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There is a growing amount of literature on the effects of oxidative stress resulting
from the imbalance between prooxidants and antioxidants [1,2]. Stressors, by inducing
physiological and reproductive disorders, determine failures in various cellular processes
such as embryogenesis, development, differentiation and growth, threating the survival
of the living species [3–6]. Although a definite role of free radicals and antioxidants
is well established, there is sparse knowledge of their role in a multitude of stressors
such as temperature fluctuations, osmotic stress, alterations in oxygen availability and
other anthropogenic impacts, all factors which can directly affect free radical chemistry
during reproduction and development. The Special Issue “Effect of Oxidative Stress
on Reproduction and Development” has been conceived to set out the knowledge on
biodiversity conservation and sustainability. It also deals with a new approach to oxidants
and/or antioxidants detection. Here, we offer an overview of the contents of this Special
Issue, which collects eight original articles and two reviews.

Various studies show how the insults of oxidative stress can be contrasted using natu-
ral substances [7–10]. In particular, Mottola et al. analyze the DNA protection provided by
the potential therapeutic applications of substances of natural origin such as α-lipoic acid
(LA) and curcumin (Cur), against hydrogen peroxide (H2O2)-induced damage in human
amniotic cells in vitro [7]. The results highlighted that there is a protective action of LA
against oxidative DNA damage. Similarly, Cur alone is able to reduce the DNA fragmen-
tation index. Interestingly, the combination of LA and Cur delivers a valid antigenotoxic
effect. Sun and coworkers studied the role of N-acetyl-L-cysteine (NAC) in the developmen-
tal competence of bovine oocytes and embryos cultured in vitro and concluded that NAC
affects early embryonic development, in a dose-dependent and stage-specific manner [8].
Its supplementation has beneficial effects through the prevention of apoptosis and the
elimination of oxygen free radicals during maturation and culture in vitro. The authors
suggest NAC supplement as a preventive antioxidant for in vitro embryo production. Ab
Hamid et al. show that royal jelly effectively contrasts imbalances in the reproductive
system [9]. Particularly, royal jelly supplementation in rats affected by polycystic ovarian
syndrome improves reproductive parameters, leading to the recovery of various stages
of ovarian follicular development due to its anti-androgenic effect through antioxidant
action and to the modulation of estrogenic activity. This is quantitatively detected as a high
follicle-stimulating hormone level, and low luteinizing hormone, testosterone and estradiol
levels. De Luca et al. review the correlation between oxidative stress and male fertility
and on the specific role of antioxidants and inositols [10]. Oxidative stress is a common
reason for several conditions associated with male infertility. High levels of reactive oxygen
species (ROS) impair sperm quality by decreasing motility and increasing the oxidation of
DNA, protein and lipids. Multi-antioxidant supplementation is considered effective for
male fertility parameters. In addition, other natural molecules such as myo-inositol (MI)
and d-chiro–inositol (DCI) ameliorate sperm quality.
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The work of Jung et al. focused on diabetic embryopathy susceptibility [11]. The
results indicate that murine embryonic stem cell lines, which are embryopathy-susceptible,
are more dependent on exogenous glucosamine for glycosylation, stimulation of the pen-
tose phosphate pathway and ADPH production than embryopathy-resistant embryos.
Furthermore, embryopathy-susceptible embryos are more prone to induce oxidative stress
by high glucose levels. Alcala et al. report an interesting study on the effect of oxidative
stress in obesity-induced teratogenesis [12]. The results show that pregestational obesity
in rats induces hepatic protein and DNA oxidation and a decline in antioxidant enzymes.
Particularly, obesity causes malformations through the depletion of maternal glutathione,
thereby decreasing glutathione-dependent free radical scavenging in embryos, which can
be prevented by vitamin E supplementation.

Special attention has also been paid to the toxic mechanisms of action with pleiotropic
outcomes on reproduction and to the technical approach useful to evaluate the decline
in sperm motility via oxidative damage [13,14]. The review by Meli et al. summarizes
data from several oxidative studies demonstrating how the induction of oxidative stress
may contribute to the reproductive adverse effects observed after BPA exposure across
animal species and humans [13]. This review described the protective effects of five classes
of antioxidants—vitamins and co-factors, natural products (herbals and phytochemicals),
melatonin, selenium and methyl donors (used alone or in combination)—that have been
reported useful to counteract BPA reprotoxicity. In another original research study related
to sperm quality assessment, oxidative stress and mitochondrial activity, Gallo et al. ex-
plored for the first time their correlation in two marine invertebrates, Ciona robusta and
Mytilus galloprovincialis, and one mammalian, Bos taurus, sperms [14]. They concluded that
energy sources for sperm motility vary between species and that ROS causes a decline
in sperm motility via oxidative damage of membrane lipids. Furthermore, this study
validated the fluorescent probes used in combination with a spectrofluorometer as a simple
and powerful methodology for supplementary sperm quality evaluation.

Two studies focus on the oxidative stress resulting from exposure of women to tobacco
smoke during pregnancy [15,16]. Bizon et al. revealed altered levels of copper, cadmium
and zinc in the blood [15]. Metallothionein, superoxide dismutase and glutathione peroxi-
dase were found to be the important antioxidants during early pregnancy, when exposure
to tobacco smoke occurs. Moreover, women’s exposure to cigarette smoking potentially
affects the endometrium, as discussed by Kida et al. [16]. These researchers showed that
an extract of cigarette smoke increases reactive oxygen species levels and stimulates the
hypoxia-inducible factor (HIF)-1 in primary human endometrial stromal cells. The results
indicated that HIF-1 might play an important regulatory role in cellular stress, inflammation
and remodeling induced by exposure to cigarette smoke.

All of the articles in this Special Issue demonstrate that establishing a better under-
standing of oxidative stress is of pivotal importance in reproduction and development.
The variety of subjects treated proves that this is a complex and multifaceted topic on
which researchers are working from different viewpoints and perspectives. We thank all
the authors for their contributions. We hope that this Special Issue will encourage young,
as well experienced, scientists to move forward on the path to increasing knowledge in this
research area.
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