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Drosophila lini and its two sibling species, D. ohnishii and D. ogumai, are hardly distinguishable from one another in morphology.
These species are more or less reproductively isolated. The mitochondrial ND2 and COI-COII and the nuclear ITS1-ITS2 regions
were sequenced to seek for the possibility of DNA barcoding and to reconstruct the phylogeny of them. The character-based
approach for DNA barcoding detected some diagnostic nucleotides only for monophyletic D. ogumai, but no informative sites
for the other two very closely species, D. lini and D. ohnishii, of which strains intermingled in the molecular phylogenetic trees.
Thus, this study provides another case of limited applicability of DNA barcoding in species delineation, as in other cases of related
Drosophila species. The molecular phylogenetic tree inferred from the concatenated sequences strongly supported the monophyly
of the cluster of the three species, that is, the lini clade. We propose some hypotheses of evolutionary events in this clade.

1. Introduction

Studies of just diverging populations or species shed light on
speciation mechanisms. An important evolutionary process
in speciation is the diversification of genes between popu-
lations. Most comprehensive information on gene (DNA)
evolution associated with speciation has been accumulated
for the Drosophila melanogaster species subgroup, especially
the D. simulans clade (e.g., [1–6]), and the D. obscura species
group [7, 8]. In comparison, speciation mechanisms have
been less explored in the D. montium species subgroup, in
spite of its highest species diversity (= 89) [9] in the melano-
gaster group, with a variety of species at different stages of
speciation process. On the other hand, molecular markers
have been used to detect cryptic species under incipient spe-
ciation process. In the D. montium subgroup as well, such
a molecular approach has recently been employed to reveal
the presence of a cryptic species in the D. serrata species
complex [10]. “DNA barcoding” is proposed as a promising

tool not only for rapid identification of known species, that
is, “species identification,” but also for discovery and deli-
mitation of species, that is, “species discovery” or “DNA tax-
onomy” [11–13].

Discovery of a sibling species of Drosophila lini is one of
cases in which molecular characters were used for “species
discovery” in early days. It was first recognized as a species
closely related to but different from D. lini based on the
results of electrophoretic analyses [14]. Then, the studied
“D. lini-like” strain, MMY326, from Pyinoolwin in central
Myanmar, along with another strain (MMY307) from the
same locality, was described as D. ohnishii [15]. At the same
time, another sibling species, D. ogumai, was described for
two strains (RGN3 and RGN206) from southern Myanmar
[15]. It is, however, hard to morphologically distinguish
among the three species, D. lini, D. ohnishii, and D. ogumai,
especially between the former two, although 80–100% cor-
rect classification was achieved for them by discriminant
analyses using 13 or 15 quantitative characters [15]. The
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evidence from cross-tests supports the presence of three sib-
ling species. More or less strong postmating isolation is
present among them: no F1 hybrids could be obtained from
crosses between D. ogumai and D. ohnishii, while the other
interspecific crosses produced fertile hybrid females but ster-
ile males [16]. In addition, strong premating isolation was
detected between D. ohnishii and D. lini or between D. oh-
nishii and D. ogumai, but not between D. lini and D. ogu-
mai [16–18]. When the D. kikkawai species complex was es-
tablished in the D. montium species subgroup of the D. mel-
anogaster species group, D. lini was included in it [19].
Subsequent molecular phylogenetic studies consistently sup-
ported the close relationships between D. lini (and its sib-
lings) and D. kikkawai (and its siblings, D. bocki and D. leon-
tia) [14, 20–24]. However, the relationships between D. lini
and its siblings have not been resolved yet.

Up to date, it is known that D. ohnishii is distributed in
central Myanmar to southwestern China (Xishuangbanna),
just occupying the intermediate range between the ranges
of the two allopatric species, D. lini distributed in southern
China to Taiwan and D. ogumai in southern Myanmar [18].
Thus, the premating isolation is seen between the parapatric
neighbors of the three species. Based on this biogeographi-
cal evidence, a hypothesis that the premating isolation has
evolved through the process of reinforcement in the second-
ary contact zone between D. ohnishii and either neighboring
species has been proposed [18]. To test or refine this
hypothesis, the present study aims at revealing reliable phy-
logenetic relationships among these three species based on
DNA sequence data. In addition, molecular diagnostics are
searched to apply the DNA barcoding “species identification”
to these sibling species that are hard to be distinguished
morphologically from one another.

When focusing on very closely related species, one should
select rapidly evolving regions, for example, mitochondrial
genes [25] or nuclear rDNA internal transcribed spacer (ITS)
[26], as markers. The mitochondrial cytochrome c oxidase
subunit I (COI) gene has been widely used as DNA barcoding
for “species identification”: its 648-base pair (bp) fragment is
the standard marker in the Barcode of Life project [11, 12].
In the present study, we employed two mitochondrial loci,
NADH dehydrogenase subunit 2 (ND2) and cytochrome
c oxidase subunit I and II (COI-COII), and one nuclear
locus, rDNA internal transcribed spacer 1 and 2 (ITS1-ITS2),
to examine the phylogenetic relationships among isofemale
strains of D. lini and its sibling species and to find possible
molecular diagnostics for each species of them.

2. Materials and Methods

Seven isofemale strains of D. lini, four strains of D. ohnishii,
and two strains of D. ogumai were used as focal OTUs, and
one strain each of D. kikkawai, D. bocki, D. leontia, and
D. barbarae of the kikkawai complex, and one strain each
of D. jambulina and D. seguyi belonging to the montium
subgroup were added as ingroup OTUs (Table 1). Three of
these isofemale strains (MLN24 and MLN45 of D. ohnishii
and MLN260 of D. barbarae) were established in 2003 from

Table 1: List of experimental strains.

Species Lines Collection locality

D. lini

3146.1 Taiwan, China

DHS315 Dinghushan, Guangdong, China

DHS410 Dinghushan, Guangdong, China

DHS501 Dinghushan, Guangdong, China

NKS9212 Nankunshan, Guangdong, China

NKS9231 Nankunshan, Guangdong, China

NK9242 Nankunshan, Guangdong, China

D. ohnishii

MMY309 Pyinoolwin, Myanmar

MMY326 Pyinoolwin, Myanmar

MLN24 Menglun, Yunnan, China

MLN45 Menglun, Yunnan, China

D. ogumai
RGN3 Yangon, Myanmar

RGN206 Yangon, Myanmar

D. bocki Y163 ?

D. leontia AO-2 ?

D. kikkawai OGS4 ?

D. barbarae MLN260 Menglun, Yunnan, China

D. jambulina NH115 ?

D. seguyi K2 ?

Table 2: Target regions and primer sequences in the present study.

Target region Primer sequence (5′–3′) Length (bp)

Mitochondrial loci

ND2 AAGCTACTGGGTTCATACC 926

ATATTTACAGCTTTGAAGG

COI-COII ATACCTCGACG(AT)TATTGA 842

GTTTAAGAAACCAGTACTTG

Nuclear locus

ITS1-ITS2 TCCGTAGGTGAACCTGCGG 650

GTTAGTTTCTTTTCCTC

Total 2418

Menglun, southern part of Yunnan Province, China, but all
the others derived from the stocks of Tokyo Metropolitan
University and have been maintained in laboratory on
cornmeal-malt medium at 23◦C under continuous light
for more than 12 years. The species status of the closely
related species, that is, D. lini/D. ohnishii/D. ogumai and D.
kikkawai/D. bocki/D. leontia, was confirmed by cross-tests in
previous studies [16, 27].

Total DNA was extracted from a single fly using a rapid
method [28]. The target regions (Table 2) were amplified
on an iCycler Thermal Cycler (Bio-Rad) with the PCR cycle
program comprised a 5 min of predenaturation at 94◦C, 35
cycles of amplification (1 min of denaturing at 94◦C; 1 min
of annealing at 53◦C for COI-II and ND2, 56◦C for ITS1-
ITS2, 1 min of extension at 72◦C), and final extension at
72◦C for 5 min. The amplicons were purified by precipi-
tation with isopropanol and then subjected to sequencing
reaction using BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems) following the recommended protocol.
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Figure 1: Neighbor-joining (NJ) tree inferred from ND2 sequences of 13 strains of D. lini and its sibling species (D. ohnishii and D. ogumai).
Numbers below branches indicate the bootstrap percentages.

The sequences were analyzed on the 3100-Avant Genetic
Analyzer (Applied Biosystems).

The ITS1-ITS2 sequences of three species of the montium
subgroup were downloaded from GenBank, AY278412 for D.
barbarae; AY278419 for D. jambulina, and AY278431 for D.
seguyi. For the three species of the D. melanogaster subgroup
employed as outgroups, the corresponding sequences were
also downloaded from GenBank: AF200829 for ND2 and
COI-COII and M21017 for ITS1-ITS2 of D. melanogaster;
AF200846 for ND2 and COI-COII and Z28413 for ITS1-ITS2
of D. simulans; AF200831 for ND2 and COI-COII, Z28538
for ITS1-ITS2 of D. mauritiana.

DNA sequences were edited and analyzed using MEGA
5.05 [29]. Phylogenetic trees were constructed by the Neigh-
bor-Joining (NJ) method with bootstrap test (1000 repli-
cates) using the Kimura 2-parameter model, with gaps
treated by pairwise deletion. For searching DNA barcoding
diagnostics, we focused only on the three sibling species with
multiple test strains, and applied both of tree- and character-
based methods to each of different loci separately. We
used the phylogeny-based approach in the former method,
examining the monophyly of each species on a phylogenetic
tree [30–33]. The character-based method identifies a set of
diagnostic nucleotides in the DNA barcode sequence: the
four standard nucleotides (A, T, C, G) if found in fixed states
in one species can be used as simple pure diagnostics for
identifying that species [34]. To examine molecular genealo-
gies for the focal OTUs, we constructed an NJ tree based on
the concatenated sequences of the three loci, and applied an
estimated divergence time, 5.4 million years ago (Mya) [35],
between D. melanogaster and D. simulans as a calibration
point to estimate the divergence time of each node. Before
the analysis using the concatenated sequence data, we
conducted a Bayesian concordance analysis to test the con-
cordance among the three regions, that is, ND2, COI-COII,
and ITS1-ITS2, using BUCKy [36]. The DNA sequences of
each region were analyzed using MrBayes 3.1.2 [37] for
Bayesian phylogenetic estimation. Firstly, phylogenetic trees

were constructed for each region via the Markov chain Monte
Carlo (MCMC) method (number of generations for runs
= 1,000,000, nucleotide substitution model = GTR (general
time-reversible)), and then, the output of MrBayes was
summarized using the mbsum program of BUCKy, and the
primary concordance tree was generated with sample-wide
concordance factors using default setting in BUCKy.

3. Results

3.1. DNA Barcoding for D. lini and Its Sibling Species. We
sequenced the ND2 gene in D. lini and its siblings and some
other species of the montium subgroup. The whole sequence
of this gene is 1206 bp in most species of the D. obscura
species group [38]. Our obtained sequences covered most of
this region (from the site 34 to 959). The alignment of the
sequences included no indel. The GenBank accession num-
bers of these sequences are AY739939-AY739956. The NJ tree
for 13 strains of D. lini and its siblings showed that D. ogumai
was monophyletic but that D. lini and D. ohnishii were
nonmonophyletic with overlap of strains of these two species
(Figure 1). There were 20 informative sites in the aligned
13 sequences of D. lini and its siblings. Of these sites, 11
nucleotides were specific to D. ogumai, and thus can be used
as diagnostic nucleotides for identification of this species
among the siblings (Table 3). However, there was no species-
specific, fixed nucleotide for either D. lini or D. ohnishii.

The whole COI and COII sequences are 1536 and 684 bp,
respectively, in D. yakuba [39]. The COI-COII region we seq-
uenced covered 130 bp of COI and 639 bp of COII. The Gen-
Bank accession numbers of these sequences are AY737604-
AY737622. The NJ tree based on the COI-COII sequences
of the 13 strains of D. lini and its siblings showed the mo-
nophyly of D. ogumai but nonmonophyly for either D. lini
or D. ohnishii (Figure 2). Twelve informative sites were de-
tected from this region, among which five were species-spe-
cific, diagnostic nucleotides for D. ogumai (Table 4). The
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Figure 2: Neighbor-joining (NJ) tree inferred from COI-COII sequences of 13 strains of D. lini and its sibling species (D. ohnishii, and D.
ogumai). Numbers below branches indicate the bootstrap percentages.

Table 3: Nucleotides at 20 informative sites in ND2 sequences of 13 strains of D. lini and its sibling species (D. ohnishii and D. ogumai).
Diagnostic nucleotides for DNA barcoding are indicated with an asterisk. N is the number of strains sequenced. The positions of nucleotide
sites are based on the sequence of D. obscura [38]. Polymorphic sites are shown with code letters R (A/G,), Y (T/C), S (C/G), W (A/T), and
M (A/C).

Position

Species

N ND2 (sites 34–959)

Phylogeny
1 2 3 3 4 4 4 4 5 5 6 6 7 7 7 8 8 9 9 9

1 5 4 4 0 1 3 8 4 5 6 6 4 8 9 2 9 0 3 5

4 5 2 5 8 1 4 7 3 2 7 9 7 1 6 9 5 0 4 4

D. lini 7 R T C A Y A G S T A W W R T C M C T C C Non-monophyletic

D. ohnishii 4 A T C A C A G S T R A A G T C A C T C C Non-monophyletic

D. ogumai 2 G C∗ T∗ R T G∗ A∗ G C∗ A A A G C∗ T∗ A T∗ C∗ T∗ T∗ Monophyletic

Table 4: Nucleotides at 12 informative sites in COI-COII sequences of 13 strains of D. lini and its sibling species (D. ohnishii and D. ogumai).
Diagnostic nucleotides for DNA barcoding are indicated with an asterisk. The positions of nucleotide sites are based on the whole length of
the COI (1536 bp) and COII (684 bp) sequences of D. yakuba [39]. See Table 3 for further explanations.

Position

Species N
COI (sites 1407–1536) COII (sites 1–639)

Phylogeny
1407 1485 1503 69 72 231 232 234 399 435 486 570

D. lini 7 C Y T T C C T R Y W A R Non-monophyletic

D. ohnishii 4 C C T T C C Y A T A A A Non-monophyletic

D. ogumai 2 Y T C∗ C∗ T∗ T∗ T A T A G∗ A Monophyletic

character-based approach failed to distinguish between the
two non-monophyletic species for the COI-COII sequences
as well.

Sequences of the ITS region covering a part of ITS1,
the whole 5.8S rDNA, ITS2a, 2S rDNA, and a part of ITS2
were amplified from 10 strains of D. lini and its siblings
and some other species of the montium subgroup. The
positions of nucleotides in the sequence were determined
by alignment with the ITS sequence of D. simulans [26].

The GenBank accession numbers for these sequences are
AY739939-AY739956. The 5.8S rDNA, ITS2a, and 2S rDNA
were very conservative in all compared species, without
variation in the sequence length. On the other hand, the
ITS1 and ITS2 diverged largely in respect of either nucleotide
substitution or sequence length. The NJ tree for the 10
strains of D. lini and its siblings showed the monophyly of D.
ogumai but non-monophyly for either D. lini or D. ohnishii
(Figure 3). Four informative sites were present in this region,
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Figure 3: Neighbor-joining (NJ) tree inferred from ITS1-ITS2 sequences of ten strains of D. lini and its sibling species (D. ohnishii and D.
ogumai). Numbers below branches indicate the bootstrap percentages.

Table 5: Nucleotides at four informative sites in ITS1-ITS2 sequences of ten strains of D. lini and its sibling species (D. ohnishii and D.
ogumai). Diagnostic nucleotides for DNA barcoding are indicated with an asterisk. The positions of nucleotide sites are based on the sequence
of D. ogumai. Determination of each region in the sequence is based on the whole sequence of D. simulans (Z28413), ITS1: 690 bp; 5.8S:
123 bp; ITS2a: 26 bp; 2S: 30 bp; ITS2: 383 bp [26]. The partial or whole sequence of each region was obtained in D. ogumai as: ITS1: last
81 bp; 5.8S: 123 bp; ITS2a: 28 bp; 2S: 30 bp; ITS2: first 392 bp. See Table 3 for further explanations.

Position

Species N
ITS1 (last 81 bp) ITS2 (first 392 bp)

Pylogeny
16 307 312–325 326

D. lini 6 G T GTCAATAATAAAAT — Non-monophyletic

D. ohnishii 2 G T GTCAATAATAAAAT/deletion — Non-monophyletic

D. ogumai 2 A∗ G∗ GTCAATAATAAAAT T∗ Monophyletic

of which two nucleotide substitutions and one insertion were
diagnostic for D. ogumai (Table 5); the remaining one, a
14-bp indel (sites 312–325) of ITS2, was polymorphic in D.
ohnishii. For this region as well, no diagnostic nucleotide was
found in either D. lini or D. ohnishii.

3.2. Molecular Phylogeny. The primary concordance tree
(Figure 4) resulting from the Bayesian concordance analysis
for the three loci (ND2, COI-COII, and ITS1-ITS2) was not
discordant, especially the same for the strains of D. lini and
its sibling species, in topology from the NJ tree (Figure 5)
constructed using the concatenated sequences of the three
regions (ND2 + COI-COII + ITS1-ITS2, 2442 bp in length),
indicating that the mitochondrial and nuclear loci are con-
cordant in the genealogies. The estimated divergence times
based on a calibration point of 5.4 Mya divergence between
D. melanogaster and D. simulans [35] were also shown in
Figure 5. The three focal sibling species, D. lini, D. ohnishii,
and D. ogumai, formed a monophyletic group supported by
a high bootstrap value, 96%. This clade (henceforth termed
the lini clade) formed another, strongly supported (100%)
clade with D. kikkawai and its siblings, D. leontia and D.
bocki, although the monophyly of the latter three sibling
species was not supported. The relationships between the
lini-kikkawai clade, D. barbarae (another species sampled
from the kikkawai complex), and D. jambulina of the jambu-
lina complex were not resolved. Within the lini clade, two
distinct subclades, D. ogumai and D. lini + D. ohnishii,

were recognized, with high support values, 100% and 98%,
respectively. Within the subclade of D. lini + D. ohnishii,
either species did not form a monophyletic branch: the strain
DHS315 of D. lini branched off first (bootstrap value 93%),
followed by the strain MMY326 of D. ohnishii (66%), but
there was no nucleotide variation in the concerned sequences
among the rest strains including those of D. lini from Taiwan,
Dinghushan (DHS) and Nankunshan (NKS) in Guangdong
Province, and MLN24 of D. ohnishii from southern Yunnan.

The ancestor of the lini clade was estimated to have
appeared about 2.23 Mya. Within the lini clade, the diver-
gence between D. ogumai and D. lini was estimated to have
first occurred 1.42 Mya, and then D. ohnishii was estimated
to have speciated from D. lini very recently, at least after
0.17 Mya.

4. Discussion

In this study, we tested the applicability of DNA barcoding
“species identification” to the lini clade consisting of three
sibling species, which are morphologically almost indistin-
guishable [15] but have proved to be more or less repro-
ductively isolated from one another [16, 18]. We took two
approaches, the phylogeny-based and character-based meth-
ods for DNA barcoding “species identification.” However,
neither method succeeded in identifying all these three spe-
cies. The phylogeny-based method revealed the monophyly
of D. ogumai and the character-based method found some
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Figure 4: The primary concordance tree resulting from the Bayesian concordance analysis for the three regions, ND2, COI-COII, and ITS1-
ITS2. Numbers above branches are the concordance factors.

diagnostic nucleotides for D. ogumai, which can be, if not
easily, distinguished from the other two species by a few
morphological diagnostic characters [15].

However, we failed to get informative sites for DNA
barcoding of two very closely related species, D. lini and
D. ohnishii. This provides another evidential case that DNA
barcoding is not always effective in species delineation, which
has been corroborated in a number of cases of the genus
Drosophila as a model system [40]. One possible problem is
what genes are to be selected for DNA barcoding. Machado
and Hey [41] pointed out that the well-established mutual
monophyly of two closed related species, D. pseudoobscura
and D. persimilis, was not recovered by phylogeny recon-
struction based on nonrecombining molecules (particularly
mitochondrial genome), but was strongly supported by that
based on recombining molecules (five X-linked loci). The
reason for the former is gene introgression between the
species [41]. This may or may not be the case between D.
lini and D. ohnishii as well. On the other hand, recombining
molecules (inversions regions) may have contributed to the
speciation process by affecting the hybrid fitness [42]. So-
called speciation genes involved in the pre- and postmating
isolations might be good candidate genes for DNA barcoding
and, of course, are very important to understand speciation
mechanisms of such species at initial speciation. However,
DNA barcoding based on such a standard marker as the
648- bp fragment of COI in the Barcode of Life project

[11, 12] should be a promising tool for nonexperts to easily
and rapidly identify most of known species.

The inferred phylogenetic tree based on the concatenated
sequences of the three regions did not support the mono-
phyly of the kikkawai complex, although the taxon sampling
was quite limited, covering only seven out of 12 species of
this complex, in this study. Other studies, though under
limited taxon sampling as well, suggested nonmonophyly of
this species complex [14, 22, 23, 43]. The delimitation of this
species complex should be revised on the basis of molecular
phylogenetic analyses under more comprehensive taxon
sampling. However, the tree strongly supported the lini clade
comprising the three sibling species, D. lini, D. ohnishii, and
D. ogumai, and placed it close to D. kikkawai and its sibling
species, in consistence with previous studies [14, 20–23].

With respect to the evolution of the lini clade, a hypo-
thesis that the premating isolation has evolved through the
process of reinforcement in the secondary contact zone
between parapatric neighbors, D. ohnishii/D. lini or D. oh-
nishii/D. ogumai, has been proposed, since the premating
isolation is absent between allopatric species, D. lini and
D. ogumai [18]. Based on the phylogeny inferred from the
present study and all available biological information from
previous studies, we refine or revise the above hypothesis.

The ancestor of the lini clade should have derived as a
close relative to D. kikkawai and/or its sibling species about
2.23 Mya presumably in the subtropics of the Oriental
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Figure 5: NJ tree inferred from the concatenated sequences (2442 bp) of three regions, ND2 (926 bp), COI-COII (842 bp), and ITS1-ITS2
(674 bp). The time scale (in Mya) was given to the tree on the basis of an estimated time, 5.4 Mya, for the divergence between D. melanogaster
and D. simulans [35] as a calibration point. MEGA 5.05 [29] was used for constructing the tree (bootstrap test: 1000 replications; model:
Kimura 2-parameter; gaps: treated by pairwise deletion). Numbers in parentheses above branches indicate divergence times (Mya), and those
below branches bootstrap percentages.

Region. Then, the first speciation event producing D. ogumai
and D. lini may have occurred about 1.42 Mya, and, finally,
D. ohnishii may have diverged from D. lini very recently
(at least after 0.17 Mya). This speciation order seems to be
congruent with the morphological differentiation among the
three species: D. ogumai can be distinguished from the other
two species by a few diagnostic qualitative characters of the
male genitalia and also is most remote from the other two
species in terms of morphological distance based on metric
characters [15]. In addition, variation in the strength of
postmating isolation among the three species seems to be
congruent as well with the speculated speciation order: the
complete postmating isolation (production of no F1 hybrids)
is present between the most diverged species, D. ogumai
and D. ohnishii, while the postmating isolation is partial,
producing F1 fertile female but sterile male hybrids, between
the other pairs of species [16].

As a cue for the premating isolation caused by female
repelling behavior, the frequency of sine song generated
by males in their copulatory courtships has strongly been
suggested from the evidence that it is different among the
three species (significantly lower in D. ohnishii than in D.
lini and D. ogumai) in accordance with the modes of sexual
isolation between them [18]. Furthermore, wing-cut and
playback experiments have provided crucial evidence for
that the sine song frequency is used as a sexual cue for

mate recognition in the lini clade [44, 45]. In light of the
inferred phylogeny, it is most parsimonious to consider that
the lower frequency sine song has evolved in D. ohnishii. If
so, the first speciation between D. ogumai and D. lini should
have occurred allopatrically, because sympatric or parapatric
speciation seems to be inconceivable under the absence of
premating isolation. As for the second speciation of D.
ohnishii from D. lini, two hypotheses can be conceived with
respect to the evolutionary sequence of post- and premating
isolations: (1) if the postmating isolation has first evolved,
it should have been established between geographically iso-
lated populations as in the first speciation event. Then, the
premating isolation, that is, the lower frequency sine song,
may have evolved through the process of reinforcement in
the secondary contact zone with either neighboring species
in D. ohnishii. Even in the light of the phylogeny inferred
from the present study, we cannot determine the secondary
contact to which species has promoted this evolution. (2)
If the premating isolation has evolved first, the change
in frequency of sine song has occurred and fixed in D.
ohnishii as a consequence of adaptation to specific, but
unknown, environmental conditions or as a neutral change
irrespective of any adaptation and has secondarily come to
function, actually or potentially, as a cue for mate recognition
by females in this group. If this is the case, D. ohnishii
would have speciated from a small local population, where
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such (a) mutant gene(s) causing differentiation of sexual
character(s) are apt to be fixed, within the range of D. lini.
However, the mtDNA haplotype polymorphism observed in
D. ohnishii (Figures 1 and 2) seems to be inconsistent with
this hypothesis, although it does not rule out the possibili-
ty of gene introgression after speciation, especially from
southern China (DHS and NKS) populations of D. lini to
southwestern China (MLN) population of D. ohnishii.

For the establishment of postmating isolation, another
possibility is infection of microorganisms that cause cyto-
plasmic incompatibility [46–48]. However, Wolbachia infec-
tion has never been detected from any strains of the lini
clade (M. Watada, personal communication). From another
aspect, however, there remain large areas lacking distribution
data between the ranges of the three species, especially bet-
ween Xishuangbanna, southern Yunnan (the eastmost pop-
ulation of D. ohnishii) and Dinghushan, central Guangdong
(the westmost population of D. lini). Filling this gap of data
will prompt us to revise the hypothesis about the evolution
of these two species seemingly having diverged very recently.
In addition, studies of speciation genes relating to the post-
and premating isolations, especially those underlying the
differentiation of sine song frequency, are needed.
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