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Abstract: Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent.
Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeok-
san (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are
no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective
effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before
intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen
(BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of
brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of
pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In
addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-
κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced
AKI by downregulating the MAPK and NF-κB pathways.

Keywords: acute kidney injury; cisplatin; Ojeoksan; MAPK; NF-κB

1. Introduction

Acute kidney injury (AKI) is a disease in which renal function rapidly decreases and
is caused by loss of body function or renal tissue damage [1]. AKI develops in 5–7% of
hospitalized patients and increases the mortality rate five times when accompanied by
complications [2–4]. Various causes, such as renal ischemia-reperfusion, sepsis, nephro-
toxic drugs, and hypotension, lead to AKI; nephrotoxic drugs account for 14–25% of AKI
cases [5,6]. However, there is no effective treatment or method for preventing AKI.

Cisplatin, the platinum-based drug, is a drug used for the treatment of several can-
cers. However, the clinical application of cisplatin is restricted by its side effects, such
as nephrotoxicity, neurotoxicity, myelotoxicity, and ototoxicity [7,8]. The main side ef-
fect of cisplatin is nephrotoxicity, with up to 70% of patients experiencing AKI due to
cisplatin [9]. The proximal tubule, which is a segment of the nephron in the kidney, absorbs
and accumulates cisplatin and metabolizes it into a nephrotoxic reactive cisplatin-thiol
conjugate [10]. Because of this process, cisplatin causes inflammation, produces reactive
oxygen species, and activates cell death pathways, leading to AKI [11]. The mechanisms of
cisplatin-induced AKI are diverse and complex, and the development of reno-protective
drugs has been difficult.
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Ojeoksan (OJS), which consists of 17 medical herbs, is a traditional Korean prescription
that is traditionally used to treat circulatory disorders of five causes: energy, blood, food,
congestion and cold [12]. According to statistics, it is the most-used decoction among
the “56 oriental treatment prescriptions in South Korea” [13]. OJS has long been used
for treating the common cold, indigestion, and stomach cramps. OJS has been proven
to have anticancer, anti-metastasis [14], anti-asthma [15], anti-inflammatory [16], anti-
atherosclerosis [17], anti-obesity [18], and analgesic effects [19] in studies of in vivo and
in vitro, but the effect of OJS on cisplatin-induced AKI is unknown.

Here, we explored the protective effect of OJS on cisplatin-induced AKI in a mouse
model. The levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were de-
termined, and histological changes in the kidney and pro-inflammatory cytokine were
assessed to investigate the preventive activity of OJS against AKI. We also investigated
the underlying regulatory mechanisms by measuring the activation of mitogen-activated
protein kinases (MAPKs) and nuclear factor kappa B (NF-κB).

2. Results
2.1. Effects of OJS on Renal Dysfunction in Cisplatin-Induced AKI

As shown in Figure 1A, OJS was orally administered 1 h before cisplatin injection, and
the mice were euthanized 72 h after cisplatin injection to investigate the reno-protective
effect of OJS on cisplatin-induced AKI. The levels of BUN and SCr, biomarkers of cisplatin-
induced AKI, increase in the blood when renal function declines [20]. Cisplatin treatment
elevated the BUN and SCr levels. However, OJS treatment decreased BUN and SCr levels
in a dose-dependent manner (Figure 1B).
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ministered saline or OJS (50, 100, or 200 mg/kg) were intraperitoneally injected with cisplatin (20 
Figure 1. OJS treatment reduces BUN and SCr levels in cisplatin-induced AKI. (A) Mice orally
administered saline or OJS (50, 100, or 200 mg/kg) were intraperitoneally injected with cisplatin
(20 mg/kg). They were euthanized at 72 h after the cisplatin injection. (B) BUN and SCr were
measured in blood serum. Data are provided as mean ± S.E.M. (n = 27) (* indicates p < 0.05 vs.
saline-treated control group, † indicates p < 0.05 vs. cisplatin treatment alone).
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2.2. Effects of OJS on Renal Histopathological Change in Cisplatin-Induced AKI

To investigate the histological changes in the kidneys induced by cisplatin, Periodic
acid-Schiff’s (PAS) staining was performed. Cisplatin induces injury in renal tissue, charac-
terized by the loss of brush borders, necrosis of tubular cells, and formation of casts [21].
In the present study, these characteristics in the cisplatin-treated group were observed.
However, OJS administration reduced histological changes in cisplatin-induced AKI (Fig-
ure 2A). Furthermore, we analyzed injury scores upon histological staining of renal tissue.
The damage score of the OJS treatment group was decreased in a dose-dependent manner
compared to the cisplatin group (Figure 2C). In addition, we stained lotus tertragonolobus
lectin (LTL) to investigate cisplatin-induced damage to the proximal tubule. In the control
group, there were many LTL-stained cells, but LTL-stained cells were decreased in the
cisplatin group. However, administration of OJS inhibited LTL loss in a dose-dependent
manner (Figure 2B,D).
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Figure 2. OJS treatment decreases renal histopathological change in cisplatin-induced AKI.
(A) Representative PAS-stained sections of the kidney (200×magnification): brush border (arrow),
cast formation (arrowhead), and tubular necrosis (asterisk). (B) Representative LTL-stained sections
of the kidney (200× magnification). (C) Tissue sections of the kidney were scored from zero (normal)
to four (severe) for injury of tubule cells. (D) LTL-positive areas of the kidney were scored for green
fluorescence. Data are represented as mean ± S.E.M. (n = 12; * indicates p < 0.05 vs. saline-treated
control group, † indicates p < 0.05 vs. cisplatin treatment alone).

2.3. Effects of OJS on Renal Cell Death in Cisplatin-Induced AKI

Cell death in cisplatin-induced AKI is very common [22,23]. Therefore, we investigate
cell death by TUNEL staining. In the control group, few TUNEL-positive cells were
detected. However, the number of TUNEL-positive cells increased significantly in the
cisplatin group compared to the control group and decreased in a dose-dependent manner
in the OJS group (Figure 3).
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stained sections of the kidney (200× magnification). (B) TUNEL-positive cells of the kidney were
scored for red fluorescence. Each experiment was repeated 3 times. Data are represented as
mean ± S.E.M. (n = 12; * indicates p < 0.05 vs. saline-treated control group, † indicates p < 0.05
vs. cisplatin treatment alone).

2.4. Effects of OJS on Renal Pro-Inflammatory Cytokine in Cisplatin-Induced AKI

We examined the changes in IL-1β, IL-6, and TNF-α in the kidney at the mRNA level
using RT-PCR. Consistent with other studies, the mRNA levels of IL-1β, IL-6, and TNF-α
were increased in the cisplatin-treated group more than in the control group [24,25]. How-
ever, OJS administration inhibited the increase in the levels of these cytokines (Figure 4).
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Figure 4. OJS treatment reduces renal cytokine production in cisplatin-induced AKI. RT PCR analyses
of (A) IL-1β, (B) IL-6, and (C) TNF-α. Data are represented as mean ± S.E.M. (n = 9; * indicates
p < 0.05 vs. saline-treated control group, † indicates p < 0.05 vs. cisplatin treatment alone).

2.5. Effects of OJS on the Activation of MAPK and NF-κB Pathways in Cisplatin-Induced AKI

MAPK and NF-κB pathways are activated in cisplatin-induced AKI [26,27]. Therefore,
the effect of OJS on the MAPK and NF-κB pathways activation was examined using a
western blot. We found phosphorylation of MAPKs and degradation of Iκ-Bα in the kidney
by cisplatin treatment. However, OJS treatment inhibited the phosphorylation of p38,
ERK1/2, and JNK and the degradation of Iκ-Bα (Figure 5).
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as mean ± S.E.M. (n = 6; * indicates p < 0.05 vs. saline-treated control group, † indicates p < 0.05 vs.
cisplatin treatment alone).

3. Discussion

The clinical use of cisplatin has been limited by its toxicity and several side effects,
such as AKI [28]. Therefore, there is a need to find reagents that prevent cisplatin-induced
nephrotoxicity. In the present study, we evaluated the protective effects of OJS against
cisplatin-induced AKI. We demonstrated that the administration of OJS improved renal
function, attenuated histological changes, and decreased pro-inflammatory cytokine levels
in a mouse model. Furthermore, we examined the regulatory mechanisms of OJS and
determined that it inhibited cisplatin-induced phosphorylation of P38, ERK1/2, and JNK
and degradation of Iκ-Bα.

The pathophysiology of cisplatin-induced AKI involves several stages [23]. Renal
tubular damage and inflammation in the kidney are the most common characteristic
phenomena [29]. In addition, cisplatin is known to decrease renal function by damaging
the renal tubular cells [20,30]. Urea and creatinine, which are waste products of the body,
are filtered by the kidneys and excreted in urine [31]. However, when kidney function
deteriorates, they accumulate in the body and begin to be detected by blood tests [32].
Therefore, BUN and SCr levels can be used as basic indicators for diagnosing AKI. In
this study, we determined that BUN and SCr levels increased in cisplatin-induced AKI.
However, OJS treatment suppressed this increase in BUN and SCr levels (Figure 1B). These
results suggest that OJS treatment prevents the decline in kidney function in cisplatin-
induced AKI.

This study investigated cisplatin-induced renal tubular cell damage. Cisplatin is
filtered through the glomeruli and taken up by renal tubular cells [33]. It accumulates in
the proximal tubular cells of the renal cortex and causes damage, affecting other tubular
cells, such as distal tubular and collecting duct cells [34]. Damage to proximal tubular
cells leads to cell death and exfoliation into the tubule lumen [35]. In this process, loss of
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the brush border, which is characteristic of the proximal tubule, occurs, and the sludge
of the tubular cell forms a cast in the lumen [21]. In the cisplatin-induced AKI model
described here, loss of brush border, tubular cell necrosis, and cast formation were detected,
as previously reported. In addition, a decrease in LTL, a marker of the brush border, and an
increase in renal cell death were also observed through fluorescence staining. However, the
administration of OJS inhibited tubular cell damage, indicating that OJS protects against
renal damage in cisplatin-induced AKI (Figures 2 and 3).

Renal inflammation also plays an important role in cisplatin-induced AKI progres-
sion [36–38]. Thus, the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) are
elevated in cisplatin-induced AKI [39–41]. The elevation of pro-inflammatory cytokine
levels is mediated by the activation of signaling cascade, MAPKs and NF-κB, which are
associated with various cell functions, including proliferation, division, stress response,
inflammation, and apoptosis [42,43]. According to other studies, cisplatin can activate
MAPKs and NF-κB pathways in the kidney and induce the expression of pro-inflammatory
cytokines and cell death [20,44–46]. In this experiment, in accordance with previous re-
ports, the mRNA levels of IL-1β, IL-6, and TNF-α; phosphorylation of p38, ERK1/2, and
JNK; and degradation of Iκ-Bα were significantly increased by cisplatin (Figures 4 and 5).
However, the administration of OJS suppressed the increase in the cytokines, MAPK phos-
phorylation, and Iκ-Bα degradation, suggesting that OJS improves cisplatin-induced renal
inflammation through the deactivation of the MAPK and NF-κB pathways. As shown in
Table 1, OJS has various chemical components to exhibit the inhibitory activity of MAPK
and NF-κB. Especially, hesperidin, the main ingredient of OJS, showed anti-inflammatory
activity via the deactivation of MAPK and NF-κB [47,48]. Thus, we could assume that
the deactivation of MAPK and NF-κB by OJS could be a pivotal regulatory mechanism in
cisplatin-induced AKI.

Table 1. Bioactive ingredient of OJS components.

Latin Name Active
Ingredient Bioactivity (Mechanism)

Citri unshii Percarpium naringin Anti-inflammatory (Suppression of p38) [49]
Anti-fibrosis (Suppression of ERK and JNK) [50]

Aurantii Fructus Immaturus
hesperidin
neohesperidin
naringin

Anti-inflammatory (Suppression of p38,ERK, JNK and
NF-κB) [47,48]

Angelicae Gigantis Radix nodakenin Anti-inflammatory (Suppression of p38 and NF-κB) [51]
Zingiberis Rhizoma 6-gingerol Anti-inflammatory (Suppression of p38, ERK, and JNK) [52]

Paeoniae Radix albiflorin
paeoniflorin

Analgesic effect (Suppression of p38 and JNK) [53]
Anti-psoriatic effect (Suppression of p38) [54]

Cnidii Rhizoma ferulic acid Anti-inflammatory (Suppression of p38,ERK, JNK,
and NF-κB) [55,56]

Cinnamomi Cortex cinnamaldehyde Anti-atherosclerosis (Suppression of p38, JNK, and NF-κB) [57]
Anti-allergic effect (Suppression of p38) [58]

Glycyrrhuzae Radix et Rhizoma glycyrrhizin
liquiritin

Anti-apoptosis and anti-inflammatory (Suppression of p38) [59]
Anti-asthma (Suppression of NF-κB) [60]

In summary, the nephron-protective effect of OJS was demonstrated in cisplatin-
induced AKI, and the inactivation of MAPK and NF-κB pathways was implicated. Our
results suggest that OJS can significantly protect against nephrotoxicity, which is a promi-
nent side effect of cisplatin.

4. Materials and Methods
4.1. Preparation of OJS

OJS was prepared in accordance with a previous report and provided by the Korea
Institute of Oriental Medicine (Daejeon, Korea) (Table 2). In our previous study, we showed
that the OJS decoction contains albiflorin, paeoniflorin, liquiritin, ferulic acid, nodakenin,
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hesperidin, neohesperidin, naringin, cinnamaldehyde, glycyrrhzin, and 6-gingerol as
bioactive compounds [17]. Among these, hesperidin was the main compound in the
OJS decoction.

Table 2. Decoction of Ojeoksan (OJS).

Latin Name Scientific Name Amount (g) Origin

Atractylodis Rhizoma Atractylodes lancea DC 7.5 China
Citri unshii Percarpium Citrus reticulata Blanco 3.7 Korea

Ephedrae Herba Ephedra sinica Stapf 3.7 China

Magnoliae Cortex Magnolia offcinalis Rehder &
E.H. Wilson 3.0 China

Platycodi Radix Platycodon grandiflorus A. DC 3.0 Korea
Aurantii Fructus

Immaturus Citrus auratium L. 3.0 China

Angelicae Gigantis Radix Angelica gigas Nakai 3.0 Korea
Zingiberis Rhizoma Zingiber officinale Roscoe 3.0 Korea

Paeoniae Radix Paeonia lactiflora Pall 3.0 Korea
Poria Sclerotium Wolfiporia extensa 3.0 Korea

Angelicae Dahuricae Radix Angelica dahurica 2.6 Korea
Cnidii Rhizoma Ligusticum officinale Kitag 2.6 Korea
Pinelliae Tuber Pinellia ternate Ten. Ex Breitenb 2.6 China

Cinnamomi Cortex Cinnamomum cassia J. Presl 2.6 Vietnam
Glycyrrhuzae Radix et

Rhizoma Glycyrrhiza uralensis Fisch 2.2 China

Zingiberis Rhizoma recens Zingiber offcinale Roscoe 3.7 Korea
Allii Fistulosi Bulbus Alluim fistulosum L. 3.7 Korea

4.2. Experimental Animal Models

All animal experiments were conducted according to the protocols approved by the
Animal Care Committee of Wonkwang University (WKU22-15). Male C57BL/6 mice
(8–10 weeks old, weighing 20–25 g) were purchased from Orient Bio (Sungnam, South
Korea). They were bred in a climate-controlled room with a constant temperature (21–25 ◦C)
and a 12 h light-dark cycle for 7 days. Before the experiment, the mice were randomly
divided to the control and experimental groups; Normal control (Saline), OJS control
(200 mg/kg), Cisplatin 20 mg/kg, OJS 50 mg/kg + Cisplatin, OJS 100 mg/kg + Cisplatin,
OJS 200 mg/kg + Cisplatin. We prepared and applied 9 mice for each group in every
experiment, and performed 3 times independently, so we challenged the 27 mice per
group in total (n = 9 per group for three experiments, total = 27). The mice were orally
administered saline or OJS (50, 100, or 200 mg/kg). After 1 h, the mice were administered a
single intraperitoneal injection of saline or cisplatin (20 mg/kg) to induce AKI. 72 h after
cisplatin injection, the mice were euthanized via CO2 asphyxiation followed by cervical
dislocation. The CO2 flow rate displaced 50% of the cage volume per minute. We randomly
divided mice in each group for further analysis as follows: 4 mice for histological analysis,
3 mice for RT-PCR, and 2 mice for western blot analysis. Their blood and kidneys were
immediately removed and stored at −80 ◦C, and some kidneys were fixed in a 10% neutral-
buffered formalin solution for further studies. The body weight of the mice was measured
every day, and mice that lost more than 25% in body weight were excluded from the
experiment according to the humane endpoint of the laboratory animal guide.

4.3. Measurement of BUN and SCr

The mice were euthanized via CO2 asphyxiation followed by cervical dislocation. The
CO2 flow rate displaced 50% of the cage volume per minute. Blood samples (approximately
0.5 mL) were collected from the heart. BUN and SCr levels were measured by using an
assay kit (Sekisui Medical, Tokyo, Japan).
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4.4. Histological Analysis

Kidneys removed from mice were fixed in a 10% neutral-buffered formalin solution
overnight. After tissue dehydration, the renal tissues were embedded in paraffin. The
paraffin blocks were sectioned at 4 µm thickness and stained with a Periodic acid-Schiff’s
(PAS) staining kit (Polysciences Inc., Warrington, PA, USA) by manufacturer’s protocol.
Lesions (the loss of brush borders, necrosis of tubular cells, and formation of casts) were
graded on a scale from 0 to 4: 0 = normal; 1 = mild, involvement of less than 10% of the
cortex; 2 = moderate, involvement of 10 to 25% of the cortex; 3 = severe, involvement of 25
to 75% of the cortex; 4 = very severe, involvement of more than 75% of the cortex.

4.5. Immunofluorescence Staining

Immunofluorescence staining for lotus LTL was performed on the renal tissues. Paraf-
fin tissue cut to a thickness of 4 µm was deparaffinized and rehydrated and then stained
with primary antibodies (1:250; FL-1321; Vector laboratories, Newark, CA, USA) overnight
at 4 ◦C. Nuclei were counterstained with 4’,6-diamidino-2-phenylindole (DAPI, 5 ng/mL)
for 5 min at room temperature. The stained tissue was imaged using a confocal laser
scanning biological microscope (Olympus, FV1000) at the Core Facility for Supporting
Analysis & Imaging of Biomedical Materials in Wonkwang University, supported by the
National Research Facilities and Equipment Center.

4.6. TUNEL Assay

Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was
performed using the In Situ Cell Death Detection Kit, TMR red (Roche, Switzerland),
according to the manufacturer’s instructions. Paraffin tissue cut to a thickness of 4 µm
was incubated at 37 ◦C for 1 h with a TUNEL reaction mixture after deparaffinization and
rehydration. The stained tissue was imaged using a confocal laser scanning biological
microscope (Olympus, FV1000) at the Core Facility for Supporting Analysis & Imaging
of Biomedical Materials in Wonkwang University, supported by the National Research
Facilities and Equipment Center.

4.7. RT-PCR

Total RNA was extracted from the kidneys using the Easy-BlueTM RNA extraction
kit (iNtRON Biotechnology, Sungnam, Korea). Total RNA was reverse-transcribed into
cDNA using the ReverTra Ace qPCR RT Kit (Toyobo; Osaka, Japan). The ABI StepOne
Plus detection system was used to perform TaqMan quantitative RT-PCR according to
the manufacturer’s protocol. For each sample, to evaluate the expression of the gene of
the target and control variations in the reactions, a triplicate test and control reaction test
without reverse transcriptase were performed. The housekeeping gene, Glyceraldehyde
3-phosphate dehydrogenase (GAPDH), is used for normalizing the mRNA levels of the
target genes. The PCR cycling conditions were as follows: 95 ◦C for 3 min; 45 cycles of
95 ◦C for 10 s, 60 ◦C for 10 s, and 72 ◦C for 20 s. The following primers were used for
qPCR: interleukin (IL)-1β forward (F), 5′-CACCTCTCAAGCAGAGCACAG-3′ and reverse
(R), 5′-GGGTTCCATGGTGAAGTCAAC-3′; IL-6 F, 5′-TCCTACCCCAACTTCCAATGCTC-
3′ and R, 5′-TTGGATGGTCTTGGTCCTTAGCC-3′; tumor necrosis factor (TNF)-α F, 5′-
AAATGGGCTCCCTCTCATCAGTTC-3′ and R, 5′- TCTGCTTGGTGGTTTGCTACGAC-3′;
and β-actin F, 5′-GGACCTGACAGACTACC-3′ and R, 5′-GGCATAGAGGTCTTTACGG-3′.

4.8. Western Blot

Renal tissues were homogenized and lysed in RIPA buffer to extract proteins. The
protein extracts were separated on a 10% sodium dodecyl sulfate-polyacrylamide gel and
transferred to a nitrocellulose membrane. The membrane was blocked with 5% skim
milk at room temperature (RT) for 2 h. This was followed by overnight incubation at
4 ◦C with primary antibodies (1:1000; Cell Signaling Technology; Danvers, MA, USA)
against pP38 (9211), pERK1/2 (9101), pJNK (9251), p38 (9212), ERK1/2 (9102), JNK (9252),
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inhibitory κ-Bα (Iκ-Bα; 9242), and β-actin (8457). The membrane was incubated with
horseradish peroxidase (HRP)-conjugated secondary goat anti-rabbit antibody (Santa Cruz
Biotechnology, Dallas, TX, USA) at RT for 1 h. The protein bands were visualized using
an enhanced chemiluminescence detection system (Amersham, Buckinghamshire, UK)
according to the manufacturer’s protocol.

4.9. Statistical Analysis

Results are expressed as mean ± standard error of the mean (SEM). The significance
of the differences was evaluated using a 1-way analysis of variance (ANOVA), and a post
hoc test was performed by Duncan. All the statistical analyses were performed using the
SPSS statistical analysis software version 10.0 (SPSS Inc., Chicago, IL, USA). p < 0.05 was
considered to be statistically significant.
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