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Background: Metabolic fingerprinting is a rapid and noninvasive analysis, representing a powerful 
approach for the characterization of phenotypes and the distinction of specific metabolic states due 
to environmental alterations. It has become a valuable analytical approach for the characterization 
of phenotypes and is the rapidly evolving field of the comprehensive measurement of ideally all 
endogenous metabolites in bio-samples. Silybin has displayed bright prospects in the prevention and 
therapy of liver injury, and we had conducted a preliminary exploration on the molecular mechanism 
of the hepatoprotective effects of silybin. Because the knowledge on the metabolic responses of 
an acute liver damage rat to the silybin is still scarce, metabolic fi ngerprinting can provide relevant 
information on the intrinsic metabolic adjustments. Materials and Methods: Here, the physiological 
and metabolic changes in the acute liver damage rat were investigated by performing a metabolic 
analysis. The phenotypic response was assessed by liquid chromatography/mass spectrometry 
(LC/MS) combined with pattern recognition approaches such as principal components analysis and 
partial least squares projection to supervised latent structures and discriminant analysis. Multivariate 
analysis of the data showed trends in scores plots that were related to the concentration of the 
silybin. Results: Results indicate 10 ions (7 upregulated and 3 downregulated) as differentiating 
metabolites. Key observations include perturbations of metabolic pathways linked to glutathione 
metabolism, tryptophan metabolism, cysteine and methionine metabolism, etc., Overall, this 
investigation illustrates the power of the LC/MS combined with the pattern recognition methods 
that can engender new insights into silybin affecting on metabolism pathways of an acute liver 
damage rat. Conclusion: The present study demonstrates that the combination of metabolic fi 
ngerprinting with appropriate chemometric analysis is a valuable approach for studying cellular 
responses to silybin drug and can provide additional insight into the mechanisms.
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INTRODUCTION

M e t a b o l o m i c s  i s  a n  e m e r g i n g  m e d i u m  t o 
high‑throughput technology that can automatically 
identify, quantify and characterize hundreds to 
thousands of  low molecular weight biochemicals 
simultaneously, using targeted or global analytical 
approaches. [1] The objective of  metabolomics is 
the detection and identification of  endogenous and 
exogenous metabolites to define the genotype or 

phenotype of  a biological system. This approach 
can be the measurement of  extracellular metabolites 
that are secreted and/or excreted from cells into 
their growth media.[2] This overall strategy is called 
metabolic fingerprinting. Metabolic fingerprinting is 
a high‑throughput analytical technique which mostly 
uses spectroscopic methods for the classification 
of  samples on the basis of  their origin or biological 
relevance.[3] Metabolism is either directly or indirectly 
involved with every aspect of  cell function, and 
metabolomics is thus believed to be a reflection of  the 
phenotype of  body. With hundreds of  metabolites that 
are more closely related to the phenotype, metabolic 
fingerprinting can help us in understanding a detailed 
analysis of  complex reaction networks and uncovering 
new drug targets.[4]

A B S T R A C T

O R I G I N A L  A R T I C L EP H C O G  M A G .
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Silybin [Figure 1] is the main component of  silymarin 
and is a polyphenolic bioactive natural product found in 
the milk thistle plant Silybum marianum. Silybin possesses 
many health‑promoting benefits, such as treating liver 
diseases, and shows hepato‑protectivity and contributes 
directly to the therapeutic effect.[5] The information 
about silybin’s metabolomics characteristic, which is 
very important for new drug discovery, has not been 
found. Among the various techniques conventionally 
used for cancer metabolic profiling, ultra‑performance 
liquid chromatography/mass spectrometry (LC/MS) 
has been proven to be a robust metabolomic tool 
and is widely applied in metabolite identification 
and quantification based on its high sensitivity, peak 
resolution and reproducibility.[6‑12] LC coupled to mass 
spectrometry is the most commonly used analytical 
approach to obtain comprehensive metabolite profiles 
of  biological samples.[13] LC‑MS is a sensitive analytical 
instrument that presents the best chromatographic 
resolution in metabolite analysis. In addition, LC/MS 
is a powerful tool for global, sensitive and highly 
reproducible biochemical analysis and is very rapid 
due to the automated high‑throughput analysis of  
biological samples and minimal sample preparation 
requirements.[14]

Metabolomics analysis has many potential applications 
and advantages compared to currently used methods 
in the postgenomics era. It represents the final 
downstream product of  cell function and as such may 
be a closer reflection of  phenotype than the genome, 
transcriptome or proteome.[15] Changes in metabolism 
are quickly detected through changes in their metabolic 
fingerprint profile.[16‑18] With the use of  appropriate 
methodologies, metabolomics appears to be a useful 
tool to investigate the metabolic function of  acute 
liver damage in rat and to assess changes in response 
to exposed to the silybin. Furthermore, the focus of  
the study was not only to evaluate the changes of  the 
urine metabolite pools. In order to contribute to an 
understanding of  the mechanism of  this drug against 
the acute liver damage rat, in this study we investigate 
the changes in urine metabolites of  acute liver damage 
in rat to silybin drug.

MATERIALS AND METHODS

Chemicals and reagents
Acetonitrile was purchased from Merck  (Darmstadt, 
Ger many) ;  methanol  high‑perfor mance l iquid 
chromatography (HPLC grade) was purchased from Fisher 
Scientific Corporation  (Loughborough, UK); water was 
produced by a Milli‑Q Ultra‑pure water system (Millipore, 
Billerica, USA); formic acid was obtained from Honeywell 
Company  (Morristown, New Jersey, USA); leucine 
enkephalin was purchased from Sigma‑Aldrich (St. Louis, 
MO, USA). Olive oil (Oliver grade) was supplied by the 
branch office of  Shanghai of  OlisOlive Oil Bloc (Catalonia, 
Spain). All other reagents were HPLC grade. Silybin was 
obtained from Yuanhengshengma Biotechnology Co., 
Ltd. (Beijing, China).

Animals
Male Wistar rats  (weighting 240  ±  20  g) were supplied 
by GLP Center of  Heilongjiang University of  Chinese 
Medicine  (Harbin, China). The room temperature was 
regulated at 24°C  ±  2°C with 40% ±5% humidity. 
A 12‑h light/dark cycle was set, free access to standard 
diet and water. The animals were allowed to acclimatize 
for 5 days prior to dosing and putted in the metabolism 
cages during the urine collection periods specified below. 
After acclimatization, animals were randomly divided into 
three groups with eight rats in each: The control; model; 
and silybin groups. The rats in the control group were 
administrated with olive oil solution in the whole procedure 
for 5 consecutive days. Rats were orally administrated 
with 25% CCl4 (1 ml/kg body weight) olive oil solution at 
4th day to induce liver injury model for 5 consecutive days, 
and until day 8. Simultaneously, silybin treatment group 
was administrated with 25% CCl4 (1 ml/kg body weight) 
olive oil solution for 5 consecutive days, and then the rats 
were administrated drug  (0.5 mg/mL) olive oil solution 
with an oral accurate volume of  each animal (1 mL/100 g 
body weight). Rats were housed individually for urine 
collection. Urine was collected daily from metabolism 
cages at ambient temperature throughout the whole 
procedure and centrifuged at 13,000 rpm at 4°C for 5 min, 
and the supernatants were stored frozen at − 20°C until 
metabolomic analysis. The experimental procedures were 
approved by the Animal Care and Ethics Committee at 
Heilongjiang University of  Chinese Medicine  (approval 
number: HUCM2013‑7023). All efforts were made to 
ameliorate suffering of  animals.

Metabolomic profiling platform
Ultra‑performance liquid chromatography
All samples were analyzed using an LC system (Waters Corp., 
Milford, USA), equipped with BEH C18 chromatography 
column with 0.18‑μm stationary phase. The column Figure 1: Chemical structure of silybin
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temperature was maintained at 40°C, and then gradient 
mobile phase was composed of  the phase A (water with 
0.1% formic acid) and phase B  (acetonitrile containing 
0.1% formic acid). The gradient for the urine sample 
was as follows: 0–6 min, 1–55% B; 6–10 min, 55–50% B; 
10–10.5 min, 50–1% B; 10.5–11 min, 1% B; 11–11.5 min, 
1–99% B; 11.5–13 min, 99% B. The injection volume was 
3 μL and the flow rate of  the LC system was 0.5 mL/min. 
All samples were maintained at 4°C during the analysis. All 
the urine samples were mixed to get a quality control (QC) 
sample for method validation. A QC sample was injected 
every ten samples during the analytical run to further 
monitor the system stability. It was critical to acquire the 
QC data for assessing the changes in the analytical results 
and the reliability of  the metabolite fingerprint.

Accurate mass spectrometry
Mass spectrometry system was operated using the 
ESI +  and ESI −  mode and the mass range was set at 
100–1000 m/z in the full scan mode. Mass spectrometry 
was performed by using an accurate mass time‑of‑flight 
mass spectrometry system (Waters Corp., Milford, USA) 
equipped with an electrospray ionization source that 
operates in positive ionization mode (ESI+) and negative 
ionization mode (ESI−). The optimal capillary voltage was 
set at 3200 V, and cone voltage at 30 V. The desolvation 
temperature was set at 300°C, and source temperature 
at 100°C. Desolvation gas flow rate was set at 400 L/h, 
and cone gas flow was maintained at 60  L/h. Leucine 
enkaphalin was used as the reference compound for 
accurate mass measurement. Data were collected at a rate 
of  1 MS spectrum per second with a scan time of  0.4 s, an 
inter‑scan delay of  0.1 s, and a lock spray frequency of  10 s.

Metabolite identification
The chemical structures of  the candidate metabolites 
were determined as follows: First, the MassFragment™ 
application manager  (Waters Corp., Milford, USA) was 
searched by mass weight and a list of  candidates was 
obtained; then tandem mass analysis was carried out, 
and according to the possible fragment mechanisms, 
items without characteristic mass fragment information 
were removed from the list, with the most probable 
metabolic indicators survived; finally, by comparing the 
retention times and mass spectra to the commercial 
standards, part of  the related metabolites were structurally 
confirmed. The accurate mass and structure information 
of  candidate metabolites were also matched with those of  
metabolites obtained from HMDB  (www.hmdb.ca) and 
METLIN (metlin.scripps.edu/) databases.

Data processing and statistical analysis
Multivariate analysis was performed to determine the origin 
of  variation between samples. This was then extended 

by the use of  univariate analysis to determine whether 
the concentrations of  individual metabolites differed 
for the metabolic fingerprint. The multivariate statistical 
analyses were performed with EZinfo software (Waters 
Corp., Milford, USA), which was facilitated by reducing 
the dimensionality of  the dataset while retaining as much 
information as possible. EZinfo software was programmed 
using in‑house routines and was then used to perform 
unsupervised principal components analysis  (PCA) and 
partial least squares projection to supervised latent structures 
and discriminant analysis  (PLS‑DA) on LC‑MS spectral 
datasets from the fingerprinting of  samples. PCA is one of  
the oldest and most widely used multivariate techniques; it 
is employed to reduce the dimensionality of  spectroscopic 
data whilst maintaining the majority of  its variance, and is 
often used as an initial step prior to cluster or discriminant 
analysis. The purpose of  PLS‑DA was to calculate models of  
the different groups, and to identify the response variables 
that contribute most strongly to the model. The combining 
S‑and VIP‑plots from the OPLS analysis were carried out 
to select distinct variables as potential markers.

Pathway analysis
Metabolomic pathway analysis was performed with 
metabolomics pathway analysis  (MetPA) based on 
potential metabolite biomarkers. MetPA is a user‑friendly, 
web‑based tool  (www.metaboanalyst.ca) for pathway 
analysis and visualization of  metabolomic data within the 
biological context of  metabolic pathways. For the pathway 
analysis algorithms, hypergeometric test was used for over 
representation analysis, and relative‑betweeness Centrality 
was used for pathway topology analysis. SPSS 17.0 using 
the Wilcoxon Mann–Whitney Test for Windows was used 
for the statistical analysis (SPSS, Inc., Chicago, IL).

RESULTS AND DISCUSSION

Method development and validation
For the method validation study, 1 mL of  urine the samples 
from each rat were pooled to get a QC specimen, and 
preparation of  the QC specimen was the same as the 
samples. A number of  consecutive injections of  the QC 
sample were made to obtain a stable QTOF/MS system. QC 
specimens were analyzed every ten specimens throughout 
the whole analysis procedure. According to the optimized 
conditions of  urine analysis, principal component analysis 
of  QC samples from liver injury rats was shown in Figure S1, 
QC samples were gathered together to determine during the 
data collection, demonstrating that the system had excellent 
stability during the analysis procedure.

Typical fingerprinting spectra of urine samples
Experimental strategies to study compounds present in a 
biological system have expanded greatly in recent years. 
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Metabolomics can detect and identify endogenous and 
secreted metabolites. Visual comparison of  each group at 
8th day, typical fingerprinting spectra are shown in Figure 2. 
The acquired metabolomic data were used to perform 
LC/MS, which involves discovering principal components 
that account for the majority of  the differences in the data. 
Recently, PCA is frequently used as a multivariate analysis in 
metabolomics studies to separate or determine the classes 
of  known samples. For global profiling, unsupervised PCA 
was performed to separate the groups. Due to the low 
concentrations of  metabolites secreted into the growth 
medium relative to the high levels of  normal medium 
components, it is difficult to detect metabolic changes 
by simple visual inspections of  the data. Therefore, PCA 

scores plot showed clear separation between the control 
groups and model group in both positive [Figure 3a] and 
negative ion modes [Figure 4a]. Figures 3a and 4a show that 
separate clusters from the urine samples are revealed, which 
indicates metabolic differences in terms of  the level and 
compositional changes of  metabolites secreted, irrespective 
of  drug level exposure. It successfully demonstrated that 
each data class presents distinct metabolite profiles, with 
samples from the same data class clustering very close to 
each other.

Discriminatory metabolites
We applied PLS to visualize samples in an attempt 
to distinguish them among classes, which revealed a 
very clear separation. From the corresponding the 
loading plots, the ions furthest away from the origin 
may be therefore regarded as the differentiating 
metabolites  [Figures  3b and 4b]. Combining the S‑and 
VIP‑plots from the OPLS analysis  [Figures 3c and 4c], 
LC‑MS provided the retention time, precise molecular 
mass and MS/MS data for the metabolites. For OPLS‑DA 
modeling, to identify which variables account for such 
a significant separation, VIP statistics was initially used 
to pre‑select variables. As shown in Table 1, according 
to the criterion for VIP statistics  (VIP >5), among the 
low‑molecular‑weight endogenous metabolites, a total of  
10 variables as displayed in Table 1 were obtained which 
contributed most toward discriminating the metabolic 
profiles between the two classes. Intriguingly, 7 of  the 
metabolites detected were found to be up‑regulated in 
cancer tissues while 3 were down‑regulated. Identification 

Figure 2: Typical fingerprinting spectra of urine samples at 8th day. 
(a) control group; (b) Acute liver damage rat group; (C) The silybin group

c

b

a

Figure 3: Analysis of the metabolic fingerprinting profiles obtained from the acute liver damage rat group analysed by liquid chromatography/mass 
spectrometry system in positive ionization mode at 8th day. Principal components analysis (PCA) model results in positive mode (a). Loading plot 
of OPLS‑discriminant analysis in positive mode (b). Panel (c) illustrates the combination of S‑and VIP‑score plots constructed from the supervised 
OPLS analysis. (d) PCA scores plot of silybin affecting on acute liver damage rat group (ESI + mode)
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and statistical analysis revealed significant elevation 
of  kynurenine, propionylcarnitine, palmitoylcarnitine, 
uridine, glutathione, 4,8‑dimethylnonanoylcarnitine, 
stearoylcarnitine while revealing significant reduction of  
L‑(+)‑Cysteine, adenosine, and tryptophan. According 
to the identity check based on raw data and the features 
of  peaks, the target masses of  candidate metabolites 
identified in the profiling process were searched over 
a narrow  ±  5  ppm mass window in the HMDB and 
METLIN databases. We report that PCA scores plots 
from metabolic fingerprintings reveal excellent separation 
between the control group, model group, and rats exposed 
to the silybin group. Trends according to individual 
PCA scores plots from fingerprinting also reveal that 
metabolic relationships between drug and spectra are 
more significant.

Metabolic pathway analysis
The detailed analysis of  the most relevant pathways of  MPH 
was performed by MetPA’s tool that is a mass translator into 
pathways. MetPA assigned a total of  feature compounds in 
11 pathways, which were identified together are important 
for the host response to silybin [Figure 5a and Table S1]. The 
main metabolic pathways included glutathione metabolism, 
thiamine metabolism, taurine and hypotaurine metabolism, 
aminoacyl‑tRNA biosynthesis, pantothenate and CoA 
biosynthesis, cysteine and methionine metabolism, glycine, 
serine and threonine metabolism, fatty acid metabolism, 
tryptophan metabolism, pyrimidine metabolism, and purine 
metabolism, etc., of  the predominant metabolism pathways 
of  glutathione metabolism  [Figure  5b], tryptophan 
metabolism  [Figure  5c], cysteine and methionine 
metabolism [Figure 5d] have been constructed based on 

Table 1: Differential metabolites derived from LC/MS chromatograms
Number Rt [M−H]− [M+H]+ Formula Name Trend VIP value
1 3.57 209.2141 C10H12N2O3 Kynurenine ↑ 6.62856
2 2.96 218.2623 C10H19NO4 Propionylcarnitine ↑ 6.3501
3 3.71 122.1582 C3H7NO2S L‑(+)‑Cysteine ↓ 6.29159
4 0.64 400.6086 C23H45NO4 Palmitoylcarnitine ↑ 6.12701
5 6.74 268.2417 C10H13N5O4 Adenosine ↓ 6.11354
6 6.63 205.2254 C11H12N2O2 Tryptophan ↓ 5.54282
7 0.66 245.2014 C9H12N2O6 Uridine ↑ 5.31962
8 8.07 308.3236 C10H17N3O6S Glutathione ↑ 5.14927
9 3.7 328.4749 C18H35NO4 4,8‑dimethylnonanoylcarnitine ↑ 6.40308
10 3.55 426.6609 C25H49NO4 Stearoylcarnitine ↑ 5.73824

↑: Content increased; ↓: Content decreased; LC/MS: Liquid chromatography/mass spectrometry; VIP: Variable Importance for the Projection

Figure 4: Establishment of the metabolic fingerprinting profiles of urine samples based on mass fragment profiles analysed by liquid chromatography/
mass spectrometry system in negative ionization mode at 8th day. Principal components analysis (PCA) model results in negative mode (a). Loading 
plot of OPLS‑discriminant analysis in negative mode (b). Panel (c) illustrates the combination of S‑and VIP‑score plots constructed from the 
supervised OPLS analysis (ESI − mode). (d) PCA scores plot of silybin affecting on acute liver damage rat group (ESI − mode)
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KEGG pathway database. These metabolic pathways of  
importance, used to explain the metabolic pathway, were 
found to be disturbed in the animal model. Our preliminary 
experiments clearly show that metabolic fingerprinting 
profiling is capable of  detecting responses to silybin drug 
and is certainly a more sensitive method than traditional 
techniques used for insighting into the mechanisms.

Metabolite set enrichment analysis
We sys temica l l y  in teg ra ted  phenotyp ing  wi th 
metabolite expression, and metabolomics, thereby 
identifying a distinguishing metabolic fingerprinting 
of  model rats. Following MetPA analysis, which 
was aimed to identify the relative contribution of  
individual metabolites from the high‑dimensional 
metabolomics data, we performed metabolite set 
enrichment analysis  (MSEA) to establish which 
pathways are affected. In liver, the best metabolites 
to understand the phenotypic response of  rats 
exposed to the silybin were in glutathione metabolism, 
oxidation of  branched‑chain fatty acids, protein 
biosynthesis, tryptophan metabolism, taurine and 
hypotaurine metabolism etc.,  [Figure  6], and these 
insights help us to better understand the mechanisms 
underlying of  this drug.

Silybin is a well‑known highly effective drug used routinely 
for the treatment of  liver injury. Yet despite there being 
observed efficacy against liver injury, the prospective 
mechanism of  action of  this drug against liver injury has 
not been fully

Figure S1: Principal component analysis of quality control (QC) urine 
samples carried out with liquid chromatography/mass spectrometry. 
Black box present urine samples, and samples in red box present QCs

Figure 5: Construction of the altered metabolism pathways in acute liver damage rats using metabolomics pathway analysis (a). The map was 
generated using the reference map by KEGG [Table S1]. CO represents entry number of compound. (c) Glutathione metabolism; (c) tryptophan 
metabolism; (d) cysteine and methionine metabolism

dc

ba
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studied. Thus, investigation of  the changes of  urine 
metabolites caused by silybin on acute liver damage in 
rat could increase understanding of  the mode of  action 
of  the drug. To elucidate the underlying mechanisms 
of  silybin action on acute liver damage in rat, a total of  
10 metabolites that were differentially regulated were 
detected  [Table  1]. Seven metabolites were significantly 
increased, three metabolites decreased relative to control. 
Based on the findings of  this study, it would appear that 
many different metabolic pathways are disrupted as a 
result of  silybin action on acute liver damage in rat, most 
notably glutathione metabolism, tryptophan metabolism, 
cysteine, and methionine metabolism, etc., The metabolic 
fingerprinting analysis is supported on the basis that 
cells can secrete metabolites to the extracellular medium 
during growth and/or in response to environmental 
changes.[19] Furthermore, cells may activate a variety 
of  efflux transporters that work like metabolic relief  
valves or defensive support to survive an antagonistic 
environment.[20]

In our study, LC‑MS‑based urine metabolomics coupled 
with pattern recognition approach and network analysis 
provide a powerful approach to clearly elucidate the 
underlying mechanisms of  silybin action on acute 
liver damage in rat. PCA model derived from LC/MS 
metabolic fingerprinting showed satisfactory and adequate 
separations between control group and acute liver 
damage group. Interestingly, 10 distinct metabolites were 
identified in acute liver damage rat compared to controls, 
and suggest a disrupted the glutathione metabolism, 
thiamine metabolism, taurine and hypotaurine metabolism, 
aminoacyl‑tRNA biosynthesis, pantothenate and CoA 
biosynthesis, cysteine and methionine metabolism, glycine, 
serine and threonine metabolism, fatty acid metabolism, 
tryptophan metabolism, pyrimidine metabolism, and purine 
metabolism, etc., Differential metabolites identified from the 
metabolomic analysis would be helpful for the prevention 
and treatment, the occurrence and development of  therapy 
of  liver injury. More importantly, 11 metabolism pathways 
were found that the most altered functional pathway 
associated with silybin. Since the PCA scores plot obtained 
from the acute liver damage in rat also shows a very similar 
trend to that from the fingerprint, it is clearly demonstrated 
that the changes of  metabolites are well correlated to 
those of  intracellular components in terms of  response 
to silybin. Nevertheless, metabolic fingerprintings are just 
a shallow representation of  the metabolic state and the 
full understanding of  the underlying mechanisms, require 
further inspection of  key metabolites  (e.g.,  metabolites 
that are important nodes in the metabolic network) or the 
combination with other experimental strategies (e.g., gene 
expression and proteomics).

CONCLUSIONS

Metabolomics is the study of  metabolic changes in 
biological systems and provides characteristic small 

Table S1: Result from ingenuity pathway analysis with MetPA
Number Pathway name Total Hits Impact
1 Glutathione metabolism 26 2 0.36451
2 Thiamine metabolism 7 1 0
3 Taurine and hypotaurine metabolism 8 1 0
4 Aminoacyl‑tRNA biosynthesis 69 2 0
5 Pantothenate and CoA biosynthesis 15 1 0
6 Cysteine and methionine metabolism 27 1 0.13872
7 Glycine, serine and threonine metabolism 31 1 0
8 Fatty acid metabolism 39 1 0
9 Tryptophan metabolism 40 1 0.17715
10 Pyrimidine metabolism 41 1 0.01202
11 Purine metabolism 68 1 0.00102

Total is the total number of compounds in the pathway; the hits is the actually matched number from the user uploaded data; the impact is the pathway impact value 
calculated from pathway topology analysis. MetPA: Metabolomics pathway analysis; CoA: Coenzyme A

Figure 6: Summary plot for metabolite set enrichment analysis where 
metabolite sets are ranked according to Holm P value with hatched 
lines showing the cut‑off of Holm P value
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molecule fingerprints related to the mechanisms of  
silybin action. In this study, we focused on small‑molecule 
metabolites to investigate the characteristics of  therapy 
development of  liver injury. To our knowledge, this is a 
report on urine metabolomics analysis of  silybin affecting 
on metabolism pathways of  acute liver damage in rat, 
using high‑throughput LC/MS combined with pattern 
recognition approach. The objective of  this study was 
to provide valuable data with which to support the 
prospective new use of  silybin as a topically applied drug 
for the treatment of  liver injury. Our study shows that 
the spectral datasets obtained from an acute liver damage 
rat, in combination with multivariate statistical methods, 
do contain valuable information pertinent to the against 
liver injury effect. In the future, high‑throughput LC/MS 
metabolomics combined with pattern recognition approach 
analysis are keys to elucidate the developing physiological 
mechanism of  drug and will play an important role in the 
field of  drug research.
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