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Abstract. [Purpose] VO2 is expressed as the product of cardiac output and O2 extraction by the Fick equation. 
During the incremental exercise test and constant high-intensity exercise test, VO2 results in the attainment of 
maximal O2 uptake at exhaustion. However, the differences in the physiological components, cardiac output and 
muscle O2 extraction, have not been fully elucidated. We tested the hypothesis that constant exercise would result in 
higher O2 extraction than incremental exercise at exhaustion. [Subjects] Twenty-five subjects performed incremen-
tal exercise and constant exercise at 80% of their peak work rate. [Methods] Ventilatory, cardiovascular, and muscle 
oxygenation responses were measured using a gas analyzer, Finapres, and near-infrared spectroscopy, respectively. 
[Results] VO2 was not significantly different between the incremental exercise and constant exercise. However, 
cardiac output and muscle O2 saturation were significantly lower for the constant exercise than the incremental ex-
ercise at the end of exercise. [Conclusion] These findings indicate that if both tests produce a similar VO2 value, the 
VO2 in incremental exercise would have a higher ratio of cardiac output than constant exercise, and VO2 in constant 
exercise would have a higher ratio of O2 extraction than incremental exercise at the end of exercise.
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INTRODUCTION

The cardiopulmonary exercise test (CPX) is the gold 
standard for evaluating the cause of exercise intolerance in 
patients with pulmonary and cardiac disease1). Various tests 
are available, each being more or less suitable as a stressor 
of a particular component of the patient’s pathophysiology. 
According to the American Thoracic Society/American 
College of Chest Physicians statement on CPX, the incre-
mental exercise test (IET) is most widely used in clinical 
practice, but the constant high-intensity exercise test (CET) 
is gaining popularity because of its clinical applicability, 
particularly for monitoring responses to a spectrum of ther-
apeutic interventions2).

The IET is used to calculate the aerobic threshold (AT)3), 
respiratory compensation point, and O2 at peak work rate 
(PW; VO2 peak or VO2 max)4). On the other hand, the CET is 
useful for the analysis of gas exchange kinetics5) and dy-
namic hyperinflation6). In addition, the change in time to 
the limit of tolerance in CET (also known as endurance time 

[ET]) at 75–80% load of PW has been shown to provide a 
more sensitive index of improvement than PW, or VO2 peak, 
in IET1, 7–10). Most recent studies of CET have used an 80% 
load of PW7, 8, 11–13).

VO2 is determined by the variables in the Fick equation:

 VO2 = Q × (CaO2 − CvO2)

where Q is the cardiac output (CO; the product of heart 
rate [HR] and stroke volume [SV]), and CaO2 and CvO2 
are the O2 contents of arterial and mixed venous blood, 
respectively. Thus, VO2 is expressed as the product of CO 
and O2 extraction. The VO2 value during CET reaches VO2 

max, as assessed by IET, in the case of symptom limit and 
load (higher critical power) during CET14, 15). However, we 
conjectured that even if both tests reach VO2 peak at exhaus-
tion, the component ratios are different because of the dif-
ferent exercise load patterns. We hypothesized that CET 
would reach a higher O2 extraction at exhaustion because of 
progressive fatigue due to a higher ATP turnover rate16, 17). 
Therefore, the purpose of this study was to compare the 
physiological changes during IET and CET at 80% load of 
PW in healthy human subjects.

SUBJECTS AND METHODS

Twenty-five young men (mean ± standard deviation 
[SD]; age = 23.3 ± 1.48 years, height = 169.4 ± 5.9 cm, body 

J. Phys. Ther. Sci. 
26: 1283–1286, 2014

*Corresponding author. Junshiro Yamamoto (E-mail: j_ya-
mamoto1046@yahoo.co.jp)
©2014 The Society of Physical Therapy Science. Published by IPEC Inc.
This is an open-access article distributed under the terms of the Cre-
ative Commons Attribution Non-Commercial No Derivatives (by-nc-
nd) License <http://creativecommons.org/licenses/by-nc-nd/3.0/>.

Original Article

http://creativecommons.org/licenses/by-nc-nd/3.0/


J. Phys. Ther. Sci. Vol. 26, No. 8, 20141284

mass = 61.6 ± 6.4 kg) participated in this study. None of 
the subjects had routine fitness habits or were smokers. The 
subjects were informed of the potential risks and discom-
fort associated with the experiments before giving their 
written consent to participate in this study, which was ap-
proved by the ethical review committee of Kio University 
(Koryo-cho, Japan) and performed in accordance with the 
ethical principles of the Declaration of Helsinki.

Subjects reported to the laboratory on two separate occa-
sions. An IET (work rate of 25 W/min, pedal revolution rate 
of 60 rpm/min) was performed using a braked cycle ergom-
eter (Lode; Corival, Groningen, The Netherlands) on the 
first day of testing for the determination of estimated PW 
and other respiratory and metabolic factors. On a separate 
day, subjects returned to the laboratory for a CET at 80% of 
PW (pedal revolution rate of 60 rpm/min).

During both tests, we measured physiological responses, 
namely, ventilatory, metabolic, and cardiovascular respons-
es, and muscle oxygenation. Ventilatory and metabolic vari-
ables were recorded breath-by-breath with a gas analyzer; 
cardiovascular responses were recorded with Finapres; and 
muscle oxygenation was recorded by near-infrared spec-
troscopy (NIRS).

Ventilatory and metabolic variables were recorded 
breath-by-breath with a computerized metabolic cart 
(MetaMax3B; Cortex, Leipzig, Germany). Oxygen uptake 
(VO2), carbon dioxide output (VCO2), minute ventilation 
(VE), the ventilator equivalent for carbon dioxide (VE/
VCO2), the ratio of dead space to tidal volume (VD/VT), 
end-tidal carbon dioxide pressure (PETCO2), the respiratory 
exchange ratio (RER), and HR were determined from val-
ues averaged every 30 s.

Noninvasive continuous arterial systolic blood pressure 
(SBP) was measured beat-to-beat using the Finapres finger 
cuff (PORTEPRESS; FMS, Amsterdam, The Netherlands) 
on the index finger along with a height correction system at-
tached to the top of the finger. The Finapres finger cuff uses 
the volume-clamp technique to measure finger arterial pres-
sure18). Together with Beatscope software (Beatscope Easy; 
FMS, Amsterdam, The Netherlands), the Finapres finger 
cuff determines left ventricular SV; SV and HR values are 
used to calculate CO.

Oxygenation changes in the vastus lateralis muscle 
were evaluated by NIRS (BOM-L1TRW; Omegawave, To-
kyo, Japan) at rest and during exercise. The NIRS probe 
was placed on the muscle approximately 14–20 cm above 
the knee joint. This instrument uses 3 light-emitting di-
odes (wavelengths: 780, 810, and 830 nm) and calculates 
the relative tissue levels of oxygenated hemoglobin (O2Hb), 
deoxygenated hemoglobin (HHb), and total hemoglobin 
(THb) according to the Beer-Lambert law. The absorption 
coefficients of hemoglobin (Hb) are based on previously re-
ported data19), and individual values are proportional to the 
Hb levels. Levels of O2Hb, HHb, and THb are expressed in 
µmol/L, but Hb concentrations are expressed in arbitrary 
units (AU) because they do not represent actual physical 
volumes. We calculated muscle O2 saturation (SmO2) from 
the O2Hb and THb values with the following formula: 
SmO2 (%) = (O2Hb/THb) × 100.

Data analysis was performed using SPSS® version 19.0 
statistical software (SPSS Inc., Chicago, IL, USA). The 
peak value for each of the measurements was defined as the 
mean of values acquired during the last 30 s of the test. All 
data are presented as the mean ± SD. Comparisons between 
the IET and CET results were analyzed using the paired t-
test. A value of p < 0.05 was considered to be statistically 
significant.

RESULTS

Table 1 shows the exercise capacity, and Table 2 shows 
the results of the comparison of end-exercise responses of 
the IET and CET. All subjects completed the IET, reach-
ing exhaustion levels; HRmax was 94.2 ± 4.23% of the age-
predicted value, and RER was 1.17 ± 0.0120). The VO2 max 
of IET was 2.55 ± 0.47 L/min, and there was no significant 
difference in VO2 between the IET and CET. SBP and CO 
were significantly higher in the IET than in the CET (p < 
0.05). HHb was significantly higher and SmO2 was signifi-
cantly lower in the CET than in the IET (p < 0.01).

DISCUSSION

In the present study, all subjects completed the IET and 
reached exhaustion levels20). Therefore, we believe that the 
IET was performed until exhaustion and that VO2 reached 
VO2 max. In addition, there were no significant differences 
in VO2 between the IET and CET. Therefore, we believe 
that VO2 during the CET also reached VO2 max.

SBP and CO in the IET were significantly higher than 
in the CET. These results suggest that the IET might have 
a higher cardiac load than the CET. This hypothesis is sup-
ported by the fact that VO2 max during the IET is mainly 
limited by the cardiovascular system in normal healthy 
subjects21) and that muscle blood flow is correlated linearly 
and positively with work rate22, 23). Further, the IET would 
demand a greater O2 delivery than the CET.

By the end of the exercises, HHb in the CET was higher 
than in the IET. HHb is considered to be similar to O2 ex-
traction24, 25), and the increasing rate of HHb in venous oc-
clusion can be used as a muscle O2 consumption index26). 
In addition, SmO2 was significantly lower in the CET than 

Table 1.  The results of exercise capacity

Variables
Incremental exercise test (IET)

VO2max (L/min) 2.55±0.47
Peak Watt: PW (W) 202.9±22.6
HR max (bpm) 185.3±8.58
VO2AT (L/min) 1.32±0.22
AT (W) 98.7±18.8

Constant high-intensity exercise test (CET)
Work rate; 80% of PW (W) 162.3±18.1
Exercise tolerance time (sec) 634.3±73.7

Variables are presented as mean±SD. VO2: oxygen up-
take, HR: heart rate, AT: anaerobic threshold
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in the IET. SmO2 signals provide a reliable estimate of the 
dynamic balance between O2 supply and O2 consumption in 
the area of investigation27). These findings suggest that the 
CET has a higher muscle O2 extraction rate than the IET at 
the end of exercise. Interestingly, the findings may be ex-
plained by HHb kinetics at the end of the tests. At the end of 
the IET, the HHb response displays a slowdown or plateau 
point28–30), whereas at the end of the CET, the HHb response 
displays a progressive rise following the HHb “slow com-
ponent”31, 32). We found that the HHb showed these trends 
in the present study (Fig. 1). The HHb slow component has 
been reported to be strongly correlated with lactate concen-
trations during running33). Lactic acidosis favors a greater 
release of O2 from Hb due to the rightward displacement of 
the oxyhemoglobin dissociation curve (Bohr effect), conse-
quently facilitating O2 extraction from the blood. The phys-
iological mechanisms of these HHb responses in relation to 
the IET and CET are still not fully understood and cannot 
be explained using the results of the present study, but it is 
likely that metabolic changes in the muscles play a role.

In conclusion, the present study demonstrated that there 
are differences in physiological responses between the IET 
and CET at the end of exercise. Although both exercise tests 
induced similar responses with respect to VO2, the factors 
determining VO2 changes were different: cardiac load was 
lower and muscle O2 extraction was higher in CET than 

IET. These results suggest that if both tests produce a simi-
lar VO2 value, VO2 in the IET would have a higher ratio of 
cardiac output than the CET, and VO2 in the CET would 
have a higher ratio of O2 extraction than the IET at the end 
of exercise. These findings may be useful for further assess-
ment of individual exercise-limiting factors.
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