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Abstract

For the vast majority of genes in sequenced genomes, there is limited understanding of how they are
regulated. Without such knowledge, it is not possible to perform a quantitative theory-experiment dialogue
on how such genes give rise to physiological and evolutionary adaptation. One category of high-throughput
experiments used to understand the sequence-phenotype relationship of the transcriptome is massively
parallel reporter assays (MPRAs). However, to improve the versatility and scalability of MPRA pipelines, we
need a “theory of the experiment” to help us better understand the impact of various biological and
experimental parameters on the interpretation of experimental data. These parameters include binding site
copy number, where a large number of specific binding sites may titrate away transcription factors, as well as
the presence of overlapping binding sites, which may affect analysis of the degree of mutual dependence
between mutations in the regulatory region and expression levels. Here, we develop a computational pipeline
that makes it possible to systematically explore how each biological and experimental parameter controls
measured MPRA data. Specifically, we use equilibrium statistical mechanics in conjunction with predictive
base-pair resolution energy matrices to predict expression levels of genes with mutated regulatory sequences
and subsequently use mutual information to interpret synthetic MPRA data including recovering the
expected binding sites. Our simulations reveal important effects of the parameters on MPRA data and we
demonstrate our ability to optimize MPRA experimental designs with the goal of generating thermodynamic
models of the transcriptome with base-pair specificity. Further, this approach makes it possible to carefully
examine the mapping between mutations in binding sites and their corresponding expression profiles, a tool
useful not only for better designing MPRAs, but also for exploring regulatory evolution.

Author summary

With the rapid advancement of sequencing technology, there has been an exponential increase in
the amount of data on the genomic sequences of diverse organisms. Nevertheless, deciphering the
sequence-phenotype mapping of the genomic data remains a formidable task, especially when dealing
with non-coding sequences such as the promoter and its allied regulatory architecture. In current
databases, annotations on transcription factor binding sites are sorely lacking, which creates a challenge
for developing a systematic theory of transcriptional regulation. To address this gap in knowledge,
high-throughput methods such as massively parallel reporter assays have been employed to decipher
the regulatory genome. In this work, we make use of thermodynamic models to computationally
simulate MPRAs in the context of transcriptional regulation studies and produce synthetic MPRA
datasets. We examine how well typical experimental and data analysis procedures of MPRAs are
able to recover common regulatory architectures under different sets of experimental and biological
parameters. By establishing a dialogue between high-throughput experiments and a physical theory
of transcription, our efforts serve to both improve current experimental procedures and enhancing
our broader understanding of the sequence-function landscape of regulatory sequences.

January 29, 2024 1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.577658doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577658
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 1

With the widespread emergence of sequencing technology, we have seen an explosion of genomic data in 2

recent years. However, data on transcriptional regulation remains far behind. Even for organisms as widely 3

studied as E. coli, many promoters lack annotations on the transcription factor binding sites that underlie 4

transcriptional regulation. Moreover, existing binding site annotations are largely without experimental 5

validation for functional activity, as a large proportion are determined through DNA-protein interaction 6

assays such as ChIP-Seq [1–4] or computational prediction [5]. This fundamental gap in knowledge poses a 7

major obstacle for us to understand the spatial and temporal control of cellular activity, as well as how cells 8

and organisms respond both physiologically and evolutionarily to environmental signals. 9

One strategy to understand the regulatory genome is by conducting massively parellel reporter assays 10

(MPRAs), where the regulatory activities of a library of sequences are measured simultaneously via a reporter. 11

The library of sequences may be genomic fragments [6] or sequence variants containing mutations relative to 12

the wild-type regulatory sequence [7]. There are two main ways to measure regulatory activities in MPRAs. 13

The first approach uses fluorescence-activated cell sorting to sort cells into bins based on the expression levels 14

of a fluorescent reporter gene [8]. Subsequently, deep sequencing is utilized to determine which sequence 15

variant is sorted into which bin. The second approach uses RNA-sequencing (RNA-Seq) to measure the 16

counts of barcodes associated with each sequence variant as a quantitative read-out for expression levels. The 17

two approaches have been used in both prokaryotic [9–12] and eukaryotic systems [13–15] to study diverse 18

genomic elements including promoters and enhancers. In particular, our group has developed Reg-Seq [16], 19

an RNA-Seq-based MPRA where the authors successfully deciphered the regulatory architecture of 100 20

promoters in E. coli, with the hope now to complete the regulatory annotation of entire bacterial genomes. 21

Mutations in regulatory elements lead to reduced transcription factor binding, which may result in 22

measurable changes in expression. Therefore, the key strategy to annotate transcription factor binding sites 23

based on MPRA data that we focus on is to identify sites where mutations have a high impact on expression 24

levels. To do this, one approach is to calculate the mutual information between base identity and expression 25

levels at each site. A so-called information footprint can then be generated by plotting the mutual 26

information at each position along the promoter. Positions with high mutual information are identified as 27

putative transcription factor binding sites. 28

In this paper, we develop a computational pipeline that simulates the RNA-Seq-based MPRA pipeline. 29

Specifically, we make use of equilibrium statistical mechanics to build synthetic datasets that simulate the 30

experimental MPRA data and examine how various parameters affect the output of MPRAs. These 31

parameters include experimental parameters, such as the rate of mutation used to generate the sequence 32

variants, as well as biological parameters such as transcription factor copy number, where a large number of 33

specific binding sites may titrate away transcription factors. This computational pipeline will help us to 34

optimize MPRA experimental design with the goal of accurately annotating transcription factor binding sites 35

in regulatory elements, while revealing the limits of MPRA experiments in elucidating complex regulatory 36

architectures. Additionally, the insights gained from our simulation platform will enable further dialogue 37

between theory and experiments in the field of transcription including efforts to understand how mutations 38

in the evolutionary context give rise to altered gene expression profiles and resulting organismal fitness. 39

The remainder of this paper is organized as follows. In Sec 1.1, we will introduce our procedure to 40

construct and analyse synthetic datasets for both promoters regulated by a single transcription factor and 41

promoters regulated by a combination of multiple transcription factors. In Sec 1.2 and Sec 1.3, we discuss 42

the choice of parameters related to the construction of the mutant library, including the rate of mutation, 43

mutational biases, and library size. After setting up the computational pipeline, we perturb biological 44

parameters and examine how these perturbations affect our interpretation of information footprints. The 45

parameters that we will explore include the free energy of transcription factor binding (Sec 2.1), the 46

regulatory logic of the promoter (Sec 2.2), the copy number of the transcription factor binding sites (Sec 2.3), 47

and the concentration of the inducers (Sec 2.4). Next, we explore factors that may affect signal-to-noise ratio 48

in the information footprints. These factors include stochastic fluctuations of transcription factor copy 49

number (Sec 3.1), spurious binding events (Sec 3.2), as well as the presence of overlapping binding sites 50

(Sec 3.3). Finally, we discuss the insights generated from our computational pipeline in relation to future 51

efforts to decipher regulatory architectures in diverse genomes. 52
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Results 53

1 Mapping sequence specificity and expression levels 54

1.1 Computational pipeline for deciphering regulatory architectures from first principles 55

In MPRA pipelines, the goal is to make the connection between regulatory sequences, transcription factor 56

binding events, and expression levels. In Reg-Seq for example, the authors start with a library of sequence 57

variants for an unannotated promoter, each of which contains a random set of mutations relative to the wild 58

type sequence. Then, RNA-Seq is used to measure the expression levels of a reporter gene directly 59

downstream of each promoter. By calculating the mutual information between mutations and the measured 60

expression levels, the regulatory architecture of the promoter can be inferred. Finally, Bayesian models and 61

thermodynamic models can be built using statistical mechanics to infer the interaction energies between 62

transcription factors and their binding sites in absolute kBT units at a base-by-base resolution [16]. 63

Our computational MPRA pipeline involves similar steps, but instead of starting from experimental 64

measurements of expression levels, we use thermodynamic models to predict expression levels given the 65

sequences of the promoter variants and the corresponding interaction energies, as schematized in Fig 1. 66

Through this process, we generate synthetic datasets of expression levels that are in the same format as the 67

datasets that we obtain via RNA-Seq. Subsequently, we analyse the synthetic datasets in the same way as we 68

would analyse an experimental dataset. Importantly, we can perturb various experimental and biological 69

parameters of interest within this pipeline and examine how changing these parameters affect our ability to 70

discover unknown transcription factor binding sites through MPRAs. 71

We first demonstrate our computational pipeline using a promoter with the simple repression regulatory 72

architecture, i.e. the gene is under the regulation of a single repressor. Specifically, we use the promoter 73

sequence of LacZYA. We assume that it is transcribed by the �70 RNAP and only regulated by the LacI 74

repressor, which binds to the O1 operator within the LacZYA promoter. 75

For a gene with the simple repression regulatory architecture, the probability of RNAP being bound [1] is 76

given by 77

pbound =
P

NNS
e���"pd

1 + P
NNS

e���"pd + R
NNS

e���"rd
. (1)

� = 1
kBT where kB is Boltzmann’s constant and T is temperature. As we can see, the parameters that we 78

need are the copy number of RNAP (P ), the copy number of repressor (R), the number of non-binding sites 79

(NNS), and the binding energies for RNAP and the repressors (�"pd and �"rd), respectively. We begin by 80

assuming that P and R are constant and NNS is the total number of base pairs in the E. coli genome. On 81

the other hand, the values for �"pd and �"rd depend on the sequence of the promoter variant. 82

We calculate the binding energies by mapping the sequence of the promoter variant to the energy 83

matrices of the RNAP and the repressor, as shown in Fig 2(A). Specifically, we assume that binding energies 84

are additive. Therefore, given a sequence of length l, the total binding energy �" can be written as 85

�" =
lX

i=1

"i,bi , (2)

where "i,bi is the binding energy corresponding to base identity bi at position i according to the energy matrix. 86

It should be acknowledged that the additive model does not take into account epistasis effects [18,19]. It may 87

be beneficial to include higher-order interaction energy terms in future simulations of MPRA pipelines. 88

After computing the sequence-specific binding energies, we can then substitute the relevant energy terms 89

into Eqn 1 and calculate the probability of RNAP being bound. Here, we use the energy matrices of the 90

RNAP and LacI that were previously experimentally determined using Sort-Seq [20,21], as shown in 91

Fig 2(B). Unless otherwise specified, these energy matrices are used to build all synthetic datasets in the 92

remainder of this paper. 93

To connect the probability of RNAP being bound to expression levels, we make use of the occupancy 94

hypothesis, which states that the rate of mRNA production is proportional to the probability of RNA 95

polymerase occupancy at the promoter [22]. The rate of change in mRNA copy number is given by the 96
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Fig 1. A computational pipeline for deciphering regulatory architectures from first principles.
Given (1) knowledge or assumptions about the regulatory architecture of a promoter, we make use of (2)
thermodynamic models to construct a states-and-weights diagram, which contains information about all
possible states of binding and the associated Boltzmann weights. Here, in the states-and-weights diagram, P
is the copy number of RNAP, R is the copy number of the repressor, NNS is the number of non-binding sites,
�"pd and �"rd represent the binding energies of RNAP and the repressors at their specific binding sites
relative to the non-specific background, respectively. Using these states-and-weights diagrams as well as the
energy matrices, which are normalized to show the change in binding energies for any mutation along the
promoter compared to the wild-type sequence, we can (3) predict the expression levels for each of the
promoter variants in a mutant library. To recover the regulatory architecture, we (4) calculate the mutual
information between the predicted expression levels and mutations at each position along the promoter
according to Eqn 6. In particular, there is high mutual information if a mutation leads to a large change in
expression and there is low mutual information if a mutation does not lead to a significant change in
expression. The mutual information at each position is plotted in an information footprint, where the height
of the peaks corresponds to the magnitude of mutual information, and the peaks are colored based on the
sign of expression shift, defined in Eqn 9. Given the assumption that the positions with high mutual
information are likely to be RNAP and transcription factor binding sites, we (5) recover the regulatory
architecture of the promoter.

difference between the rates of mRNA production and degradation. In general, there can be multiple 97

transcriptionally active states, each with its own transcription rate. Therefore, we define an average rate of 98

mRNA production, which is given by the sum of each state’s production rate, weighted by the probability of 99

the state. Hence, the rate of change of mRNA copy number is given by 100

dm

dt
=

X

i

ripbound,i � �m, (3)

where for transcriptionally active state i, ri is the rate of transcription, pbound,i is the probability of RNA 101

polymerase occupancy in state i, m is the copy number of mRNAs, and � is the rate of mRNA degradation. 102

Therefore, the steady-state level of mRNA is given by 103

m⇤ =
1

�

X

i

ripbound,i. (4)

Here, for simplicity, we assume that each transcriptionally active state has the same rate of mRNA 104

January 29, 2024 4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.577658doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577658
http://creativecommons.org/licenses/by-nc/4.0/


X1 X2 … Xn

A G C T Ae.g.

A

C

G

T

X1 X2 … Xn

G C A G G

stronger
binding

weaker
binding

ε1
S

ε1
NS

ε2
NS

ε3
NS

ε4
NS ε5

NSε2
S

ε3
S

ε5
S

ε4
S

LacI

CRP

RNAP(A) non-specific bindingspecific binding (B)

Position in binding site

Fig 2. Mapping binding site sequences to binding energies using energy matrices. (A) Given the
assumption that binding energies are additive, we can use an energy matrix to determine how much energy
each base along the binding site contributes and compute the total binding energy by taking the sum of the
binding energies contributed by each position. The total binding energy can be used to compute the
Boltzmann weight for each of the states, which is then used to calculate the probability of RNAP being
bound. (B) Experimentally-measured energy matrices of RNAP [20], the LacI repressor [21], and the CRP
activator. [8]

production, r. Therefore, 105

m⇤ = ↵
X

i

pbound,i, where ↵ =
r

�
(5)

Using the above expression, we can calculate the expected RNA count for each of the promoter variants in 106

our library. Assuming that r and � do not depend on the mRNA sequence, the total probability of RNAP 107

being bound, given by pbound =
P

pbound,i, is scaled by the same constant to produce the mRNA count of 108

each promoter variant. Therefore, the choice of ↵ does not affect our downstream calculations involving the 109

probability distribution of expression levels. Depending on the sequencing depth, the mRNA count for each 110

promoter variant is typically on the order of 10 to 103 [16]. Here, we take the geometric mean and set ↵ to 111

be 102 to ensure that the mRNA count is on a realistic scale. 112

Up until this point, we have constructed a synthetic RNA-Seq dataset containing the predicted expression 113

levels of each sequence variant in a mutant library. Next, we recover the regulatory architecture from this 114

synthetic dataset. To do this, we calculate the mutual information between mutations and expression levels. 115

The mutual information at position i is given by 116

Ii =
X

b

X

µ

Pr i(b, µ) log2

✓
Pr i(b, µ)

Pr i(b) Pr(µ)

◆
, (6)

where b represents base identity, µ represents expression level, Pr i(b) is the marginal probability distribution 117

of mutations at position i, Pr(µ) is the marginal probability distribution of expression levels across all 118

promoter variants, and Pr i(b, µ) is the joint probability distribution between expression levels and mutations 119

at position i. 120

In general, b can be any of the four nucleotides, i.e. b 2 {A,C,G,T}. This means that Pr i(b) is obtained 121

by computing the frequency of each base per position. Alternatively, a more coarse grained approach can be 122

taken, where the only distinction is between the wild-type base and mutation, in which case b is defined as 123

b =

(
0, if the base is mutated,

1, if the base is wild type.
(7)

January 29, 2024 5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.577658doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577658
http://creativecommons.org/licenses/by-nc/4.0/


As shown in S1 Appendix, using the coarse-grained definition of b improves the signal-to-noise ratio of the 124

information footprint as reducing the number of states reduces articifical noise outside of the specific binding 125

sites. Therefore, we use this definition for our subsequent analysis. 126

To represent expression levels as a probability distribution, we group sequences in each range of 127

expression levels into discrete bins and compute the probabilities that a given promoter variant is found in 128

each bin. As shown in S1 Appendix, we found that increasing the number of bins leads to a lower 129

signal-to-noise ratio in the information footprints because the additional bins contribute to artificial noise. 130

Therefore, we choose to use only two bins with the mean expression level as the threshold between them. 131

This means that µ can take the values of 132

µ =

(
0, if expression is lower than mean expression

1, if expression is higher than mean expression.
(8)

In S2 Appendix, we derive the information footprint for a constitutive promoter analytically and 133

demonstrate that in the absence of noise, mutual information is expected to be 0 outside of the specific 134

binding sites and non-zero at a specific binding site. 135

To decipher the regulatory architecture of a promoter, another important piece of information is the 136

direction in which a mutation changes expression. This can be determined by calculating the expression 137

shift [23], which measures the change in expression when there is a mutation at a given position. Suppose 138

there are n promoter variants in our library, then the expression shift �sl at position l is given by 139

�sl =
1

n

nX

i=1

⇠i,l (ci � hci) , where hci = 1

n

nX

i=1

ci. (9)

Here, ci represents the RNA count of the i-th promoter variant. ⇠i,l = 0 if the base at position l in the i-th 140

promoter variant is wild type and ⇠i,l = 1 if the base is mutated. If the expression shift is positive, it 141

indicates that mutations lead to an increase in expression and the site is likely to be bound by a repressor. 142

On the other hand, a negative expression shift indicates that mutations lead to a decrease in expression, and 143

therefore the site is likely to be bound by RNAP or an activator. 144

By calculating the mutual information and expression shift at each base position along the promoter, we 145

can plot an information footprint for a promoter with the simple repression genetic architecture, as shown in 146

Fig 3(B). There are two peaks with negative expression shifts near the -10 and -35 positions, which 147

correspond to the canonical RNAP binding sites. There is another peak immediately downstream from the 148

transcription start site with a positive expression shift, which corresponds to the binding site of the LacI 149

repressor. Taken together, we have demonstrated that by calculating mutual information, we are able to 150

recover binding sites from our synthetic dataset on expression levels. 151

Using the same procedure as described above, we can also produce synthetic datasets for other classes of 152

regulatory architectures. In Fig 3, we demonstrate that we can recover the expected binding sites based on 153

synthetic datasets for six common types of regulatory architectures [16]. The states-and-weights diagrams 154

and pbound expressions used to produce these synthetic datasets are shown in S3 Appendix. 155

1.2 Changing mutation rates and adding mutational biases 156

One key parameter in the MPRA pipeline is the level of mutation for each sequence variant in the library. 157

Here, we again consider a gene with the simple repression genetic architecture as a case study and we 158

examine how varying mutation rates and mutational biases changes the signals in the information footprints. 159

We quantify the level of signal, S, by calculating the average mutual information at each of the binding sites. 160

This is given by the formula 161

S = hIiB =
1

l

X

i2B

Ii, (10)

where B represents the set of bases within a given binding site, Ii represents mutual information at base 162

position i, and l is the length of B, i.e. the number of bases in the binding site. 163
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Fig 3. Building information footprints based on synthetic datasets of different regulatory
architectures. We describe each of the regulatory architectures using the notation (A,R), where A refers to
the number of activator binding sites and R refers to the number of repressor binding sites. The
corresponding information footprints built from synthetic datasets are shown on the right. The architectures
shown in panels (A)-(F) are a constitutive promoter, simple repression, simple activation,
repression-activation, double repression, and double activation, respectively. For panels (A)-(D), we use
energy matrices of RNAP, LacI, and CRP previously measured using Sort-Seq, shown in Fig 2(B). For panels
(E) and (F), we continue to use the experimentally measured energy matrix for RNAP. The energy matrices
for the repressors and the activators are constructed by hand, where the interaction energies at the wild type
bases are set to 0 kBT and the interaction energies at the mutant bases are set to 1 kBT .

As shown in Fig 4(A) and 4(B), when there is a higher rate of mutation, the average mutual information 164

at the RNAP binding site increases relative to the average mutual information at the repressor binding site. 165

To explain this effect, we consider , the ratio between the Boltzmann weights of the repressor and RNAP 166

 =
R · e��(�"rd+mr��"rd)

P · e��(�"pd+mp��"pd)
=

R

P
· e��(�"rd��"pd+mR��"rd�mP��"pd), (11)

where mr and mp are the number of mutations at the repressor and RNAP binding sites, and ��"rd and 167

��"pd are the change in binding energies due to each mutation at the repressor and RNAP binding sites. To 168

express  as a function of the mutation rate ✓, we can rewrite mr and mp as a product of ✓ and the lengths 169

of repressor and RNAP binding sites lr and lp, 170

 =
R

P
· e��E , where E = �"rd � �"pd + ✓(lr��"rd � lp��"pd) (12)

We assume that ��"rd and ��"pd are equal to the average effect of mutations per base pair within each 171

binding site, which can be calculated using the formula 172

��" =
1

3l

lX

i=1

⇤X

b 6=bi

"i,b, where ⇤ = {A,T,C,G}, (13)
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where "i,b is the energy contribution from position i when the base identity is b. As we are using energy 173

matrices where the energies corresponding to the wild-type base identities are set to 0, we only need to 174

compute the sum of the energy terms for the mutant bases b 6= bi 2 ⇤ at each position. Since there are three 175

possible mutant bases at each site, it follows that to find the average effect of mutations, we divide the sum 176

of the energy matrix by 3 times the length of the binding site l. 177

By applying this formula to the energy matrices in Fig 2(B), we see that ��"rd ⇡ 2.24 kBT and 178

��"pd ⇡ 0.36 kBT , where ��"pd is averaged over the -38 to -30 and -15 to -5 binding sites. Moreover, 179

lr = lp ⇡ 20 base pairs. Therefore, 180

lr��"rd � lp��"pd = 20⇥ 2.24 kBT � 20⇥ 0.36 kBT = 37.6 kBT. (14)

Since the above value is positive,  decreases with increasing mutation rate p, making the repressor bound 181

state less likely compared to the RNAP bound state. With the repressor bound state becoming less likely, 182

the signal in the repressor binding site goes down, since mutations changing the binding energy of the 183

repressor change the transcription rate less significantly. As shown in S4 Appendix, when we reduce the 184

effect of mutations on the binding energy of the repressor, we recover the signal at the repressor binding site. 185

Conversely, the average mutual information at the repressor binding site increases when the rate of 186

mutation is decreased. This is because when there are very few mutations, the energy E will be less than 0 187

and therefore  will be greater than 1. As a result, the repressor will be preferentially bound, which blocks 188

RNAP binding and leads to a low signal at the RNAP binding site. We can recover the signal at the RNAP 189

binding site by increasing the binding energy between RNAP and the wild type promoter, as shown in S4 190

Appendix. 191

To find the optimal rate of mutation, we need to satisfy the condition 192

 =
R

P
e��(�"rd��"pd+✓(lr��"rd�lp��"pd)) = 1, (15)

which puts repressor and RNAP binding on an equal footing. Plugging in the values of R, P , and the energy 193

terms and solving for ✓, we get that ✓ ⇡ 0.10. This shows that an intermediate mutation rate is optimal for 194

maintaining high signals at all binding sites. Moreover, the information footprints for all the architectures in 195

Fig 3 are built from synthetic datasets with a mutation rate of 10% and each footprint reflects the expected 196

regulatory architecture. Therefore, for the remaining analysis shown in this work, we fix the mutation rate at 197

10%. This is similar to the mutation rate typically used in MPRAs such as Sort-Seq [8] and Reg-Seq [16]. 198

In addition to mutation rate, another important variation in the design of the mutant library is the 199

presence of mutational biases. For example, some mutagenesis techniques, including CRISPR-Cas9, often 200

carry mutational biases whereby mutations within the family of purines and the family of pyrimidines have a 201

higher efficiency compared to mutations between purines and pyrimidines [24]. We build mutant libraries 202

that incorporate two different mutational spectrums. In the first case, we allow only swaps between A and G 203

and between C and T. For this library, we observe that the signals at both the RNAP binding site and the 204

repressor binding site are well preserved, as shown in the left panel of Fig 4(C). In the second case, we only 205

allow mutations from G to A and from C to T without allowing the reverse mutations. As shown in the right 206

panel of Fig 4(C), due to only two bases being allowed to mutate, only a few, possibly low-effect mutations 207

are observed, making small regions such as the -10 and -35 sites hard to detect. These results show that 208

information footprints are robust to mutational biases provided that most sites are allowed to mutate. 209

1.3 Noise as a function of library size 210

Another parameter that is important for library design is the total number of sequence variants in the 211

mutant library. We build synthetic datasets with varying library sizes and computed the information 212

footprints. To quantify the quality of signal in information footprints, we calculate signal-to-noise ratio, �, 213

according to the formula 214

� =
hIiB
hIiNB

, where hIiB =
1

lB

X

i2B

Ii and hIiNB =
1

lNB

X

i2NB

Ii. (16)

Here, Ii represents the mutual information at position i, B is the set of bases within each binding site, NB is 215

the set of bases outside the binding sites, lB is the length of the specific binding site, and lNB is the total 216
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1) Mutation rate = 0.04(A)

2) Mutation rate = 0.10

3) Mutation rate = 0.20

(C)

A G T C

AG TC

Mutational spectrum

1 2 3

AG TC

Mutational spectrum

mutation increases expression mutation decreases expression

(B)

Fig 4. Changing mutation rate and adding mutational biases. (A) Changes in the average mutual
information at the RNAP and at the repressor binding sites when the mutation rate of the mutant library is
increased. Average mutual information is calculated according to Eqn 10. Each data point is the mean of
average mutual information across 20 synthetic datasets with the corresponding mutation rate.
(B) Representative information footprints built from synthetic datasets with mutation rates of 0.04, 0.1, and
0.2. (C) Information footprints built from synthetic datasets where the mutant library has a limited
mutational spectrum. The left panel shows a footprint where mutations from A to G, G to A, T to C, and C
to T are allowed. The right panel shows a footprint where only mutations from G to A and from C to T are
allowed.

length of the non-binding sites. As shown in Fig 5(A) and 5(B), we observe that signal-to-noise ratio 217

increases as the library size increases. This may be explained by the “hitch-hiking” effect: since mutations 218

are random, mutations outside of specific binding sites can co-occur with mutations in specific binding sites. 219

As a result, when the library is small, there is an increased likelihood that a mutation outside of specific 220

binding sites and a mutation at a specific binding site become correlated by chance, leading to artificial 221

signal at the non-binding sites. 222

To demonstrate the hitch-hiking effect analytically, we consider a hypothetical promoter that is 223

constitutively transcribed and only two base pairs long, as illustrated in Fig 6(A). Without loss of generality, 224

we assume that there are only two letters in the nucleotide alphabet, X and Y. Therefore, a complete and 225

unbiased library contains four sequences: XX, YX, XY, and YY. We designate that "X < "Y , i.e. the RNAP 226

is strongly bound at the binding site when the base identity is X and weakly bound when the base identity is 227

Y. We also assume that there is active transcription only when RNAP is bound to the second site. Under 228

these assumptions, there are high expression levels when the promoter sequence is XX or YX and low 229

expression levels when the promoter sequence is XY and YY. 230

We first consider a mutant library with full diversity and no bias, i.e. the four possible sequences, XX, 231
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1) library size = 100

(A)

2) library size = 500

3) library size = 1000

(B)

mutation increases expression mutation decreases expression

31

2

Fig 5. Noise as a function of library size. (A) Signal-to-noise ratio increases as library size increases.
Signal-to-noise ratio is calculated according to Eqn 16. (B) Representative information footprints with a
library size of 100, 500, and 1000.

YX

YY
YY

reduced library

high expression

low expression

high expression

low expression

full library

XX

XY

XX

(A)

In
fo

rm
at

io
n

(b
it

s)

site 1 site 2

1

0In
fo

rm
at

io
n

(b
it

s)

site 1 site 2

1

0

1 2

Non-specific
binding site

Specific
binding site

X and Y

sequence

binding energies

1 base pair 1 base pair

εX εY<

state space

(B)

Fig 6. Hitch-hiking effect in the hypothetical minimal promoter. (A) Set-up of the hypothetical
minimal promoter. The specific binding sites and the non-binding sites of the minimal promoter are each 1
base-pair long. There are two possible bases at each binding site, X and Y. Strong binding occurs when the
base is X, whereas weak binding occurs when the base is Y. (B) Effect of library size on the information
footprint of the minimal promoter. A full mutant library consists of all four possible sequences and leads to a
footprint with no signal outside of the specific binding sites. On the other hand, a reduced mutant library
with only two sequences creates noise outside of the specific binding sites. In this case, the noise at the
non-binding site has the same magnitude as the signal at the specific binding site.

YX, XY, and YY, are each present in the library exactly once. The marginal probability distribution for 232

expression levels is 233

Pr(µ) =

(
0.5, if µ = 0

0.5, if µ = 1.
(17)

The marginal probability distributions of base identity at the two sites are 234

Pr 1(b) = Pr 2(b) =

(
0.5, if b = X

0.5, if b = Y.
(18)
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The joint probability distribution at the first site is 235

Pr 1(µ, b) =

8
>>><

>>>:

0.25, if µ = 0 and b = X

0.25, if µ = 0 and b = Y

0.25, if µ = 1 and b = X

0.25, if µ = 1 and b = Y.

(19)

On the other hand, the joint probability distribution at the second site is 236

Pr 2(µ, b) =

8
>>><

>>>:

0, if µ = 0 and b = X

0.5, if µ = 0 and b = Y

0.5, if µ = 1 and b = X

0, if µ = 1 and b = Y.

(20)

We can calculate the mutual information at each site according to Eqn 6, 237

I1 = 4

✓
1

4
log2

✓
1/4

1/2 · 1/2

◆◆
= 0 (21)

I2 = 2

✓
1

2
log2

✓
1/2

1/2 · 1/2

◆◆
= 1. (22)

Therefore, when the library has the maximum size, there is perfect signal at the specific binding site and no 238

signal outside of the specific binding site, as shown in Fig 6(B). 239

On the other hand, consider a reduced library that only consists of XX and YY. According to the 240

assumptions stated above, XX has high expression and YY has low expression. In this case, there is an 241

apparent correlation between the base identity at the non-binding site and expression levels, where a base 242

identity of X at the non-binding site appears to lead to high expression levels and a base identity of Y at the 243

non-binding site appears to lead to low expression levels. To demonstrate this analytically, we again write 244

down the relevant probability distributions required for calculating mutual information. The marginal 245

probability distributions for expression levels and base identity are the same as the case where we have a full 246

library. However, the joint probability distributions at both of the two sites become 247

Pr 1(µ, b) = Pr 2(µ, b) =

8
>>><

>>>:

0, if µ = 0 and b = X

0.5, if µ = 0 and b = Y

0.5, if µ = 1 and b = X

0, if µ = 1 and b = Y.

(23)

This means that for both the non-binding site and the specific binding site, the mutual information is 248

I1 = I2 = 2

✓
1

2
log2

✓
1/2

1/2 · 1/2

◆◆
= 1. (24)

As shown in Fig 6(B), this creates an artificial signal, or noise, outside of the specific binding sites that 249

cannot be distinguished from the signal at the specific binding site. 250

For the remaining analyses shown in this work, we use a library size of 5,000 in order to minimize noise 251

from hitch-hiking effects. We choose not to use a larger library because it would significantly increase the 252

computational cost during parameter searches. Moreover, we would like to use a library size that is 253

experimentally feasible. In Reg-Seq, the average library size is 1,500 [16]. A larger library would make 254

MPRAs cost prohibitive as a high-throughput method. 255

2 Perturbing biological parameters in the computational pipeline 256

2.1 Tuning the free energy of transcription factor binding 257

So far, we have demonstrated that we can build synthetic datasets for the most common regulatory 258

architectures and we have chosen the appropriate mutation rate and library size to construct mutant 259
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libraries. Next, we proceed to perturb parameters that affect the probability of RNAP being bound and 260

observe the effects of these perturbations. These analyses will elucidate the physiological conditions required 261

for obtaining clear signals from transcription factor binding events and delineate the limits of MPRA 262

procedures in identifying unannotated transcription factor binding sites. 263

We again begin by considering the promoter with the simple repression motif, for which the probability of 264

RNAP being bound is given by Eqn 1. It is known that in E. coli grown in minimal media, the copy number 265

of RNAP is P ⇡ 103 [25, 26] and the copy number of the repressor is R ⇡ 10 [27]. The binding energy of 266

RNAP is �"pd ⇡ �5 kBT [20] and the binding energy of the repressor is �"rd ⇡ �15 kBT [28]. Moreover, 267

assuming that the number of non-binding sites is equal to the size of the E. coli genome, we have that 268

NNS ⇡ 4⇥ 106. Given these values, we can estimate that 269

P

NNS
e���"pd ⇡ 103

4⇥ 106
⇥ e5 ⇡ 0.04 (25)

and 270

R

NNS
e���"rd ⇡ 10

4⇥ 106
⇥ e15 ⇡ 8. (26)

Since P
NNS

e���"pd ⌧ 1, we can neglect this term from the denominator in Eqn 1 and simplify pbound for the 271

simple repression motif to 272

pbound =
P

NNS
e���"pd

1 + R
NNS

e���"rd
. (27)

Furthermore, we define the free energy of RNAP binding as 273

FP = �"pd � kBT ln
P

NNS
(28)

and the free energy of repressor binding as 274

FR = �"rd � kBT ln
R

NNS
. (29)

Both expressions are written according to the definition of Gibbs free energy, where the first terms correspond 275

to enthalpy and the second terms correspond to entropy. Using these definitions, we can rewrite pbound as 276

pbound =
e��FP

1 + e��FR
. (30)

In this section, we specifically examine the changes in the information footprints when we tune FR. As 277

shown in Fig 7(A) and 7(C), if we increase FR by reducing the magnitude of �"rd or reducing the copy 278

number of the repressor, we lose the signal at the repressor binding site. For example, compared to the O1 279

operator, the LacI repressor has weak binding energy at the O3 operator, where �"rd ⇡ �10 kBT [28]. 280

Therefore 281

FR = �"rd � kBT ln
R

NNS
⇡ (�10� ln

10

4⇥ 106
) kBT ⇡ 3 kBT, (31)

and 282

e��FR ⇡ 0.05. (32)

In these cases, e��FR ⌧ 1 and therefore e��FR can be neglected from the denominator and the probability of 283

RNAP being bound can be simplified to 284

pbound = e��FP . (33)
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(A)

1) R = 1

(C)

mutation increases expression
mutation decreases expression

2) R = 500

(D)

2 1

   1)

   2)

1 2

(B)

1 2

2 1

Fig 7. The strength of the signal at binding sites depends on the free energy of repressor
binding. (A) Increasing the binding energy of the repressor leads to an increase in average mutual
information at the RNAP binding site and a decrease in average mutual information at the repressor binding
site. �"pd is fixed at -5 kBT , RNAP copy number is fixed at 1000, and repressor copy number is fixed at 10.
(B) Representative information footprints where �"rd is set to �20 kBT and �10 kBT . (C) Increasing the
copy number of the repressor leads to a decrease in average mutual information at the RNAP binding site
and an increase in average mutual information at the repressor binding site. �"pd is fixed at -5 kBT and
�"rd is fixed at -15 kBT . RNAP copy number is fixed at 1000. (D) Representative information footprints
where repressor copy numbers are set to 1 and 500.

This implies that mutations at the repressor binding sites will not have a large effect on pbound and the 285

mutual information at the repressor binding site will be minimal. 286

On the other hand, if we decrease the free energy of binding either by increasing the magnitude of �"rd 287

or increasing the copy number of the repressor, it leads to a stronger signal at the repressor binding site 288

while significantly reducing the signal at the RNAP binding site, as we can see in Fig 7(A) and 7(C). For 289

example, when �"rd = �20kBT , we have that 290

FR = �"rd � kBT ln
R

NNS
⇡ (�20� ln

10

4⇥ 106
) kBT ⇡ �7 kBT, (34)

and therefore 291

e��FR ⇡ 103. (35)

Here, the Boltzmann weight of the repressor has been increased a hundred fold compared to Eqn 26. Due to 292

the strong binding of the repressor, mutations at the RNAP binding site do not change expression on 293

measurable levels and therefore the signal is low at the RNAP binding site. 294
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In particular, we see in Fig 7(A) that when the repressor energy is increased beyond �11 kBT , the 295

average mutual information at the RNAP binding site saturates and the average mutual information at the 296

repressor binding site remains close to 0. To explain this effect, we again take a look at the ratio between the 297

Boltzmann weights of the repressor and RNAP, the expression for which is stated in Eqn 11. Here, we fix the 298

copy number of the repressors and RNAP, the wild-type binding energy of RNAP, the number of mutations, 299

and the effect of mutations. Therefore, 300

 =
R

P
· e��(�"rd��"pd+mR��"rd�mP��"pd) (36)

=
10

1000
· e���"rd�5�2⇥2.24+2⇥0.36 (37)

= 1.5⇥ 10�6 · e���"rd . (38)

We assume that  needs to be at least 0.1 for there to be an observable signal at the repressor binding site. 301

Solving for "rd using the above equation, we have that �"rd ⇡ �11 kBT . This matches with our observation 302

that the signal stabilizes when �"rd > �11 kBT . Taken together, these result invite us to rethink our 303

interpretation of MPRA data, as the lack of signal may not necessarily indicate the absence of binding site, 304

but it may also be a result of strong binding or low transcription factor copy number. 305

2.2 Changing the regulatory logic of the promoter 306

In the previous section, we examined the changes in information footprints when we tune the copy number of 307

the repressors under the simple repression regulatory architecture. The effect of transcription factor copy 308

numbers on the information footprints is more complex when a promoter is regulated by multiple 309

transcription factors. In particular, the changes in the information footprints depend on the regulatory logic 310

of the promoter. To see this, we consider a promoter that is regulated by two repressors. For a 311

double-repression promoter, there are many possible regulatory logics; two of the most common ones are an 312

AND logic gate and an OR logic gate. As shown in Fig 8(A), if the two repressors operate under AND logic, 313

both repressors are required to be bound for repression to occur. This may happen if each of the two 314

repressors bind weakly at their respective binding sites but bind cooperatively with each other. On the other 315

hand, if the two repressors operate under OR logic, then only one of the repressors is needed for repression. 316

We generate synthetic datasets for an AND-logic and an OR-logic double-repression promoter that are 317

regulated by repressors R1 and R2. As shown in Fig 8(B) and 8(C), under AND logic, there is no signal at 318

either of the repressor binding sites when R1 is set to 0. This matches our expectation because AND logic 319

dictates that when one of the two repressors is absent, the second repressor is not able to reduce the level of 320

transcription by itself. We recover the signal at both of the repressor binding sites even when there is only 321

one copy of R1. Interestingly, when R1 > R2, the signal at the R1 binding site is greater than the signal at 322

the R2 binding site. This may be because the higher copy number of R2 compensates for the effects of 323

mutations and therefore expression levels are affected to a greater extent by mutations at the R1 binding site 324

than mutations at the R2 binding site. 325

In comparison, since the two repressors act independently when they are under OR logic, the signal at the 326

R2 binding site is preserved even when R1 = 0. Moreover, the state where R1 represses transcription 327

competes with the state where R2 represses transcription. As a result, when R1 is increased, the signal at 328

the R1 binding site is increased whereas the signal at the R2 binding site decreases. 329

We observe similar changes in the information footprint for a promoter that is bound by two activators, 330

as illustrated in S5 Appendix. These results are informative in the context of transcription factor deletion, 331

which is a key approach for identifying and verifying which transcription factor binds to the putative binding 332

sites discovered in MPRA pipelines [16]. The final copy number of the transcription factor depends on which 333

experimental method is chosen to perform the deletion. If the gene coding for the transcription factor is 334

knocked out, no transcription factor will be expressed and the transcription factor copy number will be 0. 335

Therefore, by comparing the footprints from the wild-type strain and the transcription factor deletion strain, 336

we can locate the site where the signal disappears and deduce which transcription factor is bound at that site. 337

On the other hand, if knock-down methods such as RNAi are used, some leaky expression may take place 338

and the transcription factor copy number may be low but non-zero. In this case, there may not be 339

appreciable differences in the footprints from the wild-type strain and the deletion strain. This would be an 340
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Fig 8. Changing repressor copy number for a double-repression promoter. (A) States-and-weights
diagram of a promoter with the double repression regulatory architecture. The bottom two states are only
present under AND logic and not present under OR logic. The states-and-weights diagram of a double
repression promoter with OR logic is also shown in Fig S2(E). (B) Changing the copy number of the first
repressor under AND logic and OR logic affects the signal at both repressor binding sites. For the energy
matrices of the repressors, the interaction energy between the repressor and a site is set to 0 kBT if the site
has the wild-type base identity and set to 1 kBT if the site has the mutant base identity. The interaction
energy between the repressors is set to �5 kBT . All data points are the mean of average mutual information
across 20 synthetic datasets with the corresponding parameters. (C) Representative information footprints of
a double repression promoter under AND and OR logic.

important point of consideration in MPRAs where knock-down methods are used to match transcription 341

factors to binding sites. 342

2.3 Competition between transcription factor binding sites 343

Thus far, we have assumed that each transcription factor only has one specific binding site in the genome. 344

However, many transcription factors bind to multiple promoters to regulate the transcription of different 345

genes. For example, cyclic-AMP receptor protein (CRP), one of the most important activators in E. coli, 346

regulates 330 transcription units [29]. Therefore, it is important to understand how the relationship between 347

sequence and binding energy changes when the copy number of the transcription factor binding site is 348

changed. 349

Binding site copy number is also highly relevant in the context of the experimental MPRA pipeline. 350

When E. coli is the target organism, there are two main ways of delivering mutant sequences into the cell. 351

As illustrated in Fig 9(A), the first is by directly replacing the wild type promoter with the mutant promoter 352

using genome integration methods such as ORBIT [30,31]. In this case, we preserve the original copy number 353

of the binding sites. The second method is to transform the bacterial cells with plasmids carrying the 354

promoter variant. If this approach is used, the number of transcription factor binding sites will increase by 355

the copy number of the plasmids. We would like to understand precisely how the signal in the resulting 356

information footprint differs between a genome integrated system and a plasmid system. 357

To build a synthetic dataset that involves more than one transcription factor binding site, we once again 358

begin by building a thermodynamic model to describe the different binding events. However, in the canonical 359

thermodynamic model that we utilized earlier, introducing multiple transcription factor binding sites would 360

lead to a combinatorial explosion in the number of possible states. To circumvent this issue, we introduce an 361

alternative approach based on the concept of chemical potential. Here, chemical potential corresponds to the 362

free energy required to take an RNAP or a transcription factor out of the cellular reservoir. As shown in 363

Fig 9(B), it is convenient to use chemical potential because in contrast to an isolated system, the resulting 364

model no longer imposes a constraint on the exact number of RNAP or transcription factor bound to the 365
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promoter. Instead, we can tune the chemical potential such that we constrain the average number of bound 366

RNAPs and transcription factors. This decouples the individual binding sites and allows us to write the total 367

partition function as a product of the partition functions at each site. 368

Genome integration on 

single promoter
Multiple promoters
carried by plasmids

(B)

(A)

1 2

STATE ENERGIES WEIGHTS

Isolated system

STATE ENERGIES WEIGHTS

Contact with RNAP reservoir

2) R = 10,

n
promoter

 = 50

1) R = 10,

n
promoter

 = 1

mutation increases expression mutation decreases expression

(C)
(D)

Fig 9. Changing the copy number of transcription factor binding sites. (A) There are two ways of
delivering sequence variants into a cell. If the promoter variant is integrated into the genome, the original
copy number of the promoter is preserved. On the other hand, if the cells are transformed with plasmids
containing the promoter variant, binding site copy number will increase. When the copy number of the
binding site is high, the additional binding sites titrate away the repressors and the gene will be expressed at
high levels despite the presence of repressors. (B) States-and-weights models for a constitutive promoter in
an isolated system and in contact with a cellular reservoir of RNAPs. To build a thermodynamic model for
an isolated system, we assume that there are no free-floating RNAPs and we require that the number of
bound RNAPs is equal to the total number of RNAPs in the system. On the other hand, for a system that is
in contact with a reservoir, we only need to ensure that the average number of RNAPs bound matches the
total number of RNAPs. (C) Average mutual information at the repressor binding site decreases when the
number of the repressor binding site is increased. Repressor copy number is set to 10 for all data points.
(D) Representative information footprints for cases where there is only 1 repressor binding site and when
there are 50 repressor binding sites.

Using the method of chemical potential, we construct synthetic datasets with different repressor binding 369

site copy numbers. As shown in Fig 9(C), as the copy number of the repressor binding site is increased, the 370

signal at the repressor binding site decreases rapidly and eventually stabilizes at a near-zero value. In 371

particular, as shown in Fig 9(D), in a genome integrated system where there is only one copy of the repressor 372
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binding site, there is clear signal at the repressor binding site. On the other hand, in a plasmid system where 373

the copy number of the binding site is greater than the copy number of the repressor, the signal for the 374

repressor disappears. Intuitively, this is because the additional binding sites titrate away the repressors, 375

which reduces the effective number of repressors in the system. As a result, the expression of the reporter 376

gene no longer reflects transcriptional regulation by the repressor. This reduces the effect of mutations at the 377

repressor binding site on expression levels, which leads to low mutual information between mutations and 378

base identities at the repressor binding site. 379

In wild type E. coli, the median ratio of transcription factor copy number and binding site copy number is 380

around 10 [32], and therefore the titation effects are unlikely to diminish the signals in information footprints 381

when the sequence variant is integrated into the genome. On the other hand, if a plasmid system is used, it is 382

beneficial to make use of a low copy number plasmid. Although we have no knowledge of which transcription 383

factor is potentially regulating the gene of interest and therefore we do not know a priori the copy number of 384

the transcription factor, using a low copy number plasmid has a greater chance of ensuring that the copy 385

number of the transcription factor binding sites is no greater than the copy number of the putative 386

transcription factor. 387

2.4 Changing the concentration of the inducer 388

So far, in the regulatory architectures that involve repressor binding, we have only considered repressors in 389

the active state, whereas in reality the activity of the repressors can be regulated through inducer binding. 390

Specifically, according to the Monod–Wyman–Changeux (MWC) model [33], the active and inactive states of 391

a repressor exist in thermal equilibrium and inducer binding may shift the equilibrium in either direction. If 392

inducer binding shifts the allosteric equilibrium of the repressor from the active state towards the inactive 393

state, the repressor will bind more weakly to the promoter. This will increase the probability of RNAP being 394

bound and therefore lead to higher expression. In other words, increasing inducer concentration has similar 395

effects to knocking out the repressor from the genome. For example, when lactose is present in the absence of 396

glucose, lactose is converted to allolactose, which acts as an inducer for the Lac repressor and leads to 397

increased expression of genes in the LacZYA operon. Conversely, some inducer binding events may also shift 398

the equilibrium of a repressor from the inactive state towards the active state. One example is the Trp 399

repressor, which is activated upon tryptophan binding and represses gene expression. Here, we use the 400

example of the lacZYA operon and demonstrate how signals in the information footprint depend on the 401

concentration of the allolactose inducer in the system. 402

As shown in Fig 10(A), to include an inducible repressor in our thermodynamic model, we add an 403

additional state in the states-and-weights diagram that accounts for binding between the inactivated 404

repressor and the promoter. This additional state is a weak binding state where the repressor is more likely 405

to dissociate from the binding site. In many cases, transcription factors have multiple inducer binding sites. 406

Here, we choose a typical model where the repressor has two inducer binding sites. Based on the new 407

states-and-weights diagram, the probability of RNAP being bound can be rewritten according to the 408

following expression [34] 409

pbound =
P

NNS
e���"pd

1 + RA
NNS

e���"Ird + RI
NNS

e���"Ird + P
NNS

e���"pd
, (39)

where P is the number of RNAPs, RA is the number of active repressors, RI is the number of inactive 410

repressors, and �"pd, �"Ard, �"Ird correspond to the energy differences between specific and non-specific 411

binding of the RNAP, the active repressor, and the inactive repressor respectively. 412

In order to calculate the probability of RNAP being bound, we need to determine the proportion of RA 413

and RI with respect to the total number of repressors. To do this, we calculate pactive(c), the probability 414

that the repressor exists in the active conformation as a function of the concentration of the inducer, c. To 415

calculate pactive(c), we model the different states of the repressor using another states-and-weights diagram, 416

as illustrated in Fig 10(B). The probability that the repressor is in the active state is 417

pactive(c) =

⇣
1 + c

KA

⌘2

⇣
1 + c

KA

⌘2
+ e��"AI/kBT

⇣
1 + c

KI

⌘2 , (40)
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State Renormalized weight

1) Low inducer concentration 2) High inducer concentration 

(A) (B)

(C) 1 2

State Renormalized weight

Inactive state

mutation increases expression mutation decreases expression

(D)

State Renormalized weight

Active state

Fig 10. Changing the concentration of the inducer. (A) States-and-weights diagram for an inducible
repressor. (B) States-and-weights diagram to calculate the probability that the repressor is in the active
state. (C) Average mutual information at the repressor binding site decreases as the inducer concentration
increases. Here, we let KA = 139⇥ 10�6 M, KI = 0.53⇥ 10�6 M, and �"AI = 4.5 kBT . The
thermodynamic parameters were inferred by Razo-Mejia et al. [34] from predicted IPTG induction curves.
The inducer concentration on the x-axis is normalized with respect to the value of KA. (D) Representative
information footprints with low inducer concentration (10�6 M) and high inducer concentration (10�3 M).

where KA is the dissociation constant between the inducer and the active repressor, KI is the dissociation 418

constant between the inducer and the inactive repressor, and �"AI is the structural energy difference between 419

the active repressor and the inactive repressor. This allows us to represent the number of active and inactive 420

repressors as RA = pactiveR and RI = (1� pactive)R. Therefore, our expression for pbound can be modified to 421

pbound =
P

NNS
e���"pd

1 + pactive
R

NNS
e���"Ard + (1� pactive)

R
NNS

e���"Ird + P
NNS

e���"pd
, (41)

We built synthetic datasets for a promoter with the simple repression regulatory architecture with an 422

inducible repressor. As shown in Fig 10(C) and 10(D), when the concentration of the inducer is increased 423

from 10�2 KA to 1 KA, the average signal at the repressor binding site decreases. Interestingly, the average 424

signal is not reduced further when the concentration is increased beyond the value of KA. As shown in S6 425

Appendix, similar results are observed in the case of a simple activation promoter with an inducible activator. 426

These results show that the presence or absence of inducers can determine whether we will obtain a signal 427

at the transcription factor binding site. This underlies the importance of performing experimental MPRAs 428

under different growth conditions to ensure that we can identify binding sites that are bound by 429

transcription factors that are induced by specific cellular conditions. These efforts may fill in the gap in 430

knowledge on the role of allostery in transcription, which so far has been lacking attention from studies in 431

the field of gene regulation [35]. 432
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3 Identifying transcription factor binding sites from information footprints 433

3.1 Noise due to stochastic fluctuations of RNAP and transcription factor copy number 434

When data from MPRAs is presented in the form of information footprints, one way to annotate 435

transcription factor binding sites is to identify regions where the signal is clearly higher than background 436

noise. Therefore, to be able to precisely and confidently identify RNAP and transcription factor binding sites 437

from information footprints, the footprint is required to have a sufficiently high signal-to-noise ratio. 438

However, this may not always be the case. For example, the footprint shown in Fig 11 is obtained for the 439

mar operon by Ireland et al. [16]; while the signal at the RNAP binding sites and the -20 MarR binding sites 440

are clearly above the background noise, the signals at the Fis, MarA, and +10 MarR binding sites may easily 441

be mistaken for noise. 442

mutation increases expression mutation decreases expression

Fig 11. Annotating transcription factor binding sites by identifying sites with high signal. The
footprint of the marR operon, produced by Ireland et al. [16] The binding sites are annotated based on
known RNAP and transcription factor binding sites; the signal at some of the binding sites, such as the Fis
and MarA binding sites, are not distinguishable from background noise.

In Sec 1.3, we examined how the size of the mutant library may affect the level of noise in information 443

footprints. Here, we continue to examine other factors that may affect signal-to-noise ratio. We first 444

simulated possible sources of experimental noise, including PCR amplification bias and random sampling 445

effects during RNA-Seq library preparation and RNA-Seq itself. However, as shown in S7 Appendix, these 446

experimental processes do not lead to significant levels of noise outside of the specific binding sites. 447

Another potential source of noise is from the biological noise that contributes to stochastic fluctuations in 448

expression levels. These sources of biological noise can be broadly categorized into intrinsic noise and 449

extrinsic noise [36–38]. Intrinsic noise arises from the inherent stochasticity in the process of transcription, 450

such as changes in the rate of production or degradation of mRNA. On the other hand, extrinsic noise arises 451

from cell-to-cell variation in the copy number of transcription machineries such as the RNAPs and 452

transcription factors. It has been shown that extrinsic noise occurs on a longer timescale and has a greater 453

effect on phenotypes than intrinsic noise [38]. Here, we investigate whether extrinsic noise has an effect on 454

the information footprints. 455

We build synthetic datasets for a promoter with the simple repression genetic architecture using the same 456

procedure as before. However, we no longer specify the copy number of RNAPs and repressors as a constant 457

integer. Instead, as described in S8 Appendix, we draw a random number for the number of RNAPs and 458

repressors from a log-normal distribution, which is the distribution that the abundance of biomolecules often 459

follow [39]. As shown in Fig 12(A) and 12(B), we observe that the signal-to-noise ratio does decrease when 460

the extrinsic noise is higher. However, we can still distinguish between signal and noise even when we specify 461

a large variance. This suggests that information footprints as a read-out are robust to extrinsic noise. 462

This phenomenon may be explained by the fact that the changes in binding energies due to mutations in 463

the promoter sequence have a much greater contribution to the probability of RNAP being bound than 464

changes in the copy number of transcription factors. Assuming that RNAP binds weakly to the promoter, 465

the expression for pbound in Eqn 1 can be simplified to 466

pbound =
1

1 + R
NNS

e���"rd
. (42)
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1) Synthetic dataset with constant RNAP and LacI copy numbers

2) Synthetic dataset with extrinsic noise

mutation increases expression mutation decreases expression

(A)
(B)

1 2

Fig 12. Adding extrinsic noise to synthetic datasets. (A) The presence of extrinsic noise lowers the
signal-to-noise ratio in information footprints. (B) Representative information footprints with no extrinsic
noise and high extrinsic noise, where the standard deviations in the log-normal distributions of the RNAP
and repressor copy numbers are 0.5 times the mean.

Based on the experimentally measured energy matrix for LacI [20], the average increase in �"rd due to one 467

mutation is approximately 2 kBT . The LacI binding site is 21 base pairs long. Therefore, with a 10% 468

mutation rate, there are on average 2 mutations within the LacI binding site, and the total change in �"rd 469

would be approximately 4 kBT . This leads to a e����"rd = 0.01 fold change in the magnitude of 470

R
NNS

e���"rd . This means that the copy number of the repressor would have to change by a factor of 100 to 471

overcome the effect of mutations, and this is not possible through fluctuations due to extrinsic noise. 472

Therefore, extrinsic noise by itself will not lead to a sufficiently large change in expression levels to affect the 473

signals in the information footprint. 474

3.2 Spurious binding site along the promoter 475

RNAPs with �70 typically bind to the TATA box, which is a motif with the consensus sequence TATAAT 476

located at the -10 site along the promoter. However, not all nucleotides within the TATAAT motif are 477

required for binding. In particular, each of the bases from the third to the fifth positions (TAA) is only 478

found in around 50% of RNAP binding sites [40]. This makes it likely that there exist TATAAT-like motifs 479

away from the -10 site. If RNAPs bind at these spurious sites, it could initiate transcription from a different 480

transcription start site and produce mRNAs. We hypothesize that these spurious binding events outside of 481

the canonical RNAP binding site may lead to noise in information footprints. 482

To investigate the effect of spurious binding on information footprints, we build a thermodynamic model 483

that includes RNAP binding at every possible position along the promoter as a unique state, as shown in 484

Fig 13(A). The weight of each of these states is calculated by mapping the energy matrix to the 485

corresponding sequences at each position. As shown in Fig 13(B), we find that spurious binding decreases 486

the signal within the canonical -35 and -10 binding sites while increasing noise outside of these specific 487

binding sites. However, as is with the case of extrinsic noise, this source of noise is not at a sufficiently high 488

level to interfere with our ability to annotate binding sites. This implies that reducing the hitch-hiking 489

effects described in Sec 1.3 should be the primary focus when a high signal-to-noise ratio is desired. 490

3.3 Overlapping binding sites 491

Other than a low signal-to-noise ratio, another factor that may contribute to the challenge of annotating 492

binding sites is when binding sites overlap. This is especially common with RNAP and repressor binding 493

sites, since a common mechanism by which repressors act to reduce expression is by binding to the RNAP 494

binding site and thereby sterically blocking RNAP binding. For example, in Fig 11, we can see that the 495

MarR binding site overlaps with the RNAP binding site. Here, we build synthetic datasets where the RNAP 496
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(A) (B)

Allowing spurious binding

mutation increases expression mutation decreases expression

STATE WEIGHT

Simple repression

with spurious RNAP binding

..
.

..
.

..
.

..
.

Fig 13. Spurious RNAP binding is common and may reduce signal-to-noise ratio. (A)
States-and-weights diagram of a simple repression promoter where spurious RNAP binding is allowed. For
each of the RNAP spurious binding events, the binding energy, �"pd,i, is computed by mapping the RNAP
energy matrix to the spurious binding site sequence. The index i correspond to the position of the first base
pair to which RNAP binds along the promoter. 0 is at the start of the promoter sequence; k is at the
canonical RNAP binding site; n = 160� lp is index of the most downstream binding site where the promoter
is assumed to be 160 base-pair long and lp is the length of the RNAP binding site. (B) Information
footprints of a promoter under the simple repression regulatory architecture without (top) and with (bottom)
spurious RNAP binding.

and repressor binding sites overlap, and we examine how the presence of these overlapping sites affect the 497

signal in information footprints. 498

Assuming perfect binding sites, a mutation in the RNAP binding site will decrease expression and a 499

mutation in the repressor binding site will increase expression. As shown in Fig 14(A), when the RNAP and 500

repressor binding sites do not overlap, we see well-separated signals in the footprint. However, if the binding 501

sites overlap, we expect either the signals from the two binding events will cancel out or one signal will 502

dominate the other. 503

We build two synthetic datasets with overlapping binding sites. In the first synthetic dataset, the 504

repressor binds between the -10 and the -35 sites. As shown in Fig 14(B), the signals from repressor and 505

RNAP binding are merged. Compared to the footprint where the binding sites do not overlap, it is harder to 506

delineate the binding sites for either the repressor or RNAP at a base-by-base resolution. However, the 507

observation that both positive and negative signals are present can lead to the hypothesis that the RNAP 508

and the repressor bind to the same site. On the other hand, in the second synthetic dataset, the repressor 509

blocks RNAP by binding to the -10 site. As shown in Fig 14(C), the signal from repressor binding dominates 510

the signal from RNAP binding. Without prior knowledge that RNAP binds at this position, such a footprint 511

could lead to the erroneous conclusion that only repressors bind to this site. These analyses demonstrate the 512

challenge of deciphering regulatory architectures in the presence of overlapping binding sites. This may be 513

overcome by tuning growth conditions to reduce binding by some of the overlapping binding partners, such 514

that we can obtain cleaner footprints with signal indicating individual binding events. 515

Discussion 516

In this paper, we explore the landscape of sequence-energy-phenotype mapping by utilizing a computational 517

pipeline that simulates MPRA pipelines such as Reg-Seq. More generally, our computational pipeline makes 518

it possible to use statistical mechanical models of gene expression to systematically explore the connection 519

between mutations and level of gene expression. Using this pipeline, we have examined the effects of 520

perturbing various experimental and biological parameters. These perturbations occur at multiple stages of 521

the pipeline. Some parameters pertain to the initial library design, such as library size, mutation rate, and 522
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(B)

(C)

(A)

mutation increases expression
mutation decreases expression

Fig 14. The presence of overlapping binding sites obscures signal in the information footprint.
(A) Information footprint with no overlapping binding sites. (B) Information footprint where the repressor
binds between the -10 and -35 RNAP binding sites. (C) Information footprint where the repressor binds to
the -10 site where RNAP also binds. For consistency, in each of the plots, the repressor energy matrix is
constructed based on the designated binding site sequence, where the binding energy at the wild-type base
identity is set to 0 kBT and the binding energy at all other base identities is set to 1 kBT .

presence of mutational bias. Other parameters are built into the model itself, such as the copy number of the 523

promoter and the transcription factors, which are parameters that may vary biologically and may also be 524

affected by the design of experimental procedures. 525

We have demonstrated that our computational pipeline has high flexibility and can easily be adapted to 526

examine the effects of other perturbations not included in this paper. Furthermore, the computational nature 527

of the pipeline allows full parameter searches to be done precisely and efficiently. For example, it would be 528

both time-consuming and cost-prohibitive to experimentally determine the optimal library size and mutation 529

rate as it would involve performing a large array of experimental test runs. On the other hand, using our 530

computational pipeline, we can efficiently build a series of synthetic datasets with different mutant libraries 531

and determine the strategy for library design that is optimal for deciphering regulatory architectures. 532

Apart from informing the choice of experimental parameters, the pipeline also helps to anticipate 533

challenges involved in parsing information footprints. For example, in Sec 3.3, we predict how the signal in 534

information footprints would be affected when there are overlapping binding sites. One potential usage of 535

this pipeline is for building synthetic datasets that involve features that could lead to information footprints 536

that are hard to parse. Since the synthetic datasets are built with prior knowledge of the underlying 537

regulatory architectures, these datasets can be used to develop and improve algorithms for deciphering these 538

architectures. This will increase confidence in the results when the same algorithms are used to analyze 539

experimental datasets and determine the location of binding sites. Moreover, this will pave the way for 540

automatically annotating binding sites for any given information footprint given MPRA data. 541

One limitation of our computational MPRA pipeline is that it neglects the interaction between different 542

genes in regulatory networks, which affects expression levels and may alter the expected signal in information 543

footprints. A future direction, therefore, involves building synthetic datasets of genetic networks. This would 544

require an additional step where we modify the expression levels of each gene based on its dependency on 545

other genes. This would not only improve the reliability of our prediction of expression levels, but these 546

multi-gene synthetic datasets may also be used to test approaches for deciphering the architecture of 547

regulatory networks. 548
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Furthermore, we acknowledge that our current computational pipeline only considers transcription 549

initiation factors, while other types of transcription factors, such as elongation factors and termination 550

factors, are also important for determining gene expression. It is challenging to include these factors into our 551

model as it would involve additional kinetics terms that would have to be worked out, though we are 552

extremely interested in developing these approaches as well in our future work. While this work does not 553

directly address the challenge in understanding the role of transcription elongation factors and termination 554

factors, we believe that by achieving a full understanding of transcription initiation factor binding through 555

the efforts of both the computational and experimental MPRA pipelines, it will help streamline strategies 556

needed to decipher the roles of other types of transcription factors. 557

In summary, we have developed a theoretical framework for a widely used category of experiments in the 558

field of transcriptional regulation. Our simulation platform establishes a systematic way of testing how well 559

high-throughput methods such as the MPRAs can be used to recover the ground truth of how the expression 560

of a gene is transcriptionally regulated. This demonstrates the importance of developing theories of 561

experiments in general, and we believe there is much untapped potential in extending similar types of 562

theories to other areas of experimental work as well. Finally, we anticipate that this approach will also be 563

very useful in performing systematic studies on the relation between mutations in regulatory binding sites 564

and the corresponding level of gene expression in a way that will shed light on both physiological and 565

evolutionary adaptation. 566

Data availability 567

All code used in this work and the presented figures are available open source at 568

https://github.com/RPGroup-PBoC/theoretical regseq. 569
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