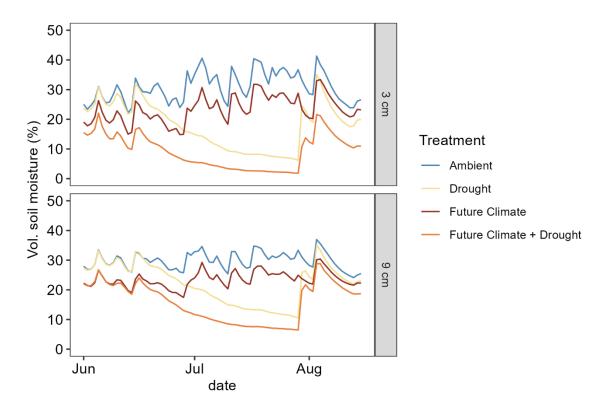
Supplementary Information File:

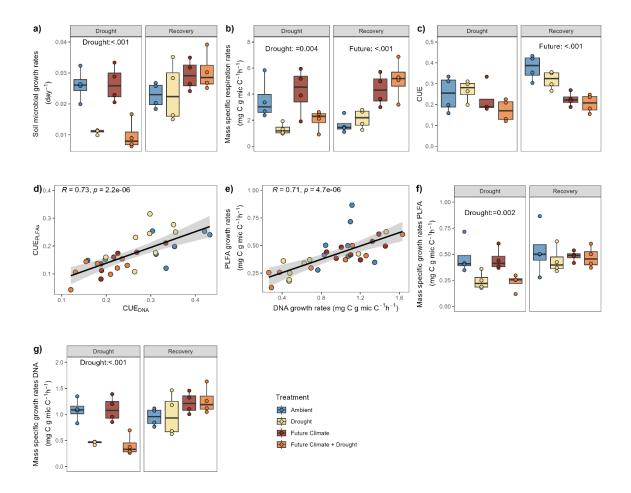
Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions.

Author list:

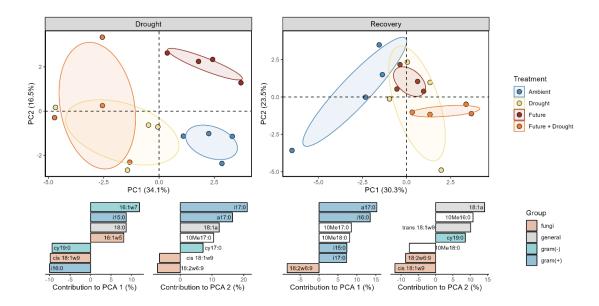
Alberto Canarini^{1,2*§}, Lucia Fuchslueger^{1,3*§}, Jörg Schnecker¹, Dennis Metze^{1,4}, Daniel B. Nelson⁵, Ansgar Kahmen⁵, Margarete Watzka¹, Erich M. Pötsch⁶, Andreas Schaumberger⁶, Michael Bahn⁷, Andreas Richter^{1,8*}

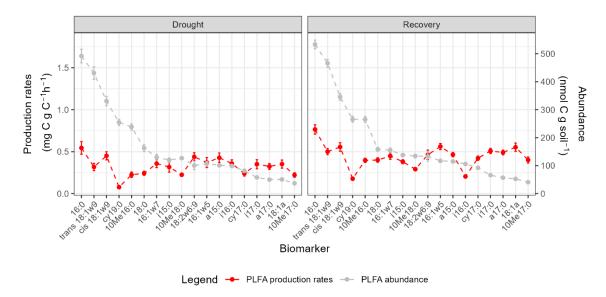

Affiliations:

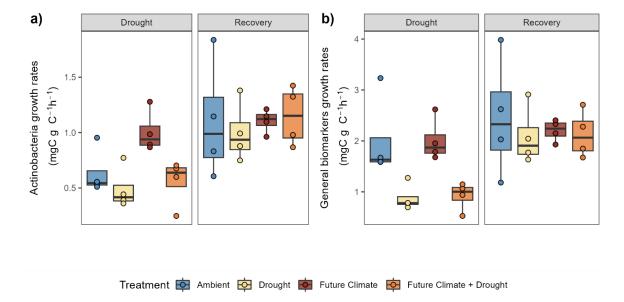
- ¹ Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- ² Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- ³ Environment and Climate Hub, University of Vienna, Vienna, Austria
- ⁴ Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- ⁵ University of Basel, Department of Environmental Sciences Botany, Basel, Switzerland
- ⁶ Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning, Austria
- ⁷ Department of Ecology, Universität Innsbruck, Innsbruck, Austria
- ⁸ International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

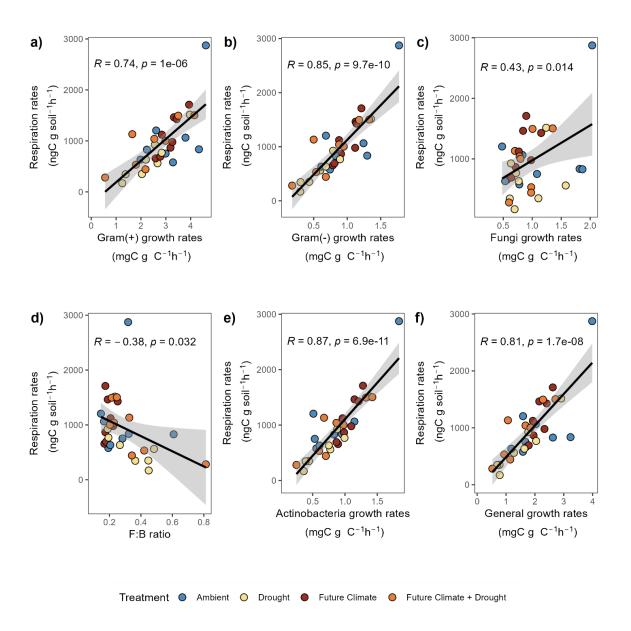

This PDF file includes:

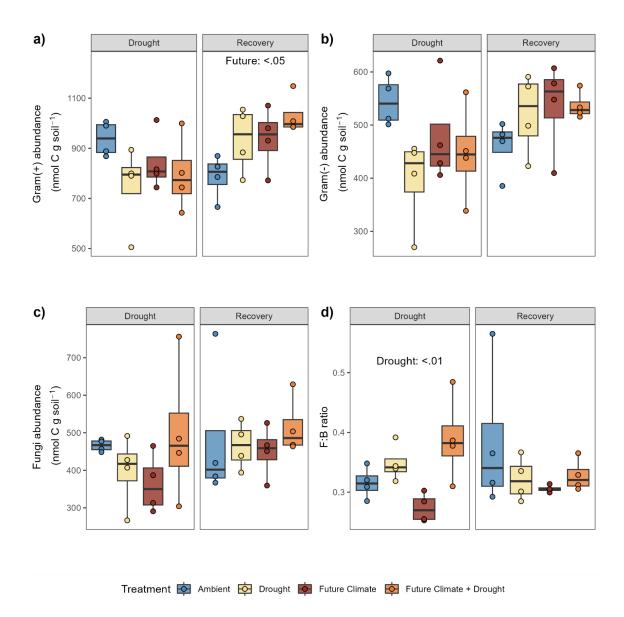
Supplementary Figures 1 to 14 Supplementary Tables 1 to 6

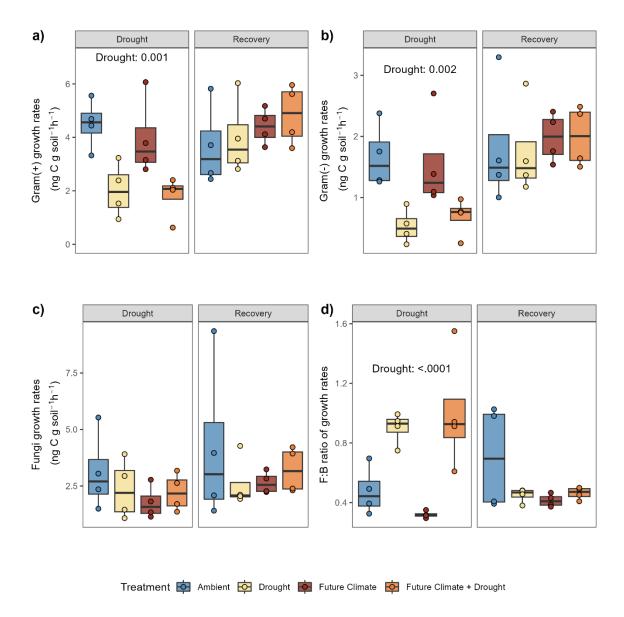

[§] These authors contributed equally to this work
Corresponding authors: * Alberto Canarini, Lucia Fuchslueger, Andreas Richter
Email: alberto.canarini@hotmail.it; lucia.fuchslueger@univie.ac.at; andreas.richter@univie.ac.at

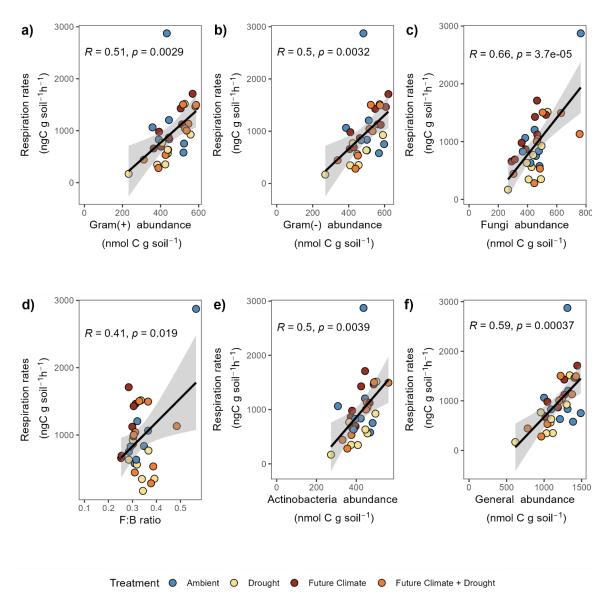

Supplementary Figure 1. Soil water content over the course of the experiment. Daily averages of volumetric soil moisture (%) at a) 3 and b) 9 cm of soil over the course of the experiment (June-August 2020). The line colours indicate the different treatments.

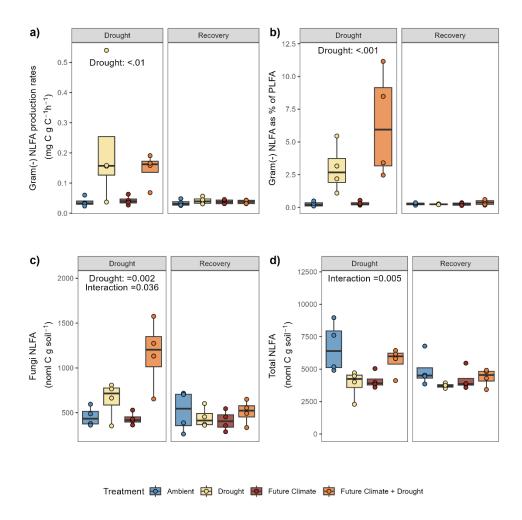

Supplementary Figure 2. Soil microbial community-level growth rates, respiration and CUE measured via¹⁸O incorporation into DNA and correlation with ²H incorporation into PLFA. a) Mass specific growth rates obtained via ¹⁸O incorporation into DNA, b) respiration rates, as well as c) microbial CUE measured at Drought and Recovery. The correlations panels compare d) PLFA and DNA-based microbial community carbon use efficiency (CUE) and e) mass-specific growth rates, obtained by the two methods. Pearson's correlation coefficient R (and p-values) are reported on the graph. The last two panels represent mass specific growth rates (mg C g mic C⁻¹ h⁻¹) obtained by each method, f) via ²H incorporation into PLFA and g) via ¹⁸O incorporation into DNA. In panel a, b, c, f and g) significant differences (p<0.05) between treatments derived from linear mixed models are reported in the figure (the full report is provided in Supplementary Table 2). Box centre line represents median, the box indicates the upper and lower quartiles, whiskers the 1.5x interquartile range, and separated points represent potential outliers. The sample size 'n' represents biologically independent samples (n=4 replicates). Colour indicates treatment.

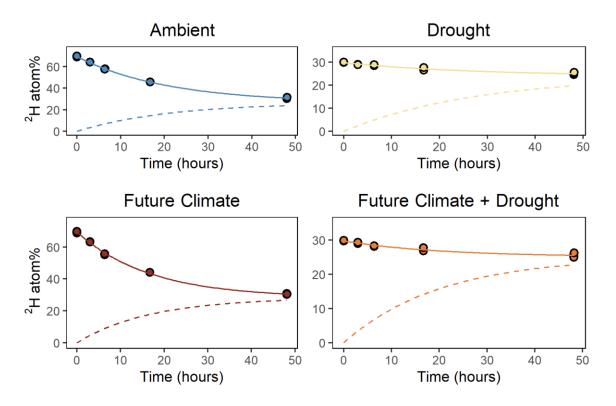

Supplementary Figure 3. Microbial community composition based on the relative abundance of individual PLFA biomarkers displayed as PCA during the Drought and Recovery period. Colour indicates treatment. Permanova results are reported in Supplementary Table 3. The sample size 'n' represents biologically independent samples (n=4 replicates). Ellipses represent the 95% confidence intervals. The bottom graphs represent the relative contribution (in percentage) of the top seven variables to the principal components (absolute values represent the relative contribution while the positive or negative sign represents the direction along PCA axes) colored according to microbial group (gram positive: blue; gram negative: light blue; general marker: grey; fungi: orange; actinobacteria: white; note that the arbuscular mycorrhizae fungal biomarker 16:1ω5 is included into the fungal group in the multivariate analysis but not in other graphs displaying fungi).

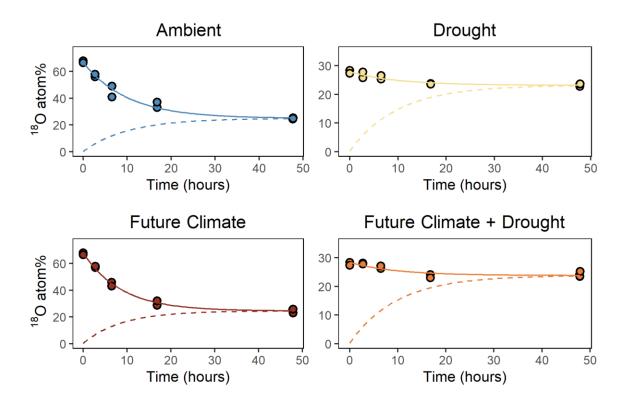

Supplementary Figure 4. Individual PLFA FAME biomarker contents (in nmol C g⁻¹ soil, grey symbols), and respective production rates (in mg C g⁻¹ PLFA C h⁻¹, red symbols) in the Drought and Recovery period. The right y-axis represents the absolute abundances, the left y-axis the production rates (or mass-specific growth rates). Fatty acids on the x-axis are ordered by ascending absolute abundance. Points represent averages across all treatments, error bars represent standard error. The sample size 'n' represents biologically independent samples (n=4 replicates).

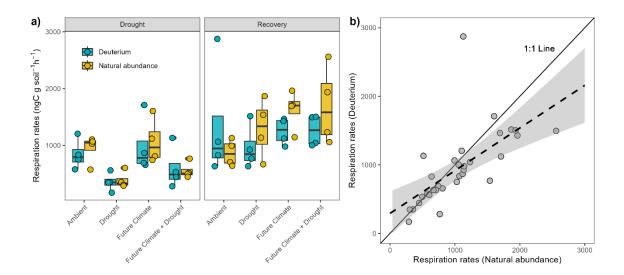

Supplementary Figure 5. Mass-specific growth rates of a) actinobacteria and b) general biomarkers, separately for peak drought ('Drought) and Recovery. Statistical results are reported in the Supplementary Table 4. Box centre line represents median, box limits the upper and lower quartiles, whiskers the 1.5x interquartile range, while separated points represent potential outliers. The sample size 'n' represents biologically independent samples (n=4 replicates). For all the graphs colour indicates treatment.

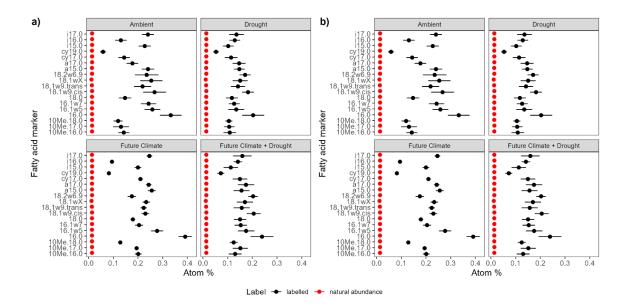

Supplementary Figure 6. Correlations between mass specific growth rates and total respiration rates of a) gram positive, b) gram negative, c) fungi, e) actinobacteria and f) general biomarkers. Correlation with fungi to bacteria ratio is shown in panel d). Correlation were taken across all the time points mesured (Drought and Recovery). Pearson correlation coefficient (R) and p-value are reported on each graph. For all the graphs color indicates treatment.


Supplementary Figure 7. PLFA-based biomass of microbial groups for a) Gram positive, b) Gram negative, c) fungi, and d) fungal to bacterial marker ratios, split in time points measured (Drought and Recovery). Statistical results are reported only for significant p-values. Box centre line represents median, box limits the upper and lower quartiles, whiskers the 1.5x interquartile range, while separated points represent potential outliers. The sample size 'n' represents biologically independent samples (n=4 replicates). For all the graphs colour indicates treatment.


Supplementary Figure 8. Absolute growth rates of different microbial groups. a) Gram-positive and b) Gram-negative bacterial markers and c) fungal markers, as well as d) the ratio of fungal to bacterial growth rates at peak drought and recovery (Drought and Recovery). Statistical results are reported for significant p-values. Box centre line represents median, box limits the upper and lower quartiles, whiskers the 1.5x interquartile range, while separated points represent potential outliers (n=4 replicates per treatment). Colour indicates treatment.


Supplementary Figure 9. Correlations between PLFA based microbial biomass separated by groups and total respiration rates of a) Gram positive, b) Gram negative, c) fungi, e) actinobacteria, and f) general biomarkers, d) shows the correlation of fungi to bacteria ratio with total respiration rates. Correlation were taken across all the time points mesured (Drought and Recovery). Pearson correlation coefficient (R) and p-value are reported on each graph. For all the graphs color indicates treatment.


Supplementary Figure 10. Effects of drought and future climate on Gram negative NLFA production as well as total and fungal biomarker amounts. a) Production of gram negative specific NLFA biomarker; b) investment in NLFA relative to the same Gram-negative PLFA specific biomarkers (shown as percent); c) fungal specific biomarkers (as total amount) and d) total NLFA (sum of all biomarkers), divided by the time points measured (Drought and Recovery). Statistical results are reported for significant p-values (for a full report see Supplementary Table 5). Box center line represents median, box limits the upper and lower quartiles, whiskers the 1.5x interquartile range, while separated points represent potential outliers. The sample size 'n' represents biologically independent samples (n=4 replicates). Color indicates treatment.


Supplementary Figure 11. Temporal dynamic of ²H equilibration with soil water. Points represent measured ²H atom% values in the ²H labelled source water reaching isotopic equilibration rates of the external ²H labelled source water with soil water of the four treatments. Continuous lines represent the best fit model. Dashed lines represent the model prediction of ²H kinetics in the soil water, generated from the data points of the labelled source water, as described in Canarini et al. (2020) and the in Supplementary Methods.

Supplementary Figure 12. Temporal dynamics of ¹⁸O equilibration with soil water. Points represent measured ¹⁸O atom% values in the ¹⁸O labelled source water reaching isotopic equilibration rates of the external ¹⁸O labelled source water with soil water of the four treatments. Continuous lines represent the best fit model, dashed lines represent the model prediction of ¹⁸O kinetics in the soil water, generated from the data points of the labelled source water, as described in Canarini et al. (2020) and in the Supplementary Methods.

Supplementary Figure 13. Comparison of respiration rates determined in samples incubated with natural abundance vs. ²H labelled water. a) Total respiration rate (in ng C g soil-¹ h-¹) obtained from soil samples incubated with natural abundance water (yellow) and ²H-labelled water (blue) for all different treatments and time periods. Statistical analysis (two sided paired t-test) revealed no significant differences. Box center line represents the median, the box limits the upper and lower quartiles, whiskers the 1.5x interquartile range; separated points represent potential outliers. The sample size 'n' represents biologically independent samples (n=4 replicates). b) Correlation of respiration rates of samples incubated with natural abundance and ²H-labelled water (both given in ng C g soil-¹ h-¹). The solid line represents the 1:1 line, the dashed line represent the best fit line.

Supplementary Figure 14: Compound-specific isotope composition (natural abundance in red) and enrichment (labelled in black) of the FAMEs included in our study reported in ²H atom% for a) the 'Drought' and b) the 'Recovery' period. For each period, the data is grouped by treatment (ambient, drought, future climate and future climate + drought). Values are shown as average ²H atom % (error bars show standard errors, the sample size represents biologically independent samples; n=4 replicates).

Supplementary Table 1. Impacts of drought and future climate on soil water content in soils during Drought and Recovery. Average soil water content was measured gravimetrically (\pm standard error, n=4 replicates).

	Soil water content (g H ₂ O g ⁻¹ dry soil)						
	'Dr	ought'	'Recovery'				
Factor	Average	Standard error	Average	Standard error			
Ambient	0.32	0.010	0.33	0.008			
Drought	0.08	0.010	0.30	0.013			
Future Climate	0.31	0.008	0.32	0.005			
Future Climate + Drought	0.06	0.009	0.30	0.007			

Supplementary Table 2: Effect of drought and future climate and their interactions on mass-specific growth, mass-specific respiration (both in mg C g microbial C^{-1} h^{-1}) and CUE determined by 2 H- and 18 O-vapor SIP, respectively. We used linear mixed models (as described in the Method section) with drought and future climate as fixed factor, and plot number as random factor to account for plot variability to test impacts of the treatments during Drought and Recovery, separately; p-values < 0.05 are given in bold (n = 4 replicates per treatment).

	Growth							
-		'Dro	ughť		'Recovery'			
	² H-PI		¹⁸ O-l	DNA	² H-PLFA		18O-I	DNA
Factor	F	р	F	р	F	р	F	р
Drought	15.061	0.002	48.878	<.0001	0.538	0.477	0.088	0.771
Future Climate	0.085	0.775	0.046	0.832	0.179	0.679	3.988	0.069
Interaction	0.004	0.945	0.117	0.737	0.319	0.582	0.0002	0.988
				Res	piration			
		'Drought'			'Recovery'			
	² H-PI		¹⁸ O-DNA		² H-PLFA		¹⁸ O-l	DNA
Drought	7.727	0.016	12.436	0.004	0.019	0.892	1.324	0.272
Future Climate	3.770	0.076	1.204	0.293	20.634	0.0007	27.394	0.0002
Interaction	0.531	0.479	0.001	0.970	1.508	0.242	0.079	0.782
				(CUE			
	'Drought'					'Reco	very'	
	² H-PI	LFA	¹⁸ O-DNA		² H-PLFA		¹⁸ O-	DNA
Factor	F	р	F	р	F	р	F	р
Drought	0.003	0.951	0.256	0.621	0.049	0.826	3.027	0.107
Future Climate	3.610	0.081	3.395	0.090	99.734	<0.0001	32.931	0.0001
Interaction	2.287	0.156	1.034	0.329	1.778	0.106	0.734	0.408

Supplementary Table 3. Effects of drought and future climate and their interaction on PLFA community composition (relative abundance) and relative PLFA-based growth (growth rates), using a permutational ANOVA (permanova) based on Euclidean distance matrices as described in the Results section, separately done for the Drought and Recovery period. p-values < 0.05 are given in bold (n = 4 replicates per treatment; Df = degrees of freedom).

	'Drought'							
		Abundance Growth rates						
	Df	R^2	р	Df	R ²	р		
Drought	1	0.297	0.001	1	0.405	0.001		
Future Climate	1	0.139	0.019	1	0.246	0.001		
Interaction	1	0.047	0.341	1	0.065	0.040		
		'Recovery'						
		Abundance Growth rates						
	Df	R^2	р	Df	R ²	р		
Drought	1	0.181	0.002	1	0.140	0.034		
Future Climate	1	0.119	0.012	1	0.070	0.330		
Interaction	1	0.094	0.064	1	0.077	0.281		

Supplementary Table 4. Effects of the drought and future climate treatment and their interactions during the Drought and Recovery period on different microbial groups' mass-specific growth rates by 2 H incorporation into PLFA (in mg C g microbial C^{-1} h^{-1}) were tested using linear mixed effect models (as described in the Methods section), separately for fungi, gram negative and gram positive bacteria, actinobacteria, F:B ratio (fungi to bacteria marker ratio) and for general biomarkers (General). Drought and future climate were used as fixed factors, and plot number as random factor to account for plot variability to test impacts of the treatments separately during 'Drought' and 'Recovery'. Effects were considered significant when p values < 0.05 and are given in bold (n = 4 replicates per treatment).

	'Drought'							
Factor	Dro	ught	Future	Climate	Interaction			
	F	р	F p		F	р		
Fungi	0.176	0.683	1.426	0.256	0.327	0.578		
Gram negative	23.830	<0.0001	0.414	0.532	0.015	0.905		
Gram positive	20.468	0.0007	0.486	0.498	0.023	0.881		
F:B ratio	31.299	<0.0001	0.712	0.415	0.961	0.346		
Actinobacteria	7.232	0.019	2.756	0.122	1.220	0.290		
General	29.215	0.0002	0.038	0.846	0.000	0.999		

	'Recovery'							
Factor	Drought		Future	Climate	Interaction			
	F	р	F p		F	р		
Fungi	1.075	0.320	0.319	0.583	1.615	0.228		
Gram negative	0.194	0.668	0.038	0.849	0.181	0.678		
Gram positive	0.052	0.823	0.027	0.871	0.174	0.683		
F:B ratio	0.597	0.454	0.589	0.457	0.929	0.345		
Actinobacteria	0.034	0.856	0.006	0.936	0.207	0.656		
General	0.390	0.543	0.270	0.612	0.171	0.686		

Supplementary Table 5. Impacts of drought and future climate and their interaction on absolute (given in ng C g soil⁻¹ h⁻¹) and relative (% of PLFA) NLFA production during the Drought and Recovery period. Effects were tested using linear mixed effect models (as described in detail in the Method section), with drought and future climate as fixed factors, and plot number as random factor to account for plot variability, for fungal, gram negative bacterial and total (sum of all) biomarkers. p values < 0.05 are given in bold (n = 4 replicates per treatment).

		'Drought'							
	Fu	ngi	Gram ne	egative	Fun	Fungi		Gram negative	
	(ng C g	C ⁻¹ h ⁻¹)	(ng C g	C ⁻¹ h ⁻¹)	(% of PLFA)		(% of PLFA)		
Factor	F	р	F	р	F	p	Ė	p	
Drought	22.485	0.0005	16.717	0.015	87.339	<.0001	66.491	<.0001	
Future Climate	0.373	0.552	0.004	0.948	0.527	0.481	2.249	0.159	
Interaction	0.147	0.707	0.121	0.733	0.200	0.662	0.511	0.488	
		'Recovery'							
	Fungi Gram negative Fungi					gi	Gram negative		
	(ng C g	C ⁻¹ h ⁻¹)	(ng C g	C ⁻¹ h ⁻¹)	(% of PLFA)		(% of PLFA)		
Factor	Ť	p	F	p	F	p	Ė	p	
Drought	0.014	0.905	0.580	0.460	0.607	0.450	0.635	0.442	
Future Climate	0.408	0.534	0.0001	0.989	1.215	0.291	0.396	0.540	
Interaction	0.005	0.940	0.760	0.400	0.300	0.593	1.088	0.317	

Supplementary Table 6. Impacts of drought and future climate and their interaction on NLFA amount (nmol C g soil⁻¹) during the Drought and Recovery period. Effects were tested using linear mixed effect models (as described in detail in the Method section), with drought and future climate as fixed factors, and plot number as random factor to account for plot variability, for fungal and total (sum of all) biomarkers. p values < 0.05 are given in bold (n = 4 replicates per treatment).

	'Drought'						
	Fu		U	otal			
	(nmol C		(nmol C g C ⁻¹)				
Factor	F	Р	F	р			
Drought	16.337	0.002	0.996	0.337			
Future Climate	4.602	0.053	0.384	0.546			
Interaction	5.553 0.036		11.401	0.005			
		'Red	covery'				
	Fu	ngi	Total				
	(nmol C	C g C ⁻¹)	(nmol	C g C ⁻¹)			
Factor	F	р	F	р			
Drought	0.028	0.869	1.466	0.249			
Future Climate	0.089	0.770	0.006	0.936			
Interaction	1.179	0.298	2.590	0.133			