resource provides. We examined

the available radiologist observations from CTs close to the initial registration of the case into

the database and identified the most important variables that are predictive of treatment out-

come. We used the quarterly updated published data available to external collaborators from

October 2020 to create a cohort of new cases of TB having the following inclusion and exclu-

sion criteria: an initial annotated CT record within 60 days of the first sample recorded in the

database, a treatment outcome of “cured” or “died”, and follow up from CT record to
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treatment outcome greater than 0 weeks. This cohort was used for a retrospective, case-control

study assessing presence of various radiologist observations towards risk of treatment outcome

of died. As we observed ~10% of treatment outcomes resulting in “died”, we compared class

balancing approaches to increase the representation of these clinically relevant cases and

assessed impact on the performance of the predictive models to detect this outcome. We also

generated inferential statistics on the risk of outcome of death associated with these radiologist

observations. Since the TB Portals constitutes real-world data, it can be difficult to decouple

the risks with other underlying characteristics of the cases. Nonetheless, we believe that the

findings from this study identify radiological signals that may indicate a problematic case or

biomarkers that could inform clinical trial design as markers of disease severity. Moreover,

these observations confirm prior findings showing the association of cavitary disease with

poor treatment outcomes.

Materials and methods

Computing environment

All analyses were done on a MacBook Pro laptop (x86_64-apple-darwin15.6.0 (64-bit) Run-

ning under: macOS Mojave 10.14.6) using R version 4.0.2 (2020-06-22) and RStudio 1.2.5033.

Specific R packages versions used can be found in S1 Fig.

Cohort selection

New cases of TB with available CT images and treatment outcome of “cured” or “died” were

identified in R using publicly available data from quarter 3 of 2020 that is available to external

collaborators after signing a DUA (see Data Availability methods section). The external data

files were downloaded via aspera service and loaded in R. The exclusion/inclusion criteria

were applied using coding logic that can be found in the following GitHub repo (https://

github.com/niaid/tbportals.ct.analysis.2020) as a drake workflow for reproducibility. We iden-

tified a cohort of 371 new cases of TB with an available CT annotation and a treatment out-

come of “cured” or “died”. Application of subsequent inclusion/exclusion criteria including

first available CT with radiologist annotation, follow up to the ending of the treatment period

of greater than 0 weeks, and CT date within 60 days of registration reduced the number of

cases to 253. 228 cases had an outcome of cured and 25 cases had an outcome of died. Case

characteristics were compared by treatment outcome in S1 Table.

Data preprocessing for benchmarking model performance

The cohort contained radiologist observations with either no variance between cured or died

groups or only one or zero cases in a particular factor level within a comparison group as

shown in S2 Table; therefore, we removed any annotations with limited variation or recoded

covariates incorporating the feedback from a TB disease expert in order to increase statistical

power within the subgroups. Specifically, bodysite_coding_cd variable combined Left lung

and Right Lung categories into One Lung category; lungcavitysize variable combined 10-

25mm and Less than 10mm categories into the LTE 25mm; affectlevel variable combined

Lower Lobus, Medium and Lower Lobbi, Upper and Lower Lobbi, and Upper and Medium

Lobbi into Lower or medium category; and totalcavernum combined 1 cavity and 2 cavities

variables into LTE to 2 cavities variable. The radiologist observations after initial preprocessing

demonstrated statistically significant differences in observations between cases according to

treatment outcome as shown in S3 Table. Moreover, correlations between covariates suggested

associations that reflected clinical observation of disease severity and indicated potential
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predictive capability as seen in S2 Fig. Dropping or refactoring of variables were completed

before running the rest of the data preprocessing steps, which were incorporated into an Mlr3

[13] pipeline for an unbiased assessment of the subsequent preprocessing steps on perfor-

mance via 5-fold cross-validation. The subsequent preprocessing steps included top 5 features

selection via mutual information, encoding of features to binary indicator format, removal of

any zero variance encoded features within a cross-validation split, random sampling to replace

any missing data, standardization of factors that were missing levels in a particular split. Class

balancing involved the use of Mlr3’s default class balancing where the majority and minority

class were brought to an even proportion through a combination of upsampling and down-

sampling or the SMOTE algorithm for synthetic generation of minority class examples. MLR3

implementation of the SMOTE algorithm uses numerical data and can lead to synthetic data

having intermediary values between 0 and 1 for the set of binary features used. Synthetic data

created by SMOTE was rounded to 0 or 1 to avoid data leakage where the model can learn to

identify synthetic data and its connection to the outcome of died.

Benchmarking model performance

Mlr3 R package was used to generate a pipeline of preprocessing steps and downstream

machine learning algorithms for performance benchmarking. Data was split 75% and 25%

into a training and validation set respectively for benchmarking and validation of prediction

performance respectively. For binary classification, pipelines were benchmarked with or with-

out class balancing to increase the representation of the rarer class of “died” constituting only

~10% of cases. For binary classification, model performance was compared to a featureless

model that predicted the class with the most observations in the training split or a random

selection in case of a tie. The selection of binary classifier models assessed included a feature-

less model (https://mlr3.mlr-org.com/reference/mlr_learners_classif.featureless.html), logistic

regression (https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.log_reg.html),

weighted k-nearest neighbors (https://mlr3learners.mlr-org.com/reference/mlr_learners_

classif.kknn.html), multinomial log-linear learner via neural networks (https://mlr3learners.

mlr-org.com/reference/mlr_learners_classif.multinom.html), and random forest (https://

mlr3learners.mlr-org.com/reference/mlr_learners_classif.ranger.html). For time-to-event

benchmarking, the time variable of weeks from CT to treatment outcome was included to

model the time to death of the right-censored data. Censoring of cured patients occurred at

the treatment period end date. Three survival models were tested including Kaplan-Meier esti-

mator (https://mlr3proba.mlr-org.com/reference/mlr_learners_surv.kaplan.html), cox pro-

portional hazards (https://mlr3proba.mlr-org.com/reference/mlr_learners_surv.coxph.html),

and decision tree (https://mlr3proba.mlr-org.com/reference/mlr_learners_surv.rpart.html).

Harrell’s C-statistic was used to assess survival model performance and multiple measures

were used to assess binary classifier performance.

Calculation of inferential statistics

Odds ratios and hazard ratios were calculated using all available data and the R package finalfit.

To select the top 5 most important features for multivariate modeling, mutual information fea-

ture selection was applied on the entire dataset. All covariates were tested using univariate

modeling while only the top 5 features were included in the multivariate models. Multiple

imputation using 5 independent imputations and standard parameters in the mice R package

was performed to generate the multiply imputed multivariate estimates. The proportional haz-

ards assumption was tested using the cox.zph function and confirmed as shown in S4 Table.

Top 5 features by mutual information showing any collinearity via variance inflation factor
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were dropped from the final multivariate model (e.g. total number of cavities and cavity size

which share a “No cavities” level that is perfectly correlated).

Kaplan-Meier curves

Kaplan-Meier curves for covariates were generated using the survminer R package. All plots

included a table of observations at each time point to reflect censoring and number of available

cases at each time point. Survival probability is plotted along with the 95% confidence

intervals.

Data availability and code

The TB portals requires all users of the data to abide by a DUA before access to the underlying

clinical data is provided and the data can be requested at the following URL (https://tbportals.

niaid.nih.gov/download-data). Therefore, this study provides the code to reproduce the analy-

sis without the underlying raw data (https://github.com/niaid/tbportals.ct.analysis.2020) in

compliance with the DUA. To rerun the analysis, interested parties can request data access by

completing the DUA and then place the downloaded clinical data files to the subdirectory of

the data folder as provided in the GitHub repo instructions. To add reproducibility, the list of

patient and condition identifiers are provided in S5 Table so that those interested in assessing

the specific cohort are able to do so after completion of required DUA irrespective of future

growth in the database.

Results

Inferential statistics associated with poor outcome

The main objective of the study was to understand whether radiologist observations of CT

images within TB Portals, independent of other data connected with the case, contained any

features associated with risk of poor treatment outcome. The results from our analysis

included statistically significant risk factors that are identified with poor outcome. We mod-

eled the radiologist observations by both univariate and multivariate logistic regression focus-

ing on the top 5 important features by mutual information with the treatment outcome. Cavity

size and number of cavities were selected by mutual information which was interesting as cavi-

ties were associated with established disease and disease severity [14,15] and cavitary disease

has been reported previously to be associated with poor treatment outcome in clinical trials

[8,9]. Nonetheless, both cavitary features showed a significant level of collinearity that can

adversely affect modeling. We dropped total number of cavities from the multivariate model

to prevent the observed collinearity affecting estimates. Some radiologist observations con-

tained missing values so we generated multiply imputed data for multivariate modeling to

assess impact on estimates. Odds ratio estimates for univariate, multivariate, and multiply

imputed multivariate logistic regression were shown (Table 1). In general, cases with observa-

tions indicating TB disease spread showed higher odds to develop treatment outcome of died

compared to cases without these observations. These biomarkers of disease spread included

whether observations were present in both lungs (bodysite_coding_cd), presence of swollen

lymph nodes (limfoadenopatia), and whether large cavities were observed greater than 25mm

in size (lungcavitysize).

To incorporate the temporal aspects of each CT with treatment outcome, we also generated

hazard ratio estimates using cox regression and noted similar findings to risks identified in

logistic regression models (Table 2). Observations associated with disease spread and activity

showed higher hazard ratios for a treatment outcome of died. These included whether
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Table 1. Odds ratios from univariate, multivariate, and multiply imputed multivariate logistic regression.

Dependent: event Level Cured Died OR (univariable) OR (multivariable) OR (multiply imputed)

affectlevel Upper Lobus 107 (95.5) 5 (4.5) - - -

Lower or medium 57 (91.9) 5 (8.1) 1.88 (0.50–7.01, p = 0.335) 0.76 (0.17–3.37, p = 0.717) 1.13 (0.27–4.75, p = 0.864)

Total lung affected 29 (87.9) 4 (12.1) 2.95 (0.69–11.86, p = 0.123) 0.42 (0.07–2.19, p = 0.309) 0.97 (0.21–4.45, p = 0.971)

affectpleura No 63 (90.0) 7 (10.0) - - -

Yes 164 (90.1) 18 (9.9) 0.99 (0.41–2.64, p = 0.979) - -

bodysite_coding_cd one_lung 137 (97.9) 3 (2.1) - - -

both_lungs 91 (80.5) 22 (19.5) 11.04 (3.69–47.60, p<0.001) 13.18 (2.98–93.65, p = 0.002) 8.86 (2.19–35.78, p = 0.002)

bronchialobstruction No 181 (91.9) 16 (8.1) - - -

Yes 43 (82.7) 9 (17.3) 2.37 (0.95–5.63, p = 0.055) - -

dissemination No 156 (91.8) 14 (8.2) - - -

Yes 71 (86.6) 11 (13.4) 1.73 (0.73–3.98, p = 0.202) - -

limfoadenopatia No 202 (93.5) 14 (6.5) - - -

Yes 25 (69.4) 11 (30.6) 6.35 (2.57–15.54, p<0.001) 5.67 (1.28–26.19, p = 0.021) 6.32 (1.95–20.46, p = 0.002)

lungcapacitydecrease No 182 (92.4) 15 (7.6) - - -

Yes 45 (81.8) 10 (18.2) 2.70 (1.11–6.35, p = 0.024) - -

lungcavitysize No cavities 142 (92.8) 11 (7.2) - - -

LTE to 25mm 77 (89.5) 9 (10.5) 1.51 (0.58–3.80, p = 0.383) 2.22 (0.56–9.41, p = 0.257) 2.59 (0.81–8.27, p = 0.106)

More than 25mm 8 (61.5) 5 (38.5) 8.07 (2.14–28.77, p = 0.001) 3.45 (0.14–39.92, p = 0.352) 6.68 (1.40–31.93, p = 0.017)

nodicalcinatum No 207 (90.8) 21 (9.2) - - -

Yes 20 (83.3) 4 (16.7) 1.97 (0.54–5.82, p = 0.253) - -

plevritis No 209 (91.7) 19 (8.3) - - -

Yes 18 (75.0) 6 (25.0) 3.67 (1.21–9.97, p = 0.014) - -

pneumothorax No 224 (91.1) 22 (8.9) - - -

Yes 2 (40.0) 3 (60.0) 15.27 (2.41–120.75, p = 0.004) - -

posttbresiduals No 201 (89.7) 23 (10.3) - - -

Yes 25 (92.6) 2 (7.4) 0.70 (0.11–2.56, p = 0.641) - -

processprevalence Less than 2 segments 102 (96.2) 4 (3.8) - - -

2 or more segments 125 (85.6) 21 (14.4) 4.28 (1.57–15.04, p = 0.010) - -

totalcavernum No cavities 142 (92.8) 11 (7.2) - - -

More than 2 cavities 21 (67.7) 10 (32.3) 6.15 (2.31–16.41, p<0.001) - -

LTE to 2 cavities 64 (94.1) 4 (5.9) 0.81 (0.22–2.46, p = 0.722) - -

All radiologist annotations were used for univariate modeling whereas only the top 5 features selected by mutual information based upon treatment outcome were used

for multivariate estimates. For multiple imputation, the MICE algorithm was used with default settings to generate 5 imputed datasets used for calculating estimates that

were then pooled for the multiply imputed estimates. Cured and died columns show the number of complete cases having the particular radiologist annotation with

percentage of cases with that particular observation having the particular outcome in parenthesis that is available for univariate modeling. While cured or died numbers

show complete cases for the univariate estimates, multiply imputed estimates use imputed data for the entire set of data (n = 204 cases). OR columns show the odds

ratios for univariate, multivariate, and multiple imputed multivariate estimates respectively with p-values and 95% confidence intervals in parenthesis with upper and

lower bounds shown with a dash between. For univariate or multivariate reference levels within a covariate, a dash is used. For variables not used in the multivariate

model, a dash is provided. Markers of disease progression such as presence of TB-related annotations in both lungs, swollen lymph nodes, and cavity size show

statistically significant higher odds ratios for an outcome of died. Glossary: Affectlevel–location of affected lung area; affectpleura—changes in the pleura;

bodysite_coding_cd–which lung is the observation located; bronchialobstruction—bronchial obstruction syndrome disorders, dissemination—Diffuse pulmonary

nodules detected; limfoadenopatia–greater than 10 mm is considered the upper limit for normal nodes (short transverse diameter); lungcapacitydecrease—reduced lung

volumes; lungcavitysize–size of lung cavity; nodalcalcinatum—Nodi Calcinatum detected; plevritis—pleural effusion detected; pneumothorax—Pneumothorax detected;

posttbresiduals—Post-TB changes in the lung; processprevalence–prevalence of process in number of segments; totalcavernum–number of cavities;

thromboembolismpulmonaryartery—Thromboembolism Of The Pulmonary Artery detected; anomalymediastinumvesselsdevelop—Anomaly Of Mediastinum Vessels

Develop detected; shadowpattern–shadowpattern of nodule, node, or infiltrate; affectedsegments–segments of lung that are affected; accumulationcontrast–amount of

contrast accumulated.

https://doi.org/10.1371/journal.pone.0247906.t001
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Table 2. Hazard ratios from univariate, multivariate, and multiply imputed multivariate cox proportional hazards regression.

Dependent: Surv(time, event) Level HR (univariable) HR (multivariable) HR (multiply imputed)

affectlevel Upper Lobus - - -

Lower or medium 1.86 (0.54–6.43, p = 0.326) 1.00 (0.23–4.35, p = 0.996) 0.92 (0.13–6.65, p = 0.918)

Total lung affected 2.96 (0.79–11.03, p = 0.106) 0.84 (0.16–4.50, p = 0.841) 1.09 (0.26–4.55, p = 0.894)

affectpleura No - - -

Yes 0.96 (0.40–2.30, p = 0.931) - -

bodysite_coding_cd one_lung - - -

both_lungs 10.04 (3.00–33.57, p<0.001) 18.00 (3.18–101.81, p = 0.001) 10.75 (2.13–54.19, p = 0.007)

bronchialobstruction No - - -

Yes 2.31 (1.02–5.24, p = 0.045) - -

dissemination No - - -

Yes 1.74 (0.79–3.84, p = 0.169) - -

limfoadenopatia No - - -

Yes 5.81 (2.63–12.82, p<0.001) - -

lungcapacitydecrease No - - -

Yes 2.49 (1.12–5.55, p = 0.025) - -

lungcavitysize No cavities - - -

LTE to 25mm 1.43 (0.59–3.45, p = 0.429) 1.33 (0.43–4.13, p = 0.627) 1.22 (0.45–3.29, p = 0.680)

More than 25mm 5.42 (1.88–15.62, p = 0.002) 2.34 (0.27–20.00, p = 0.439) 3.55 (1.05–12.01, p = 0.043)

nodicalcinatum No - - -

Yes 1.96 (0.67–5.71, p = 0.219) - -

plevritis No - - -

Yes 3.35 (1.34–8.38, p = 0.010) - -

pneumothorax No - - -

Yes 8.74 (2.61–29.23, p<0.001) - -

posttbresiduals No - - -

Yes 0.68 (0.16–2.87, p = 0.597) - -

processprevalence Less than 2 segments - - -

2 or more segments 4.17 (1.43–12.16, p = 0.009) 0.51 (0.10–2.52, p = 0.411) 0.71 (0.13–3.79, p = 0.674)

totalcavernum No cavities - - -

More than 2 cavities 4.62 (1.96–10.88, p<0.001) - -

LTE to 2 cavities 0.79 (0.25–2.48, p = 0.687) - -

All radiologist annotations were used for univariate modeling whereas only the top 5 features selected by mutual information with treatment outcome were used for

multivariate estimates. For multiple imputation, the MICE algorithm was used with default settings to generate 5 imputed datasets used for calculating estimates that

were then pooled for the multiply imputed estimates. Cured and died columns show the number of complete cases having the particular radiologist annotation with

percentage of cases with that particular observation having the particular outcome in parenthesis that is available for univariate modeling. HR columns show the hazard

ratios for univariate, multivariate, and multiple imputed multivariate estimates respectively with p-values and 95% confidence intervals in parenthesis with upper and

lower bounds shown with a dash between. For univariate or multivariate reference levels within a covariate, a dash is used. For variables not used in the multivariate

model, a dash is provided. Markers of disease progression such as presence of TB-related annotations in both lungs and cavity size show statistically significant higher

hazard ratios for an outcome of died. Glossary: Affectlevel–location of affected lung area; affectpleura—changes in the pleura; bodysite_coding_cd–which lung is the

observation located; bronchialobstruction—bronchial obstruction syndrome disorders, dissemination—Diffuse pulmonary nodules detected; limfoadenopatia–greater

than 10 mm is considered the upper limit for normal nodes (short transverse diameter); lungcapacitydecrease—reduced lung volumes; lungcavitysize–size of lung

cavity; nodalcalcinatum—Nodi Calcinatum detected; plevritis—pleural effusion detected; pneumothorax—Pneumothorax detected; posttbresiduals—Post-TB changes

in the lung; processprevalence–prevalence of process in number of segments; totalcavernum–number of cavities; thromboembolismpulmonaryartery—

Thromboembolism Of The Pulmonary Artery detected; anomalymediastinumvesselsdevelop—Anomaly Of Mediastinum Vessels Develop detected; shadowpattern–

shadowpattern of nodule, node, or infiltrate; affectedsegments–segments of lung that are affected; accumulationcontrast–amount of contrast accumulated.

https://doi.org/10.1371/journal.pone.0247906.t002
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observations were present in both lungs and whether large cavities were observed greater than

25mm in size. We noted statistically significant univariate or multiple imputation multivariate

risks for lungcavitysize; however, the multivariate model risk did not show statistical signifi-

cance. The multivariate model uses complete case information for the set of records and vari-

ables. Due to combinations of missingness across variables, this decreases the available

numbers of complete cases leading to the observed differences in statistical significance for the

lungcavitysize variable. Multiple imputation suggests that lungcavitysize would show signifi-

cant differences controlling for the other features included in the multivariate model but only

additional data collection will be able to confirm this in complete cases.

To assess survival probabilities over time, we plotted Kaplan-Meier curves for covariates in

which statistically significant differences in odds ratios or hazards ratios were noted such as

presence of radiologist annotation in both lungs, presence of swollen lymph nodes, and lung

cavity size. Radiologist observations associated with both lungs showed statistically significant

differences in the survival curves by log-rank test (Fig 1). The probability of survival for those

cases with radiologist observations involving both lungs were lower than those cases with radi-

ologist observations in one lung. Observation of swollen lymph nodes also showed statistically

significant differences in the survival curves with cases involving swollen lymph nodes having

a decreased probability of survival (Fig 2). Lastly, we observed a larger decrease in survival

probability over time in the KM curves where radiologist noted large cavities greater than

25mm in size (Fig 3) although the 95% confidence intervals overlapped suggesting that addi-

tional data collection is warranted to increase confidence. Altogether the KM survival curves

support the finding from the inferential estimates of the logistic and cox regression models.

Biomarkers of disease spread and activity are associated with statistically significant decreased

survival probability over time in this cohort.

Fig 1. Kaplan-Meier curve showing probability of survival over time stratified by occurrence of radiologist

observation in both lungs and only one lung. Shaded area reflects the 95% confidence interval of each survival curve.

The table show the number of cases at each time point. P-value shows the log-rank test comparing all survival curves.

https://doi.org/10.1371/journal.pone.0247906.g001
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Fig 2. Kaplan-Meier curve showing probability of survival over time stratified by occurrence of radiologist

observation of lymphadenopathy. Shaded area reflects the 95% confidence interval of each survival curve. The table

show the number of cases at each time point. P-value shows the log-rank test comparing all survival curves.

https://doi.org/10.1371/journal.pone.0247906.g002

Fig 3. Kaplan-Meier curve showing probability of survival over time stratified by occurrence of radiologist

annotation of observation of lung cavity size. Shaded area reflects the 95% confidence interval of each survival curve.

The table show the number of cases at each time point. P-value shows the log-rank test comparing all survival curves.

https://doi.org/10.1371/journal.pone.0247906.g003
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Assessing predictive performance of machine learning models

A major goal of the TB Portals program is to improve the underlying data as well as assess ana-

lytical approaches that advance knowledge of TB. Mlr3 is an ecosystem of R packages the pro-

vide flexible pipelines for a mix and match approach to machine learning similar to the scikit-

learn module in python. This philosophy fit our approach as data wrangling steps were done

in R and we needed to compare various preprocessing on model performance in an unbiased

manner. Furthermore, Mlr3 provides a featureless classifier that only predicts the majority

class and reflects a model with limited utility as a control. 25 of 253 cases had the outcome of

“died” and we sought to predict this rarer, clinically relevant outcome. We hypothesized that

class balancing would improve model performance and tested this hypothesis by comparing

model performance of binary classifiers with and without class balancing by fivefold cross vali-

dation (Table 3). While no class balancing had higher overall accuracy and sensitivity (optimi-

zation led to prediction similar to a featureless model where only cured outcome is predicted),

class balancing improved model performance to detect the clinically relevant outcome of died.

One can observe the increased performance after incorporation of class balancing or SMOTE

preprocessing steps through the relative stability of AUC metric with concordant increases in

the balanced accuracy, matthews correlation coefficients, and specificity.

Since the relative dates of the initial CTs with available radiologist observations and the

treatment end dates associated with each treatment outcome were available from the TB por-

tals data, we modeled the time-to-event from the initial CT to the treatment end date and

assessed model performance by the Harrell’s C metric. To do this, the number of weeks from

the initial CT with radiologist annotation to treatment period end were calculated and a variety

of time-to-event algorithms benchmarked using Mlr3 (Table 4). The cox proportional hazards

and tree based time-to-event models demonstrated better performance compared to the

Table 3. Comparison of different class balancing approaches on model performance with 5-fold cross-validation on training data.

Preprocessing Base learner acc auc bacc bbrier mcc sensitivity specificity

No class balancing featureless 0.89 +/- 0 0.5 +/- 0 0.5 +/- 0 0.11 +/- 0 0 +/- 0 1 +/- 0 0 +/- 0

No class balancing kknn 0.87 +/- 0 0.67 +/- 0.07 0.49 +/- 0 0.1 +/- 0.01 -0.06 +/- 0 0.97 +/- 0 0 +/- 0

No class balancing log_reg 0.87 +/- 0.04 0.79 +/- 0.23 0.49 +/- 0.02 0.11 +/- 0.01 -0.06 +/- 0.04 0.97 +/- 0.04 0 +/- 0

No class balancing multinom 0.84 +/- 0 0.79 +/- 0.25 0.47 +/- 0 0.11 +/- 0.02 -0.08 +/- 0 0.94 +/- 0 0 +/- 0

No class balancing ranger 0.89 +/- 0 0.79 +/- 0.16 0.5 +/- 0 0.08 +/- 0.03 0 +/- 0 1 +/- 0 0 +/- 0

Class balancing featureless 0.58 +/- 0.08 0.5 +/- 0 0.43 +/- 0.03 0.25 +/- 0 -0.08 +/- 0.04 0.62 +/- 0.04 0.33 +/- 0.12

Class balancing kknn 0.87 +/- 0.08 0.7 +/- 0.1 0.62 +/- 0.04 0.12 +/- 0.06 0.22 +/- 0.19 0.94 +/- 0.09 0.25 +/- 0

Class balancing log_reg 0.7 +/- 0.07 0.8 +/- 0.12 0.77 +/- 0.04 0.2 +/- 0.04 0.34 +/- 0.05 0.68 +/- 0.09 0.75 +/- 0.37

Class balancing multinom 0.71 +/- 0.16 0.83 +/- 0.17 0.78 +/- 0.2 0.22 +/- 0.05 0.34 +/- 0.25 0.74 +/- 0.13 1 +/- 0

Class balancing ranger 0.74 +/- 0.12 0.85 +/- 0.11 0.7 +/- 0.23 0.19 +/- 0.06 0.25 +/- 0.3 0.71 +/- 0.09 0.75 +/- 0.37

SMOTE featureless 0.89 +/- 0 0.5 +/- 0 0.5 +/- 0 0.11 +/- 0 0 +/- 0 1 +/- 0 0 +/- 0

SMOTE kknn 0.87 +/- 0.04 0.73 +/- 0.1 0.6 +/- 0.04 0.12 +/- 0.02 0.22 +/- 0.14 0.94 +/- 0.04 0.25 +/- 0

SMOTE log_reg 0.68 +/- 0.12 0.8 +/- 0.19 0.78 +/- 0.17 0.21 +/- 0.04 0.34 +/- 0.22 0.71 +/- 0.13 0.75 +/- 0.37

SMOTE multinom 0.68 +/- 0.12 0.79 +/- 0.23 0.78 +/- 0.16 0.23 +/- 0.02 0.34 +/- 0.2 0.71 +/- 0.17 1 +/- 0

SMOTE ranger 0.68 +/- 0.23 0.77 +/- 0.17 0.62 +/- 0.09 0.19 +/- 0.05 0.22 +/- 0.09 0.74 +/- 0.22 0.67 +/- 0.12

Various model performance metrics such as classification accuracy (acc), AUC (auc), balanced accuracy (bacc), Brier score (bbrier), Matthews correlation coefficient

(mcc), sensitivity, and specificity are shown with median +/- MAD for the 5 fold cross-validation results. Preprocessing refers to whether the pipeline included a class

balancing step, SMOTE, or no class balancing. Base learner refers to the type of machine learning model used in the pipeline including featureless (only predict most

abundant class or random class in case of a tie), log reg (logistic regression), multinom (multinomial log-linear learner via neural networks), ranger (random forest), or

kknn (weighted k-nearest neighbor). Metrics of performance are calculated at a probability threshold of 0.5 for determining cured versus died outcome.

https://doi.org/10.1371/journal.pone.0247906.t003
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Kaplan-Meier (KM) model which takes the survival probability over time of at risk cases. The

Kaplan-Meir curve can be considered as a control for model performance where predictive

models should perform better than the 0.5 Harrell’s C score of the KM model. The bench-

marks from both binary classification and time-to-event analysis establish that the CT annota-

tions contain features that can predict treatment outcome better than control models for the

training set and suggest that such predictive performance might translate to unobserved data

with similar features.

To assess whether the observed training performance translates to performance on similar

unobserved data, we held-out a set of 25% of the data constituting the validation set. Mlr3 facil-

itates nested resampling strategies used in the benchmarking, which should provide an accu-

rate estimate of model performance including preprocessing such as class balancing. The

validation set was used to test this theory in practice. Binary classification models trained on

the entire 75% of the training dataset used for benchmarking were used for prediction on the

25% held-out validation data. Model predictions were assessed using the same metrics as for

training benchmarking (Table 5). The validation model metrics fall into the ranges observed

in the training indicating that benchmarking identified performance estimates indicative of

actual performance on unobserved data. Class balancing provided improvements to the detec-

tion and prediction of an outcome of died either through Mlr3’s default class balancing

approach or the use of the SMOTE algorithm. For survival models, model performance on the

validation set also showed Harrell’s C scores falling within estimate ranges from the bench-

marking results on the training data (Table 6). Altogether, the validation and benchmarking

results establish that CT annotations from TB portals are predictive of treatment outcomes

and set a reference upon which models incorporating these features can be improved upon

henceforth. Nonetheless, these findings need to be considered hypothesis-generating rather

than suggesting that actionable steps be taken clinically for patients meeting these criteria

given that other observed or unobserved factors could be contributing to the findings.

Discussion

CT imaging of the lung provides an important modality for identifying biomarkers of TB

severity and progression as pulmonary abnormalities are a common disease manifestation

[16]. The TB portals provides CT images of lungs associated with TB cases along with patient-

centric, temporal information that helps to put the image in the context of the real-world clini-

cal journey. We leveraged TB portals data to identify CT images with associated radiologist

observations to assess the utility of these observations independently of other case attributes

towards risk of poor treatment outcome. While CT images and radiologist observations have

been used previously to assess patient treatment outcome [8,9] or response [17], the analysis

was done in the context of a clinical trial or study that was limited by the available sample size.

Table 4. Comparison of survival model performance by 5 fold cross-validation on the training data.

Base learner harrellC

kaplan 0.5 +/- 0

coxph 0.75 +/- 0.2

rpart 0.71 +/- 0.24

Performance of the cox proportional hazards, Kaplan-Meier, and random forest survival models by 5 fold cross-

validation using Harrell’s C (harrellC) as the model performance metric. The median 5-fold cross-validation results

are shown +/- MAD. Base learner refers to the type of machine learning model used in the pipeline including kaplan

(Kaplan-Meier), coxph (cox proportional hazards), or rpart (tree based survival model).

https://doi.org/10.1371/journal.pone.0247906.t004
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The use of real-world data sources such as TB portals can facilitate exploration of the predic-

tors of poor treatment outcome in real-world settings and additional questions can be

addressed as more cases are added over time. Real-world evidence can inform clinical practice

by exploring the potential of lung CT images as clinical end points or markers of disease sever-

ity. Here we demonstrate that for new TB cases, the radiologist observations associated with

CT images taken within 60 days of the initial case registration into the database contain statisti-

cally significant risk factors associated with poor treatment outcome.

We chose to analyze cured versus died outcomes because they represent the boundaries of

the available treatment end points deemed beneficial or adverse from a clinical perspective.

We reasoned that such edge cases may contain the greatest differences in radiological signa-

tures with which to assess machine learning models. Nonetheless, this approach has a limita-

tion in that it cannot be used to predict intermediary treatment end points such as failure that

Table 5. Comparison of different class balancing approaches on binary classifier model performance on validation data.

Preprocessing Base learner acc auc bacc bbrier mcc sensitivity specificity

No class balancing featureless 0.91 0.50 0.50 0.09 0.00 1.00 0.00

No class balancing kknn 0.91 0.71 0.50 0.09 0.00 1.00 0.00

No class balancing log_reg 0.91 0.72 0.50 0.08 0.00 1.00 0.00

No class balancing multinom 0.91 0.76 0.50 0.08 0.00 1.00 0.00

No class balancing ranger 0.91 0.84 0.50 0.08 0.00 1.00 0.00

Class balancing featureless 0.45 0.50 0.40 0.25 -0.12 0.47 0.33

Class balancing kknn 0.78 0.76 0.66 0.14 0.22 0.81 0.50

Class balancing log_reg 0.67 0.80 0.82 0.20 0.38 0.64 1.00

Class balancing multinom 0.66 0.82 0.81 0.18 0.36 0.62 1.00

Class balancing ranger 0.69 0.82 0.83 0.19 0.39 0.66 1.00

SMOTE featureless 0.09 0.50 0.50 0.91 0.00 0.00 1.00

SMOTE kknn 0.92 0.70 0.58 0.11 0.39 1.00 0.17

SMOTE log_reg 0.53 0.73 0.74 0.24 0.28 0.48 1.00

SMOTE multinom 0.53 0.75 0.74 0.23 0.28 0.48 1.00

SMOTE ranger 0.69 0.74 0.68 0.20 0.22 0.69 0.67

Various model performance metrics such as classification accuracy, AUC, balanced accuracy (bacc), Brier score (bbrier), Matthews correlation coefficient (mcc),

sensitivity, and specificity are shown after model prediction on the 25% held out validation data set. Preprocessing refers to whether the pipeline included a class

balancing step, SMOTE, or no class balancing. Base learner refers to the type of machine learning model used in the pipeline including featureless (only predict most

abundant class or random class in case of a tie), log reg (logistic regression), multinom (multinomial log-linear learner via neural networks), ranger (random forest), or

kknn (weighted k-nearest neighbor). Metrics of performance are calculated at a probability threshold of 0.5 for determining cured versus died outcome.

https://doi.org/10.1371/journal.pone.0247906.t005

Table 6. Comparison of survival model performance on validation data.

Base learner harrellC

coxph 0.78

kaplan 0.50

rpart 0.68

Harrell’s C (harrellC) metric was used to compare cox proportional hazards, Kaplan-Meier, and random forest

survival model performance on the validation data set constituting 25% of the data that was held out to assess

performance on data that had not been observed before. Base learner refers to the type of machine learning model

used in the pipeline including kaplan (Kaplan-Meier), coxph (cox proportional hazards), or rpart (tree based survival

model).

https://doi.org/10.1371/journal.pone.0247906.t006
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fall between the two extremes. Moreover, given differences in treatment efficiencies due to the

recommended treatment plans for sensitive or various drug resistant TB subtypes, it would

have been beneficial to model the TB subtype as well but the numbers of available cases with

the relevant treatment outcomes did not support this approach. Therefore, this analysis did

not incorporate TB subtype differences within the modeling meaning it is possible certain

aspects of the temporal response to treatment may be affecting model estimates (especially in

the time-to-event models). We attempt to limit this potential by selecting CTs around the time

of registration to decrease the potential of treatment to affect CT observations. We also observe

that the proportions of TB cases by subtype is not statistically significant between those with a

treatment outcome of died versus those with a treatment outcome of cured suggesting that the

impacts would be modest. As more data is collected increasing the number of cases with the

outcomes of interest, it would be interesting to include the subtype of TB as a random effect

for instance.

While previous analyses have leveraged TB Portals data to predict treatment outcome using

machine learning approaches [18,19], they predicted multiple treatment outcomes that may be

challenging for machine learning approaches to delineate (e.g. cured versus failure versus

died). Moreover, previous approaches leveraged the entire TB portals case record which

include information that is not available at clinically relevant time points such as around the

time of the initial diagnosis. The number of CT images or X-ray images taken over the course

of the case is an example of information which is only known at the end of treatment. Models

generated using all case characteristics may identify such variables as important despite these

being of limited clinical utility. For example, poor treatment outcome may be associated with a

greater number of medical images simply due to the desire of clinicians to monitor disease

progression and treatment response especially in the riskiest cases. Models incorporating these

variables may miss other salient variables of clinical relevance. Lastly, prior attempts at analyz-

ing TB portals data do not account for the class imbalancing that can arise despite this being a

common issue with predicting biological outcomes.

We observed class imbalance in our analysis as ~10% of selected cases had an outcome of

died. This imbalance can adversely affect machine learning algorithms as optimization may

select a model that defaults to predicting the most represented class in order to maximize the

objective function [20]. Many approaches have been developed including development of

machine learning algorithms that can handle class imbalances, sampling techniques to increase

the representation of the rarer observations, and techniques that put a higher cost on misclassi-

fication of the class of interest. We address the impact of class imbalance by leveraging Mlr3

approaches for handling class imbalance that can be wrapped in a machine learning pipeline

for an unbiased assessment on model performance. We observe that not accounting for class

balancing led to a high classification accuracy albeit with little difference in performance com-

pared to the featureless model that only predicts the majority class. Such a model would be of

limited clinical utility in that less represented outcomes would often be missed. Class balancing

is one approach to address this and increase the performance of machine learning models for

predicting these rarer, clinically relevant outcomes.

We focus on using radiologist observations of chest CT images at a clinically important

time point (close to initial registration of the case into the database) independent of other case

characteristics to assess the data’s utility. By focusing on initial time around registration for

new cases with a treatment outcome of cured and died and accounting for class imbalancing,

we show that radiologist observations are predictive of treatment outcome within the cohort.

We identify markers of disease progression and severity including involvement of both lungs,

swollen lymph nodes, multiple cavities, and large cavities which are associated with active TB

and demonstrate higher risk of poor treatment outcome via inferential statistics. Cavitation in
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particular has been shown to be associated with a higher baseline load of MTB bacteria [21]

and poorer treatment response [8,9,17,22]. As TB portals collects real-world data, we cannot

rule out confounding issues such as selection of new cases that were caught later in disease

progression, observed differences amongst the subgroups (e.g. drug resistance subtype men-

tioned prior), and other unobserved variables that may explain these risk profiles. For instance,

radiologists independently review CT images by country site and there could be differences

in how each approaches the annotations. Nevertheless, for this analysis the majority of the

observations were from Belarus suggesting such impacts would be minimal. Collecting addi-

tional data to control for these differences by including them in our models as additional

covariates or using matching techniques to ensure similar cases characteristics are potential

approaches to mitigate potential confounding. Our initial results offer a rationale for these

additional data collection efforts given the promising signals we detected amongst the identi-

fied outcomes.

Lastly, deep learning and artificial intelligence (AI) are being used extensively for medical

image processing to label and annotate features for diagnostic and prognostic purposes. For

example, AI approaches have recently been reported to exceed the capability of a radiologist

for distinguishing TB from non-TB using chest radiographs. Nevertheless, radiologist observa-

tions of medical images are considered the “gold-standard” reference upon which to support

AI development [7]. The TB portals database contains reference data that can help to advance

AI by providing a radiologist evaluated ground-truth for comparison. By analyzing radiologist

observations, we identify potential lung biomarkers that could be considered priorities for

automated identification by AI since these biomarkers are most associated with treatment out-

come in our cohort. AI could then generate automated features upon which machine learning

methods can be applied, risk scores developed, or manual annotations compared. We are cau-

tiously optimistic about the potential of these real-world biomarkers given our best knowledge

of the case although we acknowledge the potential impact of other measured or unmeasured

variables. Collecting more data that can increase our understanding of the case may be able to

improve our confidence. For instance, if we collected medical history at registration, we may

be able to better characterize a new case removing any patients with a long history of respira-

tory symptoms, which suggests significant progression of disease or perhaps a repeat case. The

TB portals program is a community resource and is open to collaboration and feedback from

researchers to improve the data, tools, and services provided.

Supporting information

S1 Fig. Session information R function call. Specific R packages, version and platform used

during the analysis, which is included for reproducibility.

(TIF)

S2 Fig. Correlation of CT radiologist observations among complete cases (N = 202). Cases

from the cohort that are not missing any features of interest were compared for correlations

between covariates and the dependent variable (event). Positive correlations are shown in blue

and negative correlations in red. The correlations between event and covariates indicate asso-

ciations that follow clinical manifestation of disease such as involvement of both lungs, cavity

size, number of cavities, and presence of swollen lymph nodes. Glossary: Affectlevel–location

of affected lung area; affectpleura—changes in the pleura; bodysite_coding_cd–which lung is

the observation located; bronchialobstruction—bronchial obstruction syndrome disorders,

dissemination—Diffuse pulmonary nodules detected; limfoadenopatia–greater than 10 mm is

considered the upper limit for normal nodes (short transverse diameter); lungcapacitydecrease

—reduced lung volumes; lungcavitysize–size of lung cavity; nodalcalcinatum—Nodi
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Calcinatum detected; plevritis—pleural effusion detected; pneumothorax—Pneumothorax

detected; posttbresiduals—Post-tuberculosis changes in the lung; processprevalence–preva-

lence of process in number of segments; totalcavernum–number of cavities; thromboembo-

lismpulmonaryartery—Thromboembolism Of The Pulmonary Artery detected;

anomalymediastinumvesselsdevelop—Anomaly Of Mediastinum Vessels Develop detected;

shadowpattern–shadowpattern of nodule, node, or infiltrate; affectedsegments–segments of

lung that are affected; accumulationcontrast–amount of contrast accumulated.

(TIF)

S1 Table. Case characteristics of the cohort (N = 253). Case characteristics were compared

by treatment outcome. P-values were calculated for continuous variables (age_of_onset and

bmi) using analysis of variance test. P-values for categorical variables (registration_date, gen-

der, country, and type_of_resistance) were calculated using Chi-squared test.

(XLSX)

S2 Table. Comparison of radiologist observations prior to preprocessing. Radiologist

observations prior to preprocessing for machine learning were compared by treatment out-

come. P-values were calculated for continuous variables using analysis of variance test. P-val-

ues for categorical variables were calculated using Chi-squared test. The following variables

were dropped from further analysis: Anomalymediastinumvesselsdevelop, shadowpattern,

affectlevel, thromboembolismpulmonaryartery, anomalylungdevelop, and accumulationcon-

trast. The following variables were refactored (S3 Table) to recombine levels: Lungcavitysize,

affectlevel, totalcavernum. Glossary: Affectlevel–location of affected lung area; affectpleura—

changes in the pleura; bodysite_coding_cd–which lung is the observation located; bronchia-

lobstruction—bronchial obstruction syndrome disorders, dissemination—Diffuse pulmonary

nodules detected; limfoadenopatia–greater than 10 mm is considered the upper limit for nor-

mal nodes (short transverse diameter); lungcapacitydecrease—reduced lung volumes; lungca-

vitysize–size of lung cavity; nodalcalcinatum—Nodi Calcinatum detected; plevritis—pleural

effusion detected; pneumothorax—Pneumothorax detected; posttbresiduals—Post-tuberculo-

sis changes in the lung; processprevalence–prevalence of process in number of segments; total-

cavernum–number of cavities; thromboembolismpulmonaryartery—Thromboembolism Of

The Pulmonary Artery detected; anomalymediastinumvesselsdevelop—Anomaly Of Mediasti-

num Vessels Develop detected; shadowpattern–shadowpattern of nodule, node, or infiltrate;

affectedsegments–segments of lung that are affected; accumulationcontrast–amount of con-

trast accumulated.

(XLSX)

S3 Table. CT radiologist annotations observed in the cohort after preprocessing. Radiolo-

gist annotations were compared by treatment outcome. P-values for categorical variables were

calculated using Chi-squared test. Glossary: Affectlevel–location of affected lung area; affect-

pleura—changes in the pleura; bodysite_coding_cd–which lung is the observation located;

bronchialobstruction—bronchial obstruction syndrome disorders, dissemination—Diffuse

pulmonary nodules detected; limfoadenopatia–greater than 10 mm is considered the upper

limit for normal nodes (short transverse diameter); lungcapacitydecrease—reduced lung vol-

umes; lungcavitysize–size of lung cavity; nodalcalcinatum—Nodi Calcinatum detected; plevri-

tis—pleural effusion detected; pneumothorax—Pneumothorax detected; posttbresiduals—

Post-tuberculosis changes in the lung; processprevalence–prevalence of process in number of

segments; totalcavernum–number of cavities; thromboembolismpulmonaryartery—Throm-

boembolism Of The Pulmonary Artery detected; anomalymediastinumvesselsdevelop—

Anomaly Of Mediastinum Vessels Develop detected; shadowpattern–shadowpattern of
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nodule, node, or infiltrate; affectedsegments–segments of lung that are affected; accumulation-

contrast–amount of contrast accumulated.

(XLSX)

S4 Table. Proportional hazards test on the multivariate cox proportional hazards model.

P-value corresponds to the statistical test of the cox.zph function that demonstrates that no

individual variable nor global violates the proportional hazards test.

(XLSX)

S5 Table. Patient and condition ids for the cohort used for this analysis. A table of patient

and condition ids is provided for the de-identified records that were used for this analysis.

(XLSX)

Acknowledgments

We would like to thank Jessica Taaffe for helpful suggestions; the MLR3 team for development

of the MLR3 suite of packages. For their contributions to the vision and requirements of TB

Portals, we would like to thank: Mike Tartakovsky and members of the TB Portals team.

Author Contributions

Conceptualization: Gabriel Rosenfeld, Andrei Gabrielian.

Data curation: Alyssa Long.

Formal analysis: Gabriel Rosenfeld.

Investigation: Andrei Gabrielian.

Methodology: Gabriel Rosenfeld, Andrei Gabrielian.

Project administration: Gabriel Rosenfeld, Darrell E. Hurt, Alex Rosenthal.

Resources: Gabriel Rosenfeld, Darrell E. Hurt, Alyssa Long, Alex Rosenthal.

Software: Gabriel Rosenfeld.

Supervision: Gabriel Rosenfeld, Darrell E. Hurt, Alex Rosenthal.

Validation: Andrei Gabrielian, Qinlu Wang, Jingwen Gu.

Writing – original draft: Gabriel Rosenfeld.

Writing – review & editing: Gabriel Rosenfeld, Andrei Gabrielian, Qinlu Wang, Jingwen Gu,

Darrell E. Hurt, Alyssa Long, Alex Rosenthal.

References
1. Dheda K, Barry CE, Maartens G. Tuberculosis. Lancet. 2016; 387(10024):1211–26. https://doi.org/10.

1016/S0140-6736(15)00151-8 PMID: 26377143

2. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, et al. The epidemiology, patho-

genesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant,

and incurable tuberculosis. Lancet Respiratory Medicine. 2017; 5(4):291–360.

3. (WHO) WHO. Global Tuberculosis report 2018. 2018 [Available from: https://www.who.int/tb/

publications/global_report/en/.

4. Manjelievskaia J, Erck D, Piracha S, Schrager L. Drug-resistant TB: deadly, costly and in need of a vac-

cine. Trans R Soc Trop Med Hyg. 2016; 110(3):186–91. https://doi.org/10.1093/trstmh/trw006 PMID:

26884499

5. Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. Int J Infect Dis. 2015; 32:87–93. https://doi.org/

10.1016/j.ijid.2014.12.007 PMID: 25809762

PLOS ONE Radiologist observations of CTs and association to TB outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0247906 March 17, 2021 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247906.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247906.s007
https://doi.org/10.1016/S0140-6736%2815%2900151-8
https://doi.org/10.1016/S0140-6736%2815%2900151-8
http://www.ncbi.nlm.nih.gov/pubmed/26377143
https://www.who.int/tb/publications/global_report/en/
https://www.who.int/tb/publications/global_report/en/
https://doi.org/10.1093/trstmh/trw006
http://www.ncbi.nlm.nih.gov/pubmed/26884499
https://doi.org/10.1016/j.ijid.2014.12.007
https://doi.org/10.1016/j.ijid.2014.12.007
http://www.ncbi.nlm.nih.gov/pubmed/25809762
https://doi.org/10.1371/journal.pone.0247906


6. Heuvelings CC, de Vries SG, Greve PF, Visser BJ, Belard S, Janssen S, et al. Effectiveness of interven-

tions for diagnosis and treatment of tuberculosis in hard-to-reach populations in countries of low and

medium tuberculosis incidence: a systematic review. Lancet Infect Dis. 2017; 17(5):e144–e58. https://

doi.org/10.1016/S1473-3099(16)30532-1 PMID: 28291722

7. Rubin DL. Artificial Intelligence in Imaging: The Radiologist’s Role. J Am Coll Radiol. 2019; 16(9 Pt

B):1309–17. https://doi.org/10.1016/j.jacr.2019.05.036 PMID: 31492409

8. Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA, Mountz JM, et al. PET/CT imaging correlates

with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med. 2014; 6

(265):265ra166. https://doi.org/10.1126/scitranslmed.3009501 PMID: 25473034

9. Malherbe ST, Chen RY, Dupont P, Kant I, Kriel M, Loxton AG, et al. Quantitative 18F-FDG PET-CT

scan characteristics correlate with tuberculosis treatment response. EJNMMI Res. 2020; 10(1):8.

https://doi.org/10.1186/s13550-020-0591-9 PMID: 32040770

10. Kim J, Lee IJ, Kim JH. CT findings of pulmonary tuberculosis and tuberculous pleurisy in diabetes melli-

tus patients. Diagn Interv Radiol. 2017; 23(2):112–7. https://doi.org/10.5152/dir.2016.16157 PMID:

28185999

11. Kim JH, Kim MJ, Ham SY. Clinical characteristics and chest computed tomography findings of smear-

positive and smear-negative pulmonary tuberculosis in hospitalized adult patients. Medicine (Balti-

more). 2019; 98(34):e16921. https://doi.org/10.1097/MD.0000000000016921 PMID: 31441875

12. Rosenthal A, Gabrielian A, Engle E, Hurt DE, Alexandru S, Crudu V, et al. The TB Portals: an Open-

Access, Web-Based Platform for Global Drug-Resistant-Tuberculosis Data Sharing and Analysis. Jour-

nal of Clinical Microbiology. 2017; 55(11):3267–82. https://doi.org/10.1128/JCM.01013-17 PMID:

28904183

13. Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, et al. mlr3: A modern object-oriented

machine learning framework in R. Journal of Open Source Software. 2019; 4(44).

14. Ong CW, Elkington PT, Friedland JS. Tuberculosis, pulmonary cavitation, and matrix metalloprotei-

nases. Am J Respir Crit Care Med. 2014; 190(1):9–18. https://doi.org/10.1164/rccm.201311-2106PP

PMID: 24713029

15. Murthy SE, Chatterjee F, Crook A, Dawson R, Mendel C, Murphy ME, et al. Pretreatment chest x-ray

severity and its relation to bacterial burden in smear positive pulmonary tuberculosis. BMC Med. 2018;

16(1):73. https://doi.org/10.1186/s12916-018-1053-3 PMID: 29779492

16. Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology

to pathophysiology. Eur Respir Rev. 2018; 27(147). https://doi.org/10.1183/16000617.0077-2017

PMID: 29491034

17. Heo EY, Chun EJ, Lee CH, Kim YW, Han SK, Shim YS, et al. Radiographic improvement and its predic-

tors in patients with pulmonary tuberculosis. Int J Infect Dis. 2009; 13(6):e371–6. https://doi.org/10.

1016/j.ijid.2009.01.007 PMID: 19328733

18. Asad M, Mahmood A, Usman M. A machine learning-based framework for Predicting Treatment Failure

in tuberculosis: A case study of six countries. Tuberculosis (Edinb). 2020; 123:101944. https://doi.org/

10.1016/j.tube.2020.101944 PMID: 32741529

19. Sauer CM, Sasson D, Paik KE, McCague N, Celi LA, Fernandez IS, et al. Feature selection and predic-

tion of treatment failure in tuberculosis. Plos One. 2018; 13(11). https://doi.org/10.1371/journal.pone.

0207491 PMID: 30458029

20. Li DC, Hu SC, Lin LS, Yeh CW. Detecting representative data and generating synthetic samples to

improve learning accuracy with imbalanced data sets. PLoS One. 2017; 12(8):e0181853. https://doi.

org/10.1371/journal.pone.0181853 PMID: 28771522

21. Perrin FM, Woodward N, Phillips PP, McHugh TD, Nunn AJ, Lipman MC, et al. Radiological cavitation,

sputum mycobacterial load and treatment response in pulmonary tuberculosis. Int J Tuberc Lung Dis.

2010; 14(12):1596–602. PMID: 21144246

22. Koo HK, Min J, Kim HW, Lee J, Kim JS, Park JS, et al. Prediction of treatment failure and compliance in

patients with tuberculosis. BMC Infect Dis. 2020; 20(1):622. https://doi.org/10.1186/s12879-020-

05350-7 PMID: 32831044

PLOS ONE Radiologist observations of CTs and association to TB outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0247906 March 17, 2021 17 / 17

https://doi.org/10.1016/S1473-3099%2816%2930532-1
https://doi.org/10.1016/S1473-3099%2816%2930532-1
http://www.ncbi.nlm.nih.gov/pubmed/28291722
https://doi.org/10.1016/j.jacr.2019.05.036
http://www.ncbi.nlm.nih.gov/pubmed/31492409
https://doi.org/10.1126/scitranslmed.3009501
http://www.ncbi.nlm.nih.gov/pubmed/25473034
https://doi.org/10.1186/s13550-020-0591-9
http://www.ncbi.nlm.nih.gov/pubmed/32040770
https://doi.org/10.5152/dir.2016.16157
http://www.ncbi.nlm.nih.gov/pubmed/28185999
https://doi.org/10.1097/MD.0000000000016921
http://www.ncbi.nlm.nih.gov/pubmed/31441875
https://doi.org/10.1128/JCM.01013-17
http://www.ncbi.nlm.nih.gov/pubmed/28904183
https://doi.org/10.1164/rccm.201311-2106PP
http://www.ncbi.nlm.nih.gov/pubmed/24713029
https://doi.org/10.1186/s12916-018-1053-3
http://www.ncbi.nlm.nih.gov/pubmed/29779492
https://doi.org/10.1183/16000617.0077-2017
http://www.ncbi.nlm.nih.gov/pubmed/29491034
https://doi.org/10.1016/j.ijid.2009.01.007
https://doi.org/10.1016/j.ijid.2009.01.007
http://www.ncbi.nlm.nih.gov/pubmed/19328733
https://doi.org/10.1016/j.tube.2020.101944
https://doi.org/10.1016/j.tube.2020.101944
http://www.ncbi.nlm.nih.gov/pubmed/32741529
https://doi.org/10.1371/journal.pone.0207491
https://doi.org/10.1371/journal.pone.0207491
http://www.ncbi.nlm.nih.gov/pubmed/30458029
https://doi.org/10.1371/journal.pone.0181853
https://doi.org/10.1371/journal.pone.0181853
http://www.ncbi.nlm.nih.gov/pubmed/28771522
http://www.ncbi.nlm.nih.gov/pubmed/21144246
https://doi.org/10.1186/s12879-020-05350-7
https://doi.org/10.1186/s12879-020-05350-7
http://www.ncbi.nlm.nih.gov/pubmed/32831044
https://doi.org/10.1371/journal.pone.0247906

