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Abstract: To obtain fine and potential features, a highly informative fused image created by
merging multiple images is usually required. In our study, a novel fusion algorithm called
JSKF-NSCT is proposed for fusing panchromatic (PAN) and hyperspectral (HS) images by combining
the joint skewness-kurtosis figure (JSKF) and the non-subsampled contourlet transform (NSCT).
The JSKF model is used first to derive the three most sensitive bands from the original HS image
according to the product of the skewness and the kurtosis coefficients of each band. Afterwards,
an intensity-hue-saturation (IHS) transform is used to obtain the luminance component I of the
produced false-colour image consisting of the above three bands. Then the NSCT method is used to
decompose component I of the false-colour image and the PAN image. The weight-selection rule
based on the regional energy is adopted to acquire the low-frequency coefficients and the correlation
between the central pixel and its surrounding pixels is used to select the high-frequency coefficients.
Finally, the fused image is obtained by applying an IHS inverse transform and an inverse NSCT
transform. The unmanned aerial vehicle (UAV) HS and PAN images under low- and high-vegetation
coverage of wheat at the flag leaf stage (Stage I) and the grain filling stage (Stage II) are used as the
sample data sources. The fusion results are comparatively validated using spatial (entropy, standard
deviation, average gradient and mean) and spectral (normalised difference vegetation, NDVI, and leaf
area index, LAI) assessments. Additional comparative studies using anomaly detection and pixel
clustering also demonstrate that the proposed method outperforms other methods. They show that
the algorithm reported herein can better preserve the original spatial and spectral characteristics
of the two types of images to be fused and is more stable than IHS, principal components analysis
(PCA), non-negative matrix factorization (NMF) and Gram-Schmidt (GS).

Keywords: image fusion; non-subsampled contourlet transform (NSCT); joint skewness-kurtosis
figure (JSKF); IHS transform; remote sensing

1. Introduction

With the development of remote-sensing technology, hyperspectral (HS) remote sensing has been
widely used in precision agriculture, mineral exploration, land-use/land-cover classification, and other
fields [1-5]. More recently, HS imaging by acquiring a scene in several hundreds of contiguous
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spectral bands has opened a new range of relevant applications such as target detection and spectral
unmixing [6,7]. However, while HS sensors provide abundant spectral information, their spatial
resolution is generally more limited. To obtain images with good spectral and spatial resolutions,
the remote sensing community has devoted increasing research efforts to the problem of fusing HS
images with panchromatic (PAN) images [8-10]. The fusion of HS images with panchromatic ones
of high spatial resolution can not only provide HS images with the excellent spatial characteristics of
PAN images but also provide PAN images with rich spectral information. This is an effective way to
improve the observability of the two types of images, which is beneficial to the subsequent processing
of the visual interpretation, and is therefore of great practical value. At present, all types of fusion
algorithms aim to improve the quality of fused images and reduce the fusion time. In selecting fusion
algorithms, full attention should be given to the specific features of HS images, such as large amounts
of data, strong correlation between bands, and specific fusion requirements.

In general, the most common fusion algorithms can be separated into three categories. The most
classical are the projection- and substitution-based methods, which assume that the PAN image [11]
is equivalent to the structural component of the intensity-hue-saturation (IHS) when the latter is
translated into a new space. Algorithms such as the IHS [12], the principal component substitution
(PCS) [13], and the Gram—-Schmidt (GS) transformation [14] all belong in this category. They provide
visually superior high-resolution HS images, but ignore the requirement for high-quality synthesis of
spectral information.

Another type of methods are those based on band ratios and arithmetic combinations. An example
of this is the synthetic variable ratio [15], which is rapid and performs well. The last category is the
wavelet-based methods, such as the discrete wavelet transform [16], which extracts the high frequencies
of the PAN image and then injects them into the IHS space to get the fused image. In addition, recent
years have seen the emergence of many other algorithms that improve upon existing methods, such as
the fast Fourier transform [17] and enhanced IHS [18,19].

At present, the fusion results of these methods lose some of original image information while
enhancing spatial or spectral information. In addition, most of these algorithms do not consider the
physical characteristics of the detection system (i.e., each sensor works in different regions of the
electromagnetic spectrum). Ignoring this fact leads to injection of spectral information from different
parts of the spectrum which may not belong to the sensor, which leads to modification of spectral
signatures in the fused HS data. In addition to general evaluation indices such as entropy, mean,
mean square error (MSE), to evaluate and compare the results of fusion methods, some approaches or
algorithms are also proposed under different application landscapes. For example, the so called Wald’s
protocol is normally based on a high-resolution HS image in the pansharpening community [20].
Conversely, when there are no ground truth high-resolution HS images, the quality without reference
(ONR) algorithm and generalized QNR (GONR) are recommended [21,22].

Unmanned Aerial Vehicles (UAVs), as efficient and a highly flexible aircraft, have been widely
used to collect multisource high-resolution airborne remote sensing imagery. Several sensors can be
simultaneously aboard an UAV to acquire different remote sensing data. The primary issue is how to
utilize the multisource images to accurately identify the targets. It is of great significance to acquire
a highly informative fused image created by merging multiple images. A novel fusion algorithm
(hereafter referred to as “JSKF-NSCT”) was proposed in our study to merge the UAV PAN and HS
images of wheat at two growth stages. Our highlights for this analysis are: (1) joint skewness-kurtosis
figure (JSKF) is used to assist in finding out three most sensitive spectral bands from original HS image;
(2) non-sampling contourlet transform (NSCT) is then used to decompose the high- and low-frequency
fusion coefficients; and (3) the weight-selection rule based on the regional energy is adopted to assure
the low-frequency coefficients and the correlation between the central pixel and its surrounding pixels
is used to select the high-frequency coefficients.
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2. Materials and Methods

2.1. Study Area and Experimental Design

The experimental site is located at Xiaotangshan National Precision Agriculture Research and
Demonstration Base, which is located in the Changping District (Beijing, China) at a latitude of 40°00’
N-40°21" N, a longitude of 116°34' E-117°00’ E, and an altitude of 36 m. The length of the experimental
site in the east-west direction was 100 m and the length in the north-south direction was 165 m.
The site contained 64 plots, each measuring 9 m x 15 m (Figure 1).

The experimental equipment included an eight-rotor UAV (Dajiang, Shenzhen, China); a UHD-185
Airborne HS camera (Cubert GmbH, Ulm, Baden-Wiirttemberg, Germany) with a spectral range of
450-950 nm, a sampling interval of 4 nm, a spectral resolution of 8 nm at 532 nm, and 125 spectral
channels; and an HD digital camera (DSC-QX100, Sony, Tokyo, Japan, resolution of 5472 x 3648).
The data used in this work include HS and digital photographs of two stages of wheat growth.
Samplings took place on 21 April 2015 (flag leaf stage, Stage I) and 22 May 2015 (grain filling stage,
Stage II).
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NO~N3: Nitrogen treatment levels; n01~n32: Number of experimental plots.
T1~T4: Water treatment levels; s01~s32: Number of experimental plots.
P1~P2: Wheat varieties

Figure 1. The schematic plot of our experimental design.
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2.2. Our Proposed Fusion Algorithm

Three primary steps are required to finish the fusion process from original HS and PAN images to
fused image (Figure 2). The first is to preprocess and register the HS and PAN images. The number of
original spectral bands of HS image is reduced by the JSKF model, and three most sensitive bands are
selected to generate the false-colour image. The second is to carry out the IHS transform for obtaining
the three components. NSCT is used to decompose the low- and high-frequency fusion coefficients.
The third is to select the fusion rules for high- and low-frequency coefficients. A new I component can
be produced by the inverse NSCT and the fused image can be generated by the inverse IHS.

HS image JSKF Falge-colour
1mage
v
Registration IHS transform
v v v
PAN image I component H component S component
NSCT NSCT

v

Selection of low- and high-
frequency fusion coefficients

INSCT

A\ 4

Inverse IHS <
transform

v

Fused image

A 4

New [/ component

Figure 2. The overall technical flowchart of our proposed fusion algorithm.

2.2.1. Selection of Sensitive Bands Based on the JSKF Model

Because of the corresponding large volume of data, HS images are very difficult to transmit and store.
Resolving this problem requires a technique to reduce the dimensions of HS images [23,24]. Because of
the strong correlation and high redundancy of the HS bands, applying the dimensional-reduction method
allows the data volume to be compressed. The number of bands selected depends on the actual needs.
In this paper, HS images and PAN images are used to fuse high-quality false-colour images. Colour
images are composed of three components: red (R), green (G), blue (B), so three bands are selected from
HS images for fusion with PAN images. Several guidelines are available for selecting the sensitive bands:

(1) From the point of view of information theory [25], the maximum amount of information must be
selected from the band or band combination.

(2) From the point of view of mathematical statistics, the correlation between the selected bands
should be weak so as to maintain the independence and effectiveness of each band.

(3) From the point of view of spectroscopy, the differences in the spectral characteristics of the
properties to be identified from the study area should be maximized.
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(4) From the point of view of classification, objects that need to be discriminated should be most
strongly classified in the selected bands.

There are two aspects of the current group of band-selection techniques: the criterion function and
the search method. The main challenge of HS image dimension reduction is to reduce the volume of
data while keeping sufficient information for the following informational analysis of the image. Up to
now, many types of methods have been proposed to reduce the large quantity of HS data, such as
band-selection-based methods, subspace decomposition-based methods, and feature-detection-based
methods. Traditional band-selection methods based on information quantity are to use the entropy,
joint entropy, and variance of the image as the measurement indices of information size [26] and select
the bands with the maximum information. Nevertheless, the methods are generally identified that the
quality of images is measured as a whole without considering the spatial features of images and the
statistical or distribution characteristics of objects or subjects.

For HS images, according to the central-limit theorem, the background samples, which contain
most of the information in an image, follow an approximate Gaussian distribution [23]. The target
can be regarded as an exception in the image (as opposed to the background). Thus, finding the
non-background features such as the target can be reduced to searching for the characteristics of a
Gaussian distribution. Therefore, the skewness and kurtosis coefficients can be used to measure the
amount of feature information, such as the target and the size of the feature.

To measure the degree of deviation from the normal distribution more comprehensively and
effectively, we use the product of the skewness and the kurtosis coefficients as an index to measure the
amount of information that deviates from the normal distribution, that is, the JSKF [6]:

JSKF = S-K 1)

Let x1, x2, ..., x4, be a sample from the general x. Then the discrete form for skewness is:

EM—‘
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where X = E(x) = Y x; represents the sample mean. Thus, the discrete formula for kurtosis is:
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For convenience, the division of the discrete form can be converted into multiplication, which gives
the discrete formula for calculating the JSKF as:

JSKF :ékn n s n n L 4
=[;; (3£ (- 27) H;y (3 £ (- 27) —3] @

i=1

In this paper, the product of the skewness and kurtosis coefficients is used as the coefficient of
band selection. According to the sign of the coefficient, we first partition the adaptive space and then
select the optimal bands according to the absolute value. Based on the definition of JSKF, we see
that a larger JSKF value corresponds to a greater deviation of the data from the normal distribution.
The data thus contain more information of interest to us. The positive and negative coefficients reflect
the difference within the data distribution. Therefore, we can calculate the JSKF of the HS image
data. The original image data space is divided into two subspaces according to the difference in the
distribution. The images in these two subspaces have high similarity in their respective subspaces,
but the similarity between the two subspaces is low and the difference is large. Figure 3 shows the
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JSKF curves of HS images with 128 bands. This result shows that the 128 bands can be divided into
two subspaces as a function of the sign of the JSKF.

JSKF curve

— — — Borderline to identify the positive and negative JSKF values

JSKF value

(6]

0 20 40 60 80 100 120 140
Spectral bands of HS image

Figure 3. The JSKF curve of the original HS image.

The HS image bands can be further classified according to the absolute value of the JSKF in each
subspace, which finally allows us to choose the best bands in the divided subspace. The method is
described as follows:

(1)  Set the threshold to automatically select the bands.
(2) Sort the JSKF according to its absolute value and then according to the requirements of later
processing to select the n largest bands.

In addition, the random distribution of the additive noise in the image is generally similar to
a Gaussian distribution. The effective information in the image made of the contaminated band is
suppressed by the presence of noise, which makes the grey-level distribution of the noise band tend to
a Gaussian distribution. Therefore, the band’s JSKF suffers less from noise pollution. By using this
method, the band-selection method can efficiently remove the noise, which is helpful for selecting
bands that give better image quality.

2.2.2. NSCT Based Fusion of PAN and HS Images

As we know, approximation of an image belongs to the low-frequency part, while the
high-frequency counterpart exhibits detailed features of edge and texture. In this paper, the NSCT
method is used to separate the low and high components of the source image in the frequency domain,
and then the two parts are dealt with by different fusion rules according to their features. As a result,
the fused image is more complementary, reliable, clear, and better understood.

The NSCT is a sparse representation of the image that has not only multiple scales and
time-frequency localization but also a high degree of directionality and anisotropy [27]. The basic idea
of this method is to decompose the image into a pyramid multiscale decomposition and then use the
direction filter bank to decompose the subband images. In this way, we get the subbands with different
scales and directions, and the method allows for a different number of directional subbands on each
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scale. This algorithm is similar to the translation algorithm in translation-invariant wavelet transform.
In the process of decomposition, the decomposed subbands have the same size as the original image,
which makes the NSCT translation invariant. Figure 4 depicts the NSCT image-decomposition process.
In this figure, “NSP” refers to “non-subsampled pyramid” and “NSDFP” refers to “non-subsampled
directional filter pyramid”.

Lowpass
subbands

L

NSP| D NSDFP
N N N

High-frequency
subbands in different
directions

NSP NSDFP | High-frequency subbands
in different directions

Figure 4. The decomposition flowchart of the NSCT.

Similar to the Laplacian pyramid algorithm, NSCT first uses the original HS images and the
non-sampling two-channel filter bank to perform the convolution to obtain an image-decomposition
layer. However, we do not sample the decomposed low-frequency image except for the interpolation
of the non-subsampled double-channel filters [28]. When it goes down and we get multiple resolutions
of the image. This type of non-sampling decomposition prevents aliasing of the frequency spectrum
of each subband [29], which is very valuable for image fusion. After the image is decomposed by
layer N, the (n + 1)-th subband is obtained in the pyramid, including the N-detail subband and one
low-resolution approximation subband.

The non-directional filter bank of NSCT is a type of sector directional filter bank that does not take
up and down sampling instead of corresponding to the filter group in the direction of interpolation
processing. Thus, the nondirectional filter banks with translation invariance are obtained and divide
the two-dimensional frequency-domain plane into the direction wedge block [30], each representing
the image detail feature in this direction. Figure 5 gives a schematic diagram of the decomposition of
the filter banks.
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Figure 5. Schematic diagram of NSCT directional filter banks.

Because the NSCT can overcome the aliasing phenomenon, it has better spectral characteristics.

This paper is based on this method, and the basic processes of the fusion method are as given in the
following algorithm (Table 1):

Table 1. Primary steps for performing the NSCT based fusion of HS and PAN images.

Operation Procedures: NSCT Based Fusion Method

@

An IHS transform is applied to the false-colour image derived from the JSKF model to obtain the three
components of I, H, and S.

The I components of the HS and PAN images are extracted using the NSCT to obtain the

frequency coefficients.

Weighted fusion of the low-frequency coefficients is applied and the high-frequency coefficients are
selected by using the correlation between the centre pixel and its surrounding pixels.

NSCT is used to reconstruct the fusion coefficients.

The inverse IHS transform is used to obtain the final fusion result.

2.3. Procedures to Select Low- and High-Frequency Coefficients

(1) Transform the three selected bands of the HS image from RGB space to IHS space using a

linear IHS transform. The positive and negative transformation formulas are:

I 1/3 1/3 1/3 R
m | =| —Vv2/6 —V2/6 V2/6 G (5)
1y 1/vV2 —-1/vV2 0 B

R 1 =1/vV2 1/V2 I

G|l=1|1 -1/vV2 —-1/V2 1 (6)

B 1 V2 0 vy
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Among them, hue and saturation can be calculated by the following equation:
H = arctan(;})

7

S=\/vi+v3 @

(2) Match the histogram of the high-resolution PAN image and the component I of the HS image
obtained by the IHS transform. Apply the NSCT transform to the PAN image and component I.
Next, we obtain an approximate low-frequency component of the image and the high-frequency
subbands in the multilayer and in multiple directions.

(3) Select low- and high-frequency fusion coefficients

(i) Fusion rules for low-frequency coefficients

The low-frequency subbands obtained by the decomposition of the NSCT reflect the image
approximation and average characteristics [31] and construct the basic outline of the image.
The traditional method of averaging coefficients is not suitable for the fusion of HS and PAN images.
Because of the high resolution of the PAN image, the average-value method will weaken the contour
information of the PAN image. Therefore, the correct selection of low-frequency subband coefficients
can improve the visual effect of the image. To better integrate the features of the high-resolution image
into the HS image, this paper adopts the weight-selection rule based on the regional energy [32]. In this
paper, we automatically determine the weight according to the size of the regional energy. We denote
the low-frequency part of the PAN image as I4 and the low-frequency component of the HS image as
Ig. Then the low-frequency component Iy, is:

I.(x,y) = wala(x,y) + wplp(x,y) ®)

where w4 and wp represent the corresponding pixel-weight coefficients and they can be calculated as
follows:

_ Ea(xy)
WA T Ealiy) tEp(xy) )
wn — Ep(xy)
B EAGy)+Es(xy)

where E 4(x, y) and Ep(x, y) represent the region energy of the low-frequency subband. In this study,
the selection range of the energy is a 3 by 3 pixel sized window, which is centered on the fused pixel.

(ii) High-frequency fusion coefficients

The high-frequency coefficients are the details of the image, such as edge information and
texture information [33]. This information is the focus of the human visual system. The purpose of
high-frequency-coefficient fusion is to extract the maximum amount of detailed information from the
source image. In the original HS image, those obvious image features, such as lines, curves, edges,
and so on, are often shown as the grey value and its change. In the multiscale transform domain, it is
often manifested as a high-frequency subband transform coefficient with higher modulus. However,
the study of physiology shows that the human eye is sensitive to the local contrast of the image
but not to the brightness of a single point [34]. Thus, high-frequency fusion should aim to better
highlight the local contrast of an image and consider the correlation between the central pixel and
its surrounding pixels. The gradient of the eight directions of the high-frequency coefficients and
their domain coefficients is used as the threshold for pixel selection. Denoting the high-frequency
coefficients of each layer and direction of the image after fusion as I, the formula is:

L (x,y), Ta(x,y) = Tp(x,y);

Lik(x,y) = { 1. (x,), Ta(x,y) é X; < Tp(x,y) (10)
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where T(x, y) is shown in Equation (11) and it represents the total variation between the high-frequency
coefficient and its corresponding neighborhood coefficients in eight gradient directions.

1 1
Tx,y)= Y, Y |Lij(xy)—Iijj(x+my+n)| (11)

m=—1n=-1

(4) The inverse NSCT is obtained by the procedure above for the low- and high-frequency
coefficients of the new fused image. Then, we receive the intensity component I of the fused image,
following which the new I component and the H and S components are transformed into RGB
space [35]. After that, we get the fused high-resolution images.

2.4. Performance Metrics for Evaluating the Fusion Results

(1) Mean

Mean is the average of all pixels in the image. It approximately reflects the grey distribution of
the image [36] and is the most direct reflection of the image brightness. If the mean value is moderate,
the visual effect is good. The mean y of a single-band image f can be calculated as follows:

1 M N
K= MN o yX:)lf(x,w (12)
where, M and N are the row and column numbers, respectively, of image f, and f(x, y) is the grey value
of the pixel at position (x, y).
(2) Standard deviation

Standard deviation (SD) reflects the discrete condition of the grey level relative to the grey mean.
It can be used to evaluate image-contrast size [37]. Its formula is:

(Z(xi,yi) — 2)

7= M x N 13

[NagkS

L=

If the SD is small, the image contrast is small. Because the contrast is not big, the tone is single and
even, so not too much information is available from the image. The larger the SD, the more dispersed
the grey level distribution. The contrast of the image is high, so more information can be obtained
from the image.

(3) Entropy

In 1948, Shannon, the founder of modern information theory, defined the mean amount of
information as entropy [38]. The formula is:

255
E = —Z pilog, p; (14)
i=0

where, p; is the probability of i within the range of [0, 255]. Entropy is an important index to measure
the richness of image information: it reflects how much information the image carries. A greater
entropy of the fused image with respect to that of the non-fused images means that the information
contained in the fused image is richer and the fusion effect is better.

(4) Average gradient
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Average gradient provides a sensitive reflection of the image’s ability to express contrast between

small details [39]. Its formula is:
Af (xi i)\ (f(xiyi)\°
( . ) +( )/z as)
i=1 Xi ay;

1
G_MN.

1

=
1=z

I
—

In general, the larger the average gradient, the greater the number of image levels and the clearer
the image.

(5) Edge acutance value

Edge acutance value (EAV) is an objective measure of sharpness which considers the sensitivity
of the human visual system to specific spatial frequencies and the viewing distance of an image [40].
Edge acutance refers to the ability of a photographic system to show a sharp edge between contiguous
areas of low and high illuminance. Its formula is:

Yy L |4f /dx]

EAV = M x N

(16)

where df /dx is the grey change rate of edge vector, and M and N is respectively the rows and columns
of an image.

3. Results

3.1. Comparison Experiments for Selecting the Sensitive Bands

In this paper, the JSKEF, principal components analysis (PCA) [41], covariance matrix eigenvalue
(CME) and band ratioing [42] were used to comparatively select the bands of HS images of the same
ground. We used these four band-selection methods in a band-selection experiment with the 128 bands
of HS images obtained by UHD-185. Table 2 (Stage I) and Table 3 (Stage II) give the band numbers or
band ratios of selected bands by the four methods.

Table 2. Comparison of band indices selected by four methods at Stage I.

Band-Selection Method Selected Bands or Band Ratios
PCA 125,110,117, 120,98, 101, 112, 125, 99, 105
CME 126,122,107,6,98,5,9, 19,99, 103
JSKF 20, 40, 56, 50, 105, 114, 120, 100, 99, 102
Band ratioing 117/125,105/120, 101/99

Table 3. Comparison of band indices selected by four methods at Stage II.

Band-Selection Method Selected Bands or Band Ratios
PCA 105, 110, 107,90, 101, 119, 112, 125, 98, 108
CME 122,101, 100, 23, 8, 66, 7,102, 123,90, 126
JSKF 28,30, 37,59, 78, 90, 100, 108, 96, 121
Band ratioing 107/105,112/98,90/108

It can be found that the bands selected by the PCA are concentrated in the latter third of the
band range. The selected bands are relatively concentrated. The spectral range of imaging by the
UHD-185 camera is concentrated in the same characteristic spectrum. The reflection of the object in the
image is essentially uniform, the grey-level distribution of the image is very similar, and a significant
amount of redundant information is present. The CME is relatively good and can choose the range of
the different spectral bands. However, this method selects too many bands close to the ends of the
spectrum. The image quality of these bands is often poor, so they are not the best bands to be exploited.
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The bands selected by the JSKF are widely distributed and are far from the operating point of the
imaging spectrometer. The data collected by this algorithm are highly available. In comparison with the
three former methods, band ratioing can acquire the band ratios derived from the two bands with the
most and least variations in each segmented sub-image after image segmentation. The environmental
effects may be reduced compared with the single spectral band. The spectral distance of two bands for
each band ratio, however, are located relatively close in this study.

To further compare the band-selection performance of four methods, we selected two HS images
with low- and high-vegetation coverages of wheat at Stage I and Stage II. Three bands or band ratios
in HS images were selected by the four methods. Using the first three bands representing the three
channel components of R, G, B, false-colour images could be obtained as shown in Figure 6a,b. It can
be visually found that the JSKF-based false-colour images have most the obvious colour contrast.
Conversely, the colour of false-colour images derived from the band ratioing are generally equalised.
Then we used the entropy, SD, and EAVto evaluate the quality of the image after band selection in
terms of three aspects. In this way, we can better evaluate how different band-selection methods affect
the image. The comparison results are presented in Table 4. We can find that the JSKF performs best
for all the evaluation indicators at two growth stages in comparison with the other methods. Band
ratioing occupies the second place and CME generally shows the worst performance.

PCA (R: 125, G: 110, B: 117) CME (R: 126, G: 122, B: 107) JSKF (R: 20, G: 40, B: 56) Band ratioing
(a) Stage I

PCA (R: 105, G: 110, B: 107) CME (R: 122, G: 101, B: 110) JSKF (R:28, G: 30, B: 37) Band ratioing
(b) Stage IT

Figure 6. Visual comparison of band selection using the PCA, CME, JSKF and band ratioing.

Table 4. Quantitative evaluation of band selection.

) Stage I Stage II
Indicator
PCA CME JSKF Band Ratioing PCA CME JSKF Band Ratioing
Entropy 523 496 798 6.94 721 713 897 7.12
SD 826 7.63 10.59 9.21 1036 9.58 12.79 10.87
EAV 226 210 3.36 3.11 354 3.62 438 3.97

From the above test we can draw a conclusion: the proposed JSKF can overcome the shortcomings
induced by the transform-based dimension-reduction method and prevent the original spectral
information from being lost. The performance of the proposed method has been also validated
by several experiments. The experimental results show that the proposed algorithm can reduce the
dimensions of hyperspectral images with little information loss by adaptively selecting the band
images. The contour of the image is more prominent, and the spatial information of the target is clear.
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The sensitive bands extracted by this method are more representative in the whole wave band, which is
helpful to analyze the results of the next image fusion experiment.

In order to compare the effectiveness of the three band-selection methods, kernel RX (KRX) was
used to accomplish the anomaly detection process. To facilitate the analysis of test results, the gray image
of the detection results was segmented into binary image by thresholding. Then the morphological
filtering method was used to filter out the connected regions with the pixel values greater than 100
to filter out the large area of false alarm area (Figure 7). We can draw a conclusion that the detection
effect under the JSKF is better than the other three comparison methods. It enables targets to be easily
detected with fewer alarms.

A: High-vegetation coverage at Stage | ; B: Low-vegetation coverage at Stage |
| C: High-vegetation coverage at Stage Il ; D: Low-vegetation coverage at Stage |I

Figure 7. Anomaly detection results with four band-selection methods.

Moreover, the receiver operating characteristics (ROC) curve was also used to quantitatively
evaluate the test results (Figure 8). It shows that the ROC curve derived from the JSKF method is
located above the curves generated by the CME, PCA and band ratioing, which indicates that the
anomaly detection results with the JSKF method is better than the other three band-selection methods.

1.0 ——
= 0.9
S
g 0.8
5 0.7
-
S 0.6
-
205 | [/
=
3 04 —— JSKF
£ 03 ——— CME

0.2 — PCA
f Band ratioing

0.1

1 1 1 1
0.02 0.04 0.06 0.08 0.10

False alarm rate

Figure 8. Comparison of ROC curves of anomaly detection results.
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3.2. Experimental Fusion Results of HS and PAN Images

To realize the pixel-level fusion of HS images and PAN images, we also have to perform the image
registration for the original HS images and PAN images and realize the one-to-one correspondence of
the objects in the images.

We used the proposed NSCT-based fusion algorithm to fuse the three bands of HS images based
on the above JSKF band-selection rule and PAN images. These image data include remotely sensed HS
images and corresponding high-resolution digital images of the same plot of wheat at two growth
stages. We used this method and four other traditional methods to fuse these images at each growth
stage, two plots with low- and high-vegetation coverages were selected as the control experiments
(Figure 9). A and B represent the images with the two coverages at Stage 1. Similarly, C and D represent
the images at Stage II. Figure 9A1-D1 present the fused images generated by the proposed algorithm.
Figure 9A2-D2 are generated by the IHS method, Figure 9A3-D3 by the PCA method, Figure 9A4-D4
by the GS method, and Figure 9A5-D5 by the non-negative matrix factorization (NMF) method.

A: High-vegetation coverage at stage [; B: Low-vegetation coverage at stage [; 1: JSKF-NSCT; 2: [HS; 3: PCA;
C: High-vegetation coverage at stage Il Low-vegetation coverage at stage II.

D1 D2 D3 D4 D5

Figure 9. Comparison of fusion results using five different methods.
4. Discussion

4.1. Evaluation of Fusion Effects

In essence, the quality of fused images consists of three factors: detectability, resolution,
and scalability. The detectability of an image indicates the sensitivity of the image to a spectral
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section. The resolution of the image indicates the ability of the image to provide sufficient contrast
for the visual distinction of two small objects. The scalability of an image indicates the ability of an
image to correctly restore the shape of the original scene. The detectability and resolution of images
are collectively referred to as the quality of image formation, and the image scalability is called the
geometric quality of an image. The evaluation of geometric quality is relatively simple and intuitive:
it represents the difference between the image points and the corresponding ideal image points in the
geometric positions of the remote sensors. The evaluation of image texture quality is complex and
difficult and includes not only the image expression level but also the influence of the microstructure
on the image quality. It is also related to the requirements of the image user. In many cases, the image
quality of a given image is often evaluated differently by different users. At present, the methods of
evaluating image fusion are divided into two types: spatial analysis and spectral analysis:

(1) Spatial analysis

Upon comparing the fused images with the original HS image, we see that all fused images have
better spatial qualities. Different ground objects can be clearly identified and the image outlines are
also clearer. In terms of brightness, the fusion algorithm proposed in this paper has higher brightness
relative to several traditional algorithms. This increases the target recognition accuracy under the same
terrain conditions. In terms of clarity, the method used in this paper provides better results than other
methods, which makes it easier to obtain information from images. At the same time, these methods
perform differently in the spectral aspect [43]. However, this kind of evaluation may be too reliant
on humans and thus it is necessary to employ quantitative measures. The result of the fused images
can be evaluated in terms of two aspects: the spatial resolution of each spectral band image and the
spectral quality of each spectrum in a single pixel [44]. Four typical metrics are introduced below as
shown in Tables 5-8. We can find that the values of four indicators of our proposed algorithm are best
than the four typical fusion methods.

Table 5. Comparison of evaluation for five fusion methods for experiment A.

Method Entropy SD Average Gradient Mean
IHS 7.347 46.174 13.164 79.268
PCA 7.268 44.235 12.859 77.569
NMEF 7.695 49.356 16.338 91.265
GS 7.826 56.125 15.632 90.365
JSKE-NSCT 7.859 57.673 15.997 92.365

Table 6. Comparison of evaluation for five fusion methods for experiment B.

Method Entropy SD Average Gradient Mean

IHS 2.365 50.698 10.205 55.695
PCA 2.985 55.369 9.368 59.365
NMEF 2.489 54.127 14.639 70.359

GS 3.698 66.358 17.698 77.369

JSKE-NSCT 4.601 70.369 20.656 80.456

Table 7. Comparison of evaluation for five fusion methods for experiment C.

Method Entropy SD Average Gradient Mean

IHS 8.965 46.889 14.635 80.006
PCA 9.397 42.976 13.698 78.192
NMEF 9.125 47.787 15.779 85.127

GS 9.368 50.129 16.383 91.368

JSKE-NSCT 9.975 55.363 18.309 92.001
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Table 8. Comparison of evaluation for five fusion methods for experiment D.

Method Entropy SD Average Gradient Mean

IHS 5.369 42.012 12.687 73.127
PCA 6.002 43.226 15.368 76.065
NMF 7.331 47.997 14.365 87.245

GS 6.957 50.012 15.778 89.148

JSKF-NSCT 7.897 55.147 17.366 92.386

In Tables 5-8, some image-based indices are used to test the information and sharp change
rate. Moreover, another four indices including correlation coefficient (CC), erreur relative globale
adimensionnelle de synthese (ERGAS), root mean square error (RMSE) and bias are also introduced to
evaluate the fusion effect (Table 9). Ideally, the values of bias and RMSE are 0. Smaller value shows
that more spectral information can be maintained in the fusion results. Similarly, the ideal value of
CC is 1. When the value of ERGAS is greater than 3, it shows the poor quality of the fused image,
conversely, the fused image is good. As shown in Tables 5-9, we can draw the conclusion that the
results obtained by JSKF-NSCT are superior to other fusion methods. Meanwhile, compared with the
original images, the fusion images perform better in color details and spectral characteristics.

Table 9. Comparison of another four evaluation indices for five fusion methods.

Method CcC RMSE ERGAS Bias
IHS 0.59 3.24 3.7 0.07
PCA 0.62 421 2.6 0.48
NMF 0.67 4.62 4.3 0.26
GS 0.67 5.97 3.1 0.05
JSKE-NSCT 0.69 3.17 2.7 0.03

In addition to objectively evaluate the methods discussed in Sections 2.2 and 3.1, pixel clustering
was also used to accomplish the further validation of our results below. It is believed that an algorithm
with higher CC, RMSE or ERGAS can also perform well in pixel clustering analysis. Figure 10 shows
the clustering results from five methods based on the cluster centres extracted from ground truth
fusion images, respectively. Here, the K-means algorithm was used to locate the cluster centres. It can
be seen that in comparison with the other four methods, the JSKF-NSCT method can achieve the
highest clustering accuracy.

Pixel Classification

0.9 B High-vegetation coverage at Stage I || High-vegetation coverage at Stage 1I
08 B Low-vegetation coverage at Stage I [l Low-vegetation coverage at Stage II

0.7 M

0 NN

JSKF- J5KF- JSKF- JSKF -
wscy 1HS PCA GS NMF o I1HS PCA GS NMF wser S PCA GS NMF Ll 1HS PCA GS NMF

Figure 10. Pixel clustering accuracy using the five fusion algorithms.
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(2) Spectral analysis

In this paper, the high-resolution PAN image and HS images of two growing periods are processed
by the JSKF-NSCT fusion algorithm. The normalised difference vegetation index (NDVI) of the fused
image was calculated and modelled by using the leaf area index (LAI) of the measured plots and the
chlorophyll of the corresponding region [45]. Subsequently, the same operation was performed with
four other traditional methods. Next, the modelling process was carried out and the coefficients of
determination (R?) obtained by the methods were compared [46,47]. The closer R? is approaching 1,
the better the fusion image reflects the real ground vegetation coverage, which means the fusion result
is better. The results are compared in Tables 10 and 11.

Table 10. Results of comparison at Stage I.

Method Leaf Chlorophyll LAI
Linear Formula R? Linear Formula R?
IHS y =—0.002x + 2.7574 0.7790 y =0.2802x + 7.2984 0.8554
PCA y=—0.0022x + 2.7844 0.8081 y =0.2615x + 7.0921 0.8511
NMF y = —0.0022x + 2.7869 0.7998 y =0.2568x + 7.1717 0.8444
GS y = —0.0024x + 2.8128 0.8272 y = 0.2488x + 6.8835 0.8496

JSKF-NSCT  y = —0.003x + 2.8826 0.8653 y =0.2328x + 5.3181 0.8846

Table 11. Results of comparison at Stage II.

Method Leaf Chlorophyll LAI
Linear Formula R? Linear Formula R?
IHS y =0.0005x + 0.0009 0.8537 y =0.3098x + 8.0463 0.8554
PCA y =0.0005x + 0.0091 0.8550 y =0.2882x +7.795 0.8511
NMF y =0.0005x + 0.0092 0.8543 y=0.2827x + 7.8869 0.8439
GS y =0.0005x + 0.8561 0.8561 y=0.2729x +7.5321 0.8495

JSKF-NSCT y =0.0004x + 0.008 0.8831 y=0.2445x + 5.5826 0.8845

4.2. Characteristics and Drawbacks of Traditional Methods

Generally speaking, the IHS transform fusion method improves the texture features of a target
image. At the same time, the fusion results maintain the characteristics of HS images in terms of hue,
saturation, and so on [48]. However, the spectral information suffers certain losses. Moreover, the IHS
fusion method can only fuse three bands. In addition, the IHS transform distorts the spectral features
of the original multispectral image, resulting in spectral degradation [49].

PCA is a widely used method of fusion and focuses on the fusion transform over three-band
images [50]. The main advantage of the fusion algorithm is that the spectral characteristics of the fused
images remain better, especially in the case of too many bands. The disadvantage is that, because
the eigenvalues and eigenvectors of the autocorrelation matrix are to be calculated, the computational
complexity is very large and the real-time performance is poor [51]. In addition, the principal components
of the PCA transform lose their original physical characteristics, and the method is very sensitive to the
selection of the fusion region.

NMF method [52] can better extract and describe the local-feature information of the image,
so as to achieve better expression of the image by simulating the human brain’s cognition of the
image information. It is a multivariate analysis method and is essentially a matrix decomposition and
projection technique. Its basic principles can be described as follows:

For any arbitrary nonnegative matrix V = [v1, 1, - - - vy|, the NMF method requires finding a
non-negative M X L basis matrix W and an L x N coefficient matrix H. These matrices must satisfy the
condition:

VmxN = Wumxr-Hpxn (17)
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It can integrate the dominant regions of different remotely sensed images and strengthen the
regional characteristics. It thus improves the result of the fused image. However, the NMF method
involves significant computational complexity, making it inefficient for dealing with remotely sensed
images containing large amounts of information.

The GS algorithm [53] is a multidimensional linear transformation that is often used in statistics.
The GS transform is used to process the multi-dimensional data of HS images so that redundant
information can be eliminated. The basic step of the GS fusion method is to first produce the first
component by spectral resampling, thereby converting HS images into orthogonal spaces. Finally,
the fused image is obtained by an inverse GS transformation. However, the high spatial resolution
image differs significantly from the harmonic phase and pixel value. After the GS transform, a
big difference remains between the grey values of image pixels and the remaining components
of harmonics.

Until recently, the multi-resolution decomposition-based algorithms have been widely used in
the field of multisource image fusion and have effectively overcome spectrum distortion. Wavelet
transformation provides great time-frequency analytical features and is the focus of multisource image
fusion [54]. The above methods are made up of the tensor product of two one-dimensional wavelets,
solving the problem of lack of shift invariance, which traditional wavelets cannot do. As they lack
anisotropy, these methods fail to express direction-distinguished texture and edges sparsely.

(1) Advantages of proposed method and analysis of experimental results

Compared with the traditional remote-sensing image-fusion algorithm, NSCT inherits the
advantages of the above algorithms and also benefits from translation invariance, which can greatly
reduce the influence of registration error on the fusion performance. At the same time, each subband
image obtained by NSCT decomposition has the same size as the original image, so it is easy to find
the corresponding relationship among the subbands, which is beneficial for the development of the
fusion rules.

From the contrast experiments described above, we can compare the results of the proposed
algorithm with those of several traditional methods. The fusion results obtained by the method
proposed herein and embodied by the set of several indices are significantly improved. Figure 11
compares the results of the various fusion methods.

.
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Figure 11. Comparison of the fusion results among our proposed algorithm and other fusion methods.
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They show that, for multiple evaluation indicators, at different growth stages and different
vegetation coverages, the fusion results obtained by using the method proposed herein are significantly
improved compared with the results of the traditional fusion methods. This suggests that the band
selection and fusion algorithm proposed in this paper are robust. The improvements are listed in
Tables 12-15.

Table 12. Percent improvement in entropy.

Stage I Stage II
High-Vegetation Low-Vegetation High-Vegetation Low-Vegetation
Coverage Coverage Coverage Coverage
IHS 6.96% 94.5% 11.2% 47.1%
PCA 8.13% 54.1% 6.15% 31.6%
NMF 2.13% 84.8% 9.31% 7.72%
GS 0.42% 24.4% 6.47% 13.5%

Table 13. Percent improvement in SD.

Stage I Stage II
High-Vegetation Low-Vegetation High-Vegetation Low-Vegetation
Coverage Coverage Coverage Coverage
IHS 24.8% 38.8% 18.1% 31.2%
PCA 30.3% 27.1% 28.8% 27.5%
NMF 16.8% 30.0% 15.8% 14.9%
GS 2.75% 6.04% 10.4% 10.2%

Table 14. Percent improvement in average gradient.

Stage I Stage 11
High-Vegetation Low-Vegetation High-Vegetation Low-Vegetation
Coverage Coverage Coverage Coverage
IHS 21.5% 102.4% 25.1% 36.8%
PCA 24.4% 120.4% 33.6% 13.0%
NMF —2.08% 41.1% 16.0% 20.8%
GS 2.33% 16.7% 11.7% 10.1%

Table 15. Percent improvement in mean.

Stage I Stage II
High-Vegetation Low-Vegetation High-Vegetation Low-Vegetation
Coverage Coverage Coverage Coverage
IHS 15.1% 44.4% 14.9% 26.3%
PCA 17.6% 35.5% 17.6% 21.4%
NMF —-1.19% 14.3% 8.07% 5.89%
GS 0.99% 3.98% 0.69% 3.63%

The above results show that, after processing by the proposed band-selection method and fusion
algorithm, the resulted target image contains more information and clearer edges. Image fusion
with different models and numerical tests were conducted in our experiments [55], and the four
experiments described above indicate that the proposed method has notable superiority in image
fusion performance over the four other techniques examined and has better robustness and timeliness.
We observed that images based on our proposed method offer the best visual effect and those based
on PCA are the worst. In addition to visual inspection, quantitative analysis is also conducted to
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verify the validity of our algorithm from the viewpoint of entropy, SD, average gradient, and mean.
The values of these metrics indicate that the experiments achieve the desired objective.

(2) Suitability evaluation of proposed method

Note that this study has examined only several images of two growing stages in a single year.
Due to partial absence of the original hyperspectral images, we have not been able to implement a full
analysis of the images of the entire crop-reproduction period. Moreover, the analysis of crop variety is
singular; whether this method has the same effect on other different varieties of crop images remains
unknown. However, these problems could be solved if we get consecutive years of image data for
different crops.

4.3. Computationally Efficiency with Three Fusion Methods

Speed is critical for image fusion in the field condition. In this paper, the average running time is
used to evaluate the efficiency (Table 16). The running platform of all methods is a Windows 10 PC
with 4-core Intel Corn I5 processor (3.60 GHz) with 12 GB RAM. We can see that the average running
time of JSKF-NSCT, PCS and GS are 15.4 s, 17.6 s and 14.4 s, respectively. Although the JSKF-NSCT
method does not reach the shortest running time, it achieves a more efficient processing speed while
taking account into fusion accuracy. The mean values of time-consuming are 7.4 s (band selection),
2.5 s (selection of fusing coefficients) and 5.5 s (image fusion), respectively. In addition, the key to
promote the computationally efficiency is to improve the selection rules of fusing coefficients and
maybe the interval optimization algorithm is a good alternative. It can be imaged that the running
time will be shortened in the future, and the proposed fusion method are more suitable for handheld
operations in the field.

Table 16. Test and comparison of computationally efficiency.

Method Average Running Time (s)
JSKF-NSCT 15.4
PCA 17.6
GS 14.4

5. Conclusions

In this paper, we focus on PAN images, which have high spatial resolution but lack spectral
information, and HS images, which have high spectral resolution and rich spectral information but lack
spatial resolution. To solve this problem, we propose a fusion algorithm for UAV HS and PAN digital
images combining the JSKF and NSCT. First, we use the JSKF model to extract the sensitive bands
from HS images, and then we fuse the extracted sensitive HS image bands and the corresponding
PAN images using the NSCT image-fusion algorithm. At the same time, traditional PCA, IHS, NMF
and GS methods are comparatively used to process the same object. The results of the five algorithms
are evaluated using the image indices and agronomy indices. The experimental results show that
the proposed fusion method can significantly improve the spatial resolution of HS images and also
maintain rich spectral characteristics. The fused image contains more information than the original
images. Furthermore, the image’s detail contrast, texture, and resolution are greatly improved, and the
quality of the fused image is better. In addition, the JSKF-NSCT fusion method can also maintain a
satisfactory processing speed while taking account into fusion accuracy.
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