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Abstract

Motivation: As RNA viruses mutate and adapt to environmental changes, often developing resist-

ance to anti-viral vaccines and drugs, they form an ensemble of viral strains––a viral quasispecies.

While high-throughput sequencing (HTS) has enabled in-depth studies of viral quasispecies,

sequencing errors and limited read lengths render the problem of reconstructing the strains and

estimating their spectrum challenging. Inference of viral quasispecies is difficult due to generally

non-uniform frequencies of the strains, and is further exacerbated when the genetic distances be-

tween the strains are small.

Results: This paper presents TenSQR, an algorithm that utilizes tensor factorization framework to

analyze HTS data and reconstruct viral quasispecies characterized by highly uneven frequencies of

its components. Fundamentally, TenSQR performs clustering with successive data removal to infer

strains in a quasispecies in order from the most to the least abundant one; every time a strain is

inferred, sequencing reads generated from that strain are removed from the dataset. The proposed

successive strain reconstruction and data removal enables discovery of rare strains in a population

and facilitates detection of deletions in such strains. Results on simulated datasets demonstrate

that TenSQR can reconstruct full-length strains having widely different abundances, generally out-

performing state-of-the-art methods at diversities 1–10% and detecting long deletions even in rare

strains. A study on a real HIV-1 dataset demonstrates that TenSQR outperforms competing meth-

ods in experimental settings as well. Finally, we apply TenSQR to analyze a Zika virus sample and

reconstruct the full-length strains it contains.

Availability and implementation: TenSQR is available at https://github.com/SoYeonA/TenSQR.

Contact: soyeon.ahn@utexas.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA viruses such as HIV, SARS, Zika and Ebola are characterized

by high mutation rates that lead to new viral strains by means of

point mutations, insertions and deletions. The resulting population

of closely related yet non-identical viral genomes is known as a viral

quasispecies (Lauring and Andino, 2010). Genetic heterogeneity of

such viral populations enables the virus to adapt and proliferate in

dynamically changing environments, e.g. over the course of an infec-

tion (Carroll et al., 2013). Therefore, determining the genetic struc-

ture of viral quasispecies is of importance for effective anti-viral

vaccine designs and the development of therapeutic treatments for

viral diseases.

Quasispecies Spectrum Reconstruction (QSR) aims to recon-

struct an a priori unknown number of viral sequences in a quasispe-

cies and estimate their relative frequencies. To this end, QSR

methods typically employ the following steps: (i) clustering together

sequencing reads that originate from the same strain; (ii) recon-

structing the strains using the clustered reads and (iii) determining

relative frequencies of the reconstructed strains based on the corre-

sponding cluster sizes (Beerenwinkel et al., 2012). High-throughput

sequencing (HTS) technologies have in principle enabled unprece-

dented studies of quasispecies populations. However, their precise

reconstruction remains difficult due to the presence of sequencing

errors and limited length of HTS reads. The QSR problem is particu-

larly challenging when the frequencies of strains in a viral popula-

tion are highly imbalanced, i.e. the quasispecies contains both

strains having high and those having low abundances, and is further

exacerbated if the genetic distances between strains are relatively

small. In those settings, performance of clustering-based QSR meth-

ods suffers from erroneous attribution of the reads that have origi-

nated from rare strains to nearby (in terms of genetic distance)

highly abundant strains; such errors lead to failures to discover
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strains of low abundancy (Posada-Cespedes et al., 2016) and thus

may hinder the discovery of effective drug treatments (Le et al.,

2009; Simen et al., 2009).

Methods for reconstruction of viral quasispecies from HTS data

include a probabilistic clustering algorithm ShoRAH (Zagordi et al.,

2010, 2011), read-graph based path selection technique ViSpA

(Astrovskaya et al., 2011), a combinatorial algorithm QuRe

(Prosperi and Salemi, 2012) and a hidden Markov model based

scheme QuasiRecomb (Töpfer et al., 2013). More recent softwares

include PredictHaplo (Prabhakaran et al., 2014), which relies on a

probabilistic mixture model and specifically targets assembly of HIV

populations; VGA (Mangul et al., 2014), a scheme that employs a

high-fidelity sequencing protocol to eliminate sequencing errors and

assemble rare variants using deep sequencing and HaploClique

(Töpfer et al., 2014), the first method to attempt detection of long

insertions and deletions (indels) by means of enabling insert-size

compatibility in the max-clique enumeration procedure. Another re-

cent technique, ViQuaS (Jayasundara et al., 2015), adapts the com-

binatorial approach proposed by QuRe (Prosperi and Salemi, 2012)

to a reference-assisted de novo assembly framework and generally

outperforms existing state-of-the-art tools on a wide range of data-

sets. However, it has been demonstrated in (Schirmer et al., 2014)

and pointed out in (Posada-Cespedes et al., 2016) that the existing

methods generally struggle to reliably reconstruct quasispecies com-

posed of strains having small mutual genetic distances. To specifical-

ly address reconstruction of quasispecies characterized by low

diversity, a sequential Bayesian inference method, aBayesQR, was

recently proposed in (Ahn and Vikalo, 2017). While aBayesQR is in-

deed more accurate than competing methods in low diversity

(�5%) settings, reconstructing quasispecies characterized by both

low diversity and highly uneven strain frequencies remains a chal-

lenge. More recently, methods for de novo quasispecies reconstruc-

tion, MLEHaplo (Malhotra et al., 2015) and SAVAGE (Baaijens

et al., 2017), have also been proposed.

In this paper, we propose a reconstruction method that takes a

step towards overcoming limitations of existing techniques and is

capable of accurately assembling quasispecies characterized by a

wide range of strain frequencies. The method, referred to as

TenSQR (Tensor factorization with Successive removal for

Quasispecies Reconstruction), represents sequencing data by means

of a structured sparse binary tensor. Factorization of such objects,

both matrices and tensors, was previously used to enable haplotype

assembly of diploid (Cai et al., 2016) and polyploid (Hashemi et al.,

2017) genomes. Note that the abundances of reads generated by

sequencing diploid or polyploid haplotypes are near uniform––

minor variations in those abundances are primarily due to imperfec-

tions of the sample preparation and sequencing steps. Matrix and

tensor factorization schemes in (Cai et al., 2016; Hashemi et al.,

2017) make an explicit assumption that the haplotype frequencies

are equal. However, this assumption is clearly violated in the QSR

problem. It therefore comes as no surprise that when matrix or ten-

sor factorization is directly applied to reconstruct a heterogeneous

mixture of sequences characterized by highly uneven frequencies (by

means of forming imbalanced clusters, each collecting reads having

originated from one sequence), dominant sequences (large clusters)

are typically recovered correctly while the rare sequences (small

clusters) are often either missed or reconstructed erroneously

(Chaisson et al., 2017). To address this concern, TenSQR succes-

sively infers strains in a quasispecies by repeatedly performing the

following two steps. In the first step, the sparse tensor is factorized

and its missing entries are inferred by alternatingly optimizing the

factors; this step is completed by identifying and reconstructing the

most abundant strain. In the second step, all the reads deemed to

have originated from the reconstructed (the most abundant) strain

are removed from the dataset and hence from the originally formed

tensor; the number of such reads is indicative of the reconstructed

strain’s frequency. Then, the first step is performed anew on the

reduced dataset to reconstruct the second most abundant strain and

so on. These two steps are repeated until all the strains are recon-

structed. Since the proposed scheme revisits tensor factorization

multiple times, computational complexity of that step becomes a

concern. To mitigate it, we exploit the special structure of the prob-

lem and propose a novel majority-voting based efficient alternating

minimization scheme for sparse binary tensor factorization. We

show that the convergence of the alternating minimization proced-

ure is guaranteed, and that the proposed scheme allows detection of

deletions in the reconstructed strains. The developed framework is

augmented by an additional pipeline designed to detect insertions

that may be present in some of the reconstructed strains. Our tests

on simulated data demonstrate that, unlike the competing methods,

the proposed tensor factorization framework for successive strain in-

ference supports reliable discovery and accurate reconstruction of

rare strains existing in highly imbalanced populations even when the

population diversity is low. In particular, TenSQR compares favor-

ably to state-of-the-art methods at diversities 1–10%, and detects

deletions in strains with low abundance. Performance of TenSQR

on a real HIV-1 dataset demonstrates TenSQR’s ability to reliably

reconstruct quasispecies in more general settings. Furthermore, we

employ our method to reconstruct full-length strains in a Zika virus

(ZIKV) sample.

2 Materials and methods

2.1 Problem formulation
Let Q ¼ fqi; i ¼ 1; . . . ;kg denote the set of k viral quasispecies

strains that differ from each other at a number of variant sites, and

let R ¼ frj; j ¼ 1; . . . ;mg denote the set of reads generated by

sequencing the strains in Q; relative ordering of the reads is deter-

mined by aligning them to a reference genome. Homozygous sites

(i.e. the sites containing alleles common to all strains) are not

utilized by our tensor model; instead, viral haplotypes are recon-

structed using heterozygous sites that have abundance of alleles

above a predetermined threshold (i.e. sites that are with high

confidence declared to be variants). Note that the homozygous

sites are later used to assemble full-length viral strains, as detailed

in Section 2.3.

Let us organize the data (i.e. information about the variant sites

provided by the paired-end reads) in an m�n read fragment matrix

F0, where the rows correspond to reads and columns correspond to

variant positions in the sequences. A convenient numerical represen-

tation of F0 is obtained by denoting nucleotides with 4D standard

unit vectors e
4ð Þ

i , 1 � i � 4, with 0 s in all positions except the ith

one that has value 1 (e.g. e
4ð Þ

1 ¼ 1 0 0 0½ �; e
4ð Þ

2 ¼ 0 1 0 0½ � and so on).

This leads to a representation of the read fragment matrix F0 by

means of a binary tensors F whose fibers represent nucleotides and

horizontal slices correspond to reads. F can be thought of as being

obtained by sparsely sampling an underlying tensor T whose fibers

are standard unit vectors e
4ð Þ

i ; sampling is potentially erroneous due

to sequencing errors. To arrive at a tensor factorization formulation

of the problem, it is useful to point out that T can be thought of as

being obtained by multiplying a read membership indicator matrix

M and a binary tensor H that encodes the true viral haplotype

information––namely, fibers of H are standard unit vectors e
4ð Þ

i
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representing alleles while each lateral slice of H is one of the k viral

haplotypes that need to be reconstructed. Moreover, the indicator

matrix M has for rows the standard unit vectors e
kð Þ

i ; 1 � i � k,

with 0 s in all positions except the ith one that has value 1. If, for ex-

ample, the jth row of M is e
kð Þ

l , then that indicates the jth read was

obtained by ‘sampling’ (i.e. via shotgun sequencing) the lth viral

haplotype. Figure 1 illustrates the representation of T by means of a

product of M andH.

We formulate the task of reconstructing the set of viral haplotype

sequences H from the observed reads F as a collection of k––1 ten-

sor factorization problems; following each factorization, sequencing

reads associated with the most dominant assembled strain are

removed from F and the factorization is performed anew until all

the reads remaining in F are of the same origin (i.e. come from the

same viral haplotype). The tensor factorization procedure is formal-

ized in the next section.

2.2 Structured tensor factorization using alternating

minimization
Let F 2 f0;1gm�4n and H 2 f0; 1g4n�k be the mode-1 unfoldings of

tensors F and H, respectively. The QSR problem can be cast as the

optimization

min
M;H

1

2
jjPX F�MH>

� �
jj2F; (1)

where X denotes the set of informative entries of F (i.e. positions of

the information provided by the set of reads), PX is the projection op-

erator (formalizing the sampling of viral strains by reads) and jj � jjF
denotes the Frobenius norm of its argument. This is a computationally

challenging optimization problem that can be approximately solved

by means of alternating minimization, i.e. alternately solving

Equation (1) for either M or H while keeping the other one fixed (Jain

et al., 2013). In particular, given the current estimates Mt and Ht, we

alternately update

Mtþ1 ¼ arg min
M2f0;1gm�k

1

2
jjPX F�MH>t

� �
jj2F (2)

and

Htþ1 ¼ arg min
H2f0;1g4n�k

1

2
jjPX F�Mtþ1H>

� �
jj2F (3)

until a termination criterion is met. Note that one can impose struc-

tural constraints on M to find it efficiently (Cai et al., 2016). In par-

ticular, M can be found by examining for each read all possible

haplotype associations and selecting the one that minimizes the

number of base changes needed to be consistent with the observed

information in F [i.e. minimizing the so-called minimum error cor-

rection (MEC) score, first proposed in (Lippert et al., 2002)].

Therefore, the complexity of finding M given H is O(mk), where m

is the number of reads and k denotes the number of viral haplotypes.

Now, optimization Equation (3) can be performed via, e.g. relaxing

H and performing gradient descent as previously done in (Cai et al.,

2016; Hashemi et al., 2017); however, we instead exploit the dis-

crete nature of the problem to solve Equation (3) much more effi-

ciently. In particular, we employ the majority voting rule to form

consensus sequences among reads that belong to the same cluster,

i.e. originate from the same viral haplotype. While the complexity of

finding H given M is O(mn) for both the majority voting and gradi-

ent descent schemes, the former solves Equation (3) directly while

the latter only takes a step towards the solution. As a result, the con-

vergence of the proposed alternating minimization scheme that

employs majority voting to solve Equation (3) is significantly faster

than that of the scheme relying on gradient descent (please see

Supplementary Material B for numerical results illustrating this

point). Moreover, we show that the convergence of the proposed

alternating minimization procedure is guaranteed (the proof is pro-

vided in Supplementary Material A).

2.3 Successive reconstruction of viral sequences
The alternating minimization procedure described in Section 2.2 is

expected to work well in settings where the abundances of different

haplotypes are uniform (i.e. equal) and the ploidy is low (Cai et al.,

2016; Hashemi et al., 2017). However, when the frequencies of

components in the mixture are uneven, the described framework is

capable of correctly reconstructing dominant sequences but strug-

gles to assemble sequences having low abundances, as pointed out in

(Chaisson et al., 2017). The reason for such behavior is that

Equation (1) emphasizes accurate recovery of dominant haplotypes

which significantly contribute to the overall MEC score while

neglecting rare ones whose contribution to the MEC score is rela-

tively small. To address this concern, we propose an iterative scheme

where upon performing optimization Equation (1), the most abun-

dant viral strain is identified and reconstructed from H; following

this reconstruction, all the reads assessed to have originated from

the reconstructed strain are removed from the dataset (and thus

from F). Optimization Equation (1) is repeated on the reduced F to

recover the second most abundant strain and the procedure contin-

ues until all strains are reconstructed.

Let ml be the number of rows having unit vectors e
kð Þ

l ; 1 � l � k;

in M. The most dominant haplotype can be identified as the wth lat-

eral slice ofH,Hw::, satisfying w ¼ arg maxlml. While each row of M

is essentially an indicator of the origin of the corresponding read,

membership information obtained via optimization Equation (1)

could be erroneous when the strains in a mixture have non-uniform

frequencies. In fact, reads originating from a rare strain are likely to

be assigned to a more abundant one, especially when those two

strains are highly similar (i.e. in the low diversity setting). Motivated

by this observation, we re-examine the reads in F to identify those

originating from the reconstructed viral haplotype using statistical

tests described next.

Assume that the sequencing errors are independent and identical-

ly distributed across all variant sites for all reads, and that they hap-

pen with probability e. Let ni denote the number of informative sites

of the ith row in F0; f 0i�, and let di be the number of mismatches be-

tween f 0i� and the recovered haplotype (i.e. the most abundant haplo-

type reconstructed in the current iteration) counted over the

observed nucleotides of f 0i�. The probability pi xð Þ that x or more

Fig. 1. An illustration of the tensor factorization representation of the viral

quasispecies assembly problem
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sequencing errors occur in the ith fragment is given by the binomial

distribution

pi xð Þ ¼ P Xi � xð Þ ¼
Xni

z¼x

ni

z

 !
ez 1� eð Þni�z: (4)

We first construct a significance test to infer if the aforementioned

mismatch has been induced by mutations present in some of the

informative sites. In particular, if pi dið Þ is smaller than or equal

to a pre-specified P-value a, we declare that not all of the di

mismatches are sequencing errors, implying at least one of them is

due to mutation and therefore the ith read remains in F. Otherwise,

for a read such that pi dið Þ > a, we further examine its origin by

considering the probability pi that di sequencing errors occurs in the

ith read,

pi ¼
ni

di

 !
edi 1� eð Þni�di : (5)

The reads which satisfy pi > di are assessed to have originated

from the most dominant strain and thus eliminated from F. The

threshold di is defined as di ¼
Qn

j¼1 pXi j½ �, where Xi j½ � is the nucleo-

tide observed at position j of the ith read in F0 and pXi j½ � denotes

the probability of observing nucleotide Xi j½ � at position j; the

latter probability is obtained as the empirical allele frequency

distribution at position j. Note that if the mismatches between a

read and the recovered sequence are due to mutations rather than

sequencing errors, it is less likely that the read originated from

the recovered haplotype and thus a higher threshold is used. To pro-

vide strong evidence against the null hypothesis of di sequencing

errors, we set the P-value a to a small number; in particular, we set

a ¼ 10�5.

Finally, to reconstruct full-length strains qi, we reinsert homozy-

gous alleles into the reads and form a consensus sequence for each

cluster. Abundances of the reconstructed strains are estimated by

counting the number of reads in each cluster.

The performance comparison between TenSQR and the single-

pass tensor factorization [i.e. AltHap (Hashemi et al., 2017), an ap-

proach that does not employ successive data cancelation] can be

found in the Supplementary Material B.

2.4 Determining the number of strains
The scheme outlined in this section requires that the number of

strains (i.e. clusters) k be specified prior to performing tensor factor-

ization and successive cancelation. To determine k, we consider the

improvement rate of the MEC score defined as (Ahn and Vikalo,

2017)

MECimpr kð Þ ¼MEC kð Þ �MEC kþ 1ð Þ
MEC kð Þ : (6)

Recall that the MEC score counts the minimum number of nucleoti-

des that need to be changed in the observed reads so that the

modified reads are consistent with having originated from the recon-

structed sequences; smaller MEC score indicates higher accuracy of

clustering. As we increase k, the MEC score decreases monotonical-

ly; however, once k has reached the actual number of clusters, its

further increase leads to only small improvements of the MEC score.

Therefore, we approach the problem of detecting the number of

strains by identifying k for which the MEC improvement rate

(MECimpr) saturates. To detect this point, we compare the MEC

improvement rate with a pre-defined threshold; while one can

search for k by increasing it in steps of 1 until the MEC

improvement rate saturates, we, for efficiency, update candidate k

by relying on the so-called half-interval search. In particular, starting

from an initial k0, the number of clusters is updated as ks  2ks�1

until MECimpr ksð Þ � g; at this point the number of clusters

starts to decrease as ksþ1  b ks þmaxf1; kigð Þ=2c where

fi 2 f1; . . . ; s� 1g : ki � ksg. Once MECimpr ksð Þ > g, the number

of clusters increases again as ksþ1  b ks þminkið Þ=2c where

fi 2 f1; . . . ; s� 1g : ki > ksg. If ks ¼ ks�1, the search procedure

stops by assigning ksþ1  ks þ 1 which is our estimate of the num-

ber of strains. The recommended choice of the threshold g is dis-

cussed in (Ahn and Vikalo, 2017) where it has been demonstrated

that the performance of estimating the number of strains via MEC

improvement rate is robust with respect to the choice of the thresh-

old. The described procedure will find the true number of strains

starting from an arbitrary k0; the closer k0 is to the true number of

strains, the fewer iteration will be needed. The proposed TenSQR

method is formalized as Algorithm 1.

Algorithm 1: Tensor factorization with successive removal

Input: Set of reads R aligned to the reference genome

Output: Full length quasispecies Q and frequencies of k

strains in Q

Pre-processing: From R, get mode-1 unfolding F of fragment

tensor F
Initial s 0, MECflag  0

while s ¼ 0 or ks ¼ ks�1 do

for k 2 fks; ks þ 1g do

Qk  1
F mode-1 unfolding F of fragment tensor F
while F ¼1 or k � 1 do

Initialize H0  VR
1
2 where URV> ¼ SVDkðPXðFÞÞ

Repeat

Mtþ1 ¼ arg minM
1
2 jjPXðF�MH>t Þjj

2
F

Htþ1 ¼ arg minH
1
2 jjPXðF�Mtþ1H>Þjj2F

Until termination criterion is met

Identify Hw:: s.t. w ¼ arg maxl ml

Remove fi s.t pi > di or di ¼ 0 from F

Reconstruct Qk  ½Qk; qh� and estimate frequency

of qh

k k� 1

end while

Calculate MECðkÞ
end for

if MECimprðksÞ � g do

ksþ1  bðks þmaxf1; kigÞ=2c; fi 2 f1; . . . ; s� 1g :
ki � ksg

MECflag  1

else do

if MECflag ¼ 0 Do

ksþ1  2ks

else do

ksþ1  bðks þminkiÞ=2c; fi 2 f1; . . . ; s� 1g :
ki > ksg

end if

end if

s sþ 1

end while

k ks þ 1

Q Qk
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3 Results and discussion

3.1 Performance comparison on simulated data
We first test the performance of TenSQR on the synthetic data gen-

erated by emulating HTS of quasispecies samples. Viral strains in a

quasispecies are generated by introducing independent mutations at

uniformly random locations of a randomly generated reference gen-

ome of length 1300 bp (this is a typical length of a gene in the pol re-

gion of the HIV-1 genome). 2�250 bp-long Illumina’s MiSeq reads

with inserts that have average length and SD 150 bp and 30 bp, re-

spectively, uniformly sample the mixture of viral strains. The reads

are aligned to a reference using BWA-MEM algorithm with the de-

fault settings (Li and Durbin, 2009); reads shorter than 100 bp or

having mapping quality score lower than 40 are filtered out.

Simulated data is categorized into 40 different sets, each consisting

of 50 samples, according to diversity (div%), sequencing error rate

(e) and the number of strains in a quasispecies (and hence frequen-

cies of the strains). Diversity, defined as the average Hamming dis-

tance between different strains in a quasispecies, varies from 1% to

10%. Sequencing error rate is set to e ¼ 7� 10�3 and e ¼ 2� 10�3,

the typical error rates in MiSeq datasets before and after quality

trimming with error correction, respectively (Schirmer et al., 2016).

For each configuration of parameters we consider two mixture

sets, each consisting of 5 and 10 viral strains. Frequencies of

strains are chosen to approximately follow geometric distribution

so as to emulate uneven populations which include strains with

low abundance; relative strain frequencies for the 5-strain mix

are 0:5; 0:3; 0:15; 0:04;0:01ð Þ while those for the 10-strain mix

are 0:36; 0:24;0:16; 0:08; 0:055; 0:04; 0:03;0:02;0:01; 0:005ð Þ. The

coverage for the 5-strain and 10-strain population are 2500� and

5000�, respectively, implying that strains having relative frequen-

cies 0.0023 or higher in the 5-strain case and those with relative fre-

quencies 0.0046 or higher in the 10-strain case are covered by

sequencing reads with probability 0.99 (Eriksson et al., 2008).

We compare the performance of TenSQR on the generated data-

sets with publicly available softwares PredictHaplo (Prabhakaran

et al., 2014), ShoRAH (Zagordi et al., 2011), ViQuaS

(Jayasundara et al., 2015) and aBayesQR (Ahn and Vikalo, 2017),

in terms of Recall, Precision, Predicted Proportion, Reconstruction

Rate and Jensen–Shannon divergence (JSD). To assess the ability of

the compared methods to reconstruct viral strains perfectly (without

errors), Recall is defined as the fraction of the reconstructed strains

that match the true strains in a quasispecies, i.e. Recall¼ TP
TPþFN

while Precision reports the fraction of true sequences among the

reconstructed strains, i.e. Precision¼ TP
TPþFP. We further report

Predicted Proportion, defined as the ratio of the estimated and the

true population size, thus measuring accuracy of the methods’

population size prediction. Note that the proximity of the value

of this metric to 1 indicates accuracy of the population size

estimate. To assess the degree of accuracy of each reconstructed

strain, we use

Reconstruction Rate ¼ 1

k

Xk

i¼1

1�HD qi; bqið Þ
G

� �
;

where G denotes the length of a reference genome, k is the number

of strains in a quasispecies, and qi and bqi denote the ith true strain

and its nearest sequence among the k reconstructed ones, respective-

ly. Finally, JSD measures accuracy of the estimated frequencies of

the reconstructed strains, i.e. quantifies similarity between two

inferred distributions. Formally, JSD between a true distribution P

and its approximation Q is defined as

JSD PjjQð Þ ¼ 1

2
D PjjMð Þ þ 1

2
D QjjMð Þ;

where D �jj�ð Þ denotes Kullback–Leibler (KL) divergence, M is

defined as M ¼ 1
2 PþQð Þ and the KL divergence is found as

D PjjQð Þ ¼
Pn

i¼1 P ið Þ log P ið Þ
Q ið Þ :

Figures 2 and 3 compares the values of these five metrics com-

puted for each of the considered reconstruction methods; the metrics

are evaluated by averaging over 50 instances for each combination

of the parameters and error rate e ¼ 2� 10�3 and e ¼ 7� 10�3, re-

spectively. Note that PredictHaplo does not execute on all instances

of the generated datasets and hence we report its performance only

when all 50 instances are successfully processed. As can be seen in

Figures 2 and 3, TenSQR outperforms the competing schemes. In

particular, TenSQR performs the best at all levels of diversity in

terms of both Recall and Reconstruction Rate. In terms of Predicted

Proportion and JSD, at div > 2% TenSQR achieves superior or

comparable performance to aBayesQR, which is designed to par-

ticularly excel at reconstructing low diversity populations. Note that

while Recall quantifies the fraction of perfectly reconstructed viral

strains, purpose of Reconstruction Rate is to assess quality of recon-

struction when the assembled viral strains are allowed to have errors

in some positions. Therefore, the fact TenSQR’s Recall and

Reconstruction Rate are close to 1 indicates that the proposed

scheme is capable of reconstructing rare sequences (i.e. with low

abundance) present in viral mixtures characterized by a wide range

of strain frequencies. PredictHaplo underestimates the number of

strains and reconstructs only those that have relative frequencies

� 15%, which explains its high Precision at div � 5%. ViQuaS

overestimates the population size at all levels of diversity, achieving

the highest scores in Predicted Proportion; note that the only strains

used in calculating ViQuaS performance metrics are those that

ViQuaS estimated as having frequencies greater than fmin, as recom-

mended by (Jayasundara et al., 2015). The strains reconstructed by

ShoRAH are consistently shorter than the true strains, which

appears to be due to the existence of low coverage regions in the syn-

thetic datasets. ShoRAH completes missing sites on the recon-

structed strains using bases from the reference genome, which

partially explains why ShoRAH underperforms in terms of Recall,

Precision and Reconstruction Rate. In conclusion, low Predicted

Proportion of PredictHaplo and weak performance of other meth-

ods in terms of Recall and Reconstruction Rate indicate that existing

techniques experience major difficulties when attempting to detect

and reconstruct rare strains.

3.2 Evaluating identification of deletion
Following the comparison of performance of TenSQR to state-of-

the-art methods, we next evaluate how accurate is TenSQR at esti-

mating long deletions. In particular, we investigate TenSQR’s ability

to detect a fixed-length deletion in a strain over a range of strain fre-

quencies and diversity levels. To this end, we generate sets of quasis-

pecies consisting of two strains where the length of the abundant

strain is 1300 bp and deletions of sizes ldel ¼ 100 bp, 200 bp and

300 bp are placed into the strain of the lower abundance. We gener-

ated 40 benchmark sets of reads emulating sequencing of a mixture

of two viral strains with diversity ranging from 1% to 10% and the

lower of two frequencies taking values in {1%, 2%, 5% and 10%g.
The coverage for the mixture of two viral stains is 1000� and the
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sequencing error rate is set to e ¼ 2� 10�3. Instances of 50 are gen-

erated for each of the total 120 datasets. In this study, the perform-

ance of detecting deletions is characterized by means of the false

negative rate evaluated over 50 instances of the experiment, and the

deviations of the estimated length of deletions from the true length

calculated by averaging the deviations over the 50 instances. Since the

competing QSR methods considered in Section 3.1 are unable to de-

tect deletions, we only show the performance of TenSQR. Note that

while HaploClique (Töpfer et al., 2014) can predict long deletions,

the overlap assembly approach recovers many contigs shorter than

true strains instead of reconstructing full-length strains and thus was

not included in the benchmarking results. As evident from the results

in Table 1, TenSQR is capable of detecting long deletions existing in

the viral strains whose frequencies are as low as 1%. The performance

of detecting long deletions is exceptional when the viral mixture is not

particularly characterized by low diversity (div ¼ 1%); in this setting,

the performance under the short sequencing reads (2�250) tends to

deteriorate as the length of deletions increases.

Remark 1: The proposed approach to detecting deletions is tested

on a mixture of only two strains for the sake of clarity, so as to

allow investigation of the interplay between diversity, strain

frequency and deletion length. The method is, however, applic-

able to more general settings that involve multiple strains and/or

multiple deleted regions (omitted for brevity).

Remark 2: An additional pipeline designed to detect insertions

that may exist in some of the reconstructed strains and prelim-

inary results demonstrating its performance are given in

Supplementary Material C.

3.3 Performance comparison on gene-wise reconstruc-

tion of real HIV-1 data
We further test the performance of TenSQR on the real HIV dataset

made publicly available by (Di Giallonardo et al., 2014). An in vitro

generated quasispecies population consists of 5 known HIV-1

strains (HIV-1HXB2, HIV-189:6, HIV-1JR�CSF, HIV-1NL4�3 and HIV-

1YU2) with pairwise distances between 2:61� 8:45% and relative
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Fig. 2. Performance comparison of TenSQR, aBayesQR, ShoRAH, ViQuaS and PredictHaplo in terms of Recall, Precision, Predicted Proportion (PredProp),

Reconstruction Rate (ReconRate) and JSD on the simulated data with e ¼ 2� 10�3 for a mixture of (a) 5 viral strains and (b) 10 viral strains. (For the plots that in-

clude error bars, please see the corresponding Supplementary Fig. S2 in Supplementary Material B)
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frequencies between 10% and 30% (Di Giallonardo et al., 2014).

Paired-end sequencing reads of length 2�250 bp generated by

Illumina’s MiSeq Benchtop Sequencer are aligned to the HIV-1HXB2

reference genome. Following Di Giallonardo et al., 2014, to ensure

reliable results, reads shorter than 150 bp and having quality scores

of mapping lower than 60 are discarded. We first apply TenSQR to

gene-wise reconstruction of the HIV population and compare its

performance to that of aBayesQR (Ahn and Vikalo, 2017) and

PredictHaplo (Prabhakaran et al., 2014), shown to be the most com-

petitive softwares in the benchmarking studies in Section 3.1.

Predicted Proportion, defined in Section 3.1 as the ratio of the

estimated and the true population size, is evaluated by setting

the parameter needed to detect the number of strains in a mixture

to g ¼ 0:09, as recommended by Ahn and Vikalo, 2017. Since

the ground truth information specifying the five HIV strains is

available (http://bmda.cs.unibas.ch/HivHaploTyper/), we evaluate

Reconstruction Rate for each recovered individual strain, along with

the inferred strain frequencies. Note that the strains in the HIV-1

dataset are more evenly distributed than those in the simulated qua-

sispecies in Section 3.1. The results reported in Table 2 show that

TenSQR reconstructs all of the five HIV-1 strains correctly in six

genes while the other considered methods accomplish the same in

five genes. Consistent with the results in Section 3.1, PredictHaplo,

designed for identification of HIV haplotypes, underestimates the

number of strains by reconstructing three or four strains in the eight

genes.

3.4 Assembly of HIV-1 gag-pol genomes
We further use TenSQR to reconstruct the HIV population on the

4036 bp long gag-pol region. Reconstruction of longer regions of

viral quasispecies requires higher sequencing coverage than that

needed for shorter ones. Therefore, for a reliable reconstruction of a

viral population spanning long genome region, we fragment the long

region into overlapping blocks, perform reconstruction of the blocks

independently and merge the results to retrieve the full region of

interest. Specifically, we split the HIV gag-pol region into a set of
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Fig. 3. Performance comparison of TenSQR, aBayesQR, ShoRAH, ViQuaS and PredictHaplo in terms of Recall, Precision, Predicted Proportion (PredProp),

Reconstruction Rate (ReconRate) and JSD on the simulated data with e ¼ 7� 10�3 for a mixture of (a) 5 viral strains and (b) 10 viral strains. (For the plots that in-

clude error bars, please see the corresponding Supplementary Fig. S3 in Supplementary Material B)
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blocks of length 500 bp, where the consecutive blocks overlap by

250 bp. We run TenSQR to perform reconstruction of the viral

strains in each of the 18 blocks independently, and merge the results

in the consecutive blocks while testing consistency of the strains in

the overlapping intervals. In particular, if there are mismatches be-

tween the reconstructed strains in the overlapping regions of con-

secutive blocks, we resolve them by performing majority voting

using reads that are covering the mismatched positions. The number

of strains retrieved by the global reconstruction procedure is decided

via majority voting over the number of strains reconstructed in each

block. Following this procedure on the 355 241 paired-end reads

that remain after applying a quality filter, TenSQR perfectly recon-

structed all 5 HIV-1 strains, achieving Reconstruction Rate of 100

for all 5 strains and Predicted Proportion of 1. Since the pairwise

distances between the 5 HIV-1 strains are relatively high, we esti-

mated frequencies of the viral strains by simply counting the number

of reads assigned to the same strain according to the Hamming

distance between the reads and the reconstructed strains. The

resulting frequencies are 15:21%; 19:34%; 25:56%; 27:61% and

12.27%, which is consistent with the result obtained by aBayesQR

(Ahn and Vikalo, 2017).

3.5 Assembly of the ZIKV strains
We apply TenSQR to reconstruct the full-length genome of an

Asian-lineage ZIKV sample (accession SRR3332513) that is

obtained from a rhesus macaque (animal 393422) on the 4th day of

infection (Dudley et al., 2016). 2�300 bp reads (�30 000� cover-

age) are generated from the sample by the Illumina’s MiSeq plat-

form and aligned to the ZIKV reference genome (Genbank

KU681081.3) of length 10 807 bp using the BWA-MEM algorithm

with the default settings (Li and Durbin, 2009). The reads shorter

than 100 bp and those having mapping quality scores smaller than

40 are discarded. For reliable reconstruction of the full-length

Table 1. Performance of estimating deletion

div%

ldel fmin% 1 2 3 4 5 6 7 8 9 10

1 0.08 (0.80) 0 (0.88) 0 (1.02) 0 (2.16) 0 (2.64) 0 (2.20) 0 (2.52) 0 (3.38) 0 (4.76) 0 (4.08)

100 2 0.02 (1.18) 0 (1.26) 0 (1.70) 0 (1.42) 0 (2.66) 0 (1.58) 0 (2.78) 0 (3.14) 0 (2.72) 0 (4.22)

5 0.06 (1.64) 0 (1.72) 0 (2.12) 0 (1.94) 0 (1.86) 0 (2.20) 0 (2.22) 0 (2.94) 0 (3.24) 0 (3.70)

10 0.08 (2.18) 0 (2.62) 0 (2.20) 0 (1.90) 0 (2.42) 0 (1.92) 0 (2.00) 0 (3.34) 0 (3.00) 0 (2.50)

1 0.16 (1.33) 0 (1.38) 0 (1.20) 0 (1.78) 0 (2.46) 0 (3.02) 0 (2.28) 0 (4.02) 0 (5.56) 0 (4.56)

200 2 0.14 (1.26) 0 (1.20) 0 (1.94) 0 (1.74) 0 (1.78) 0 (2.34) 0 (1.98) 0 (3.58) 0 (3.94) 0 (4.36)

5 0.14 (2.86) 0 (1.67) 0 (1.90) 0 (2.10) 0 (2.20) 0 (1.96) 0 (2.54) 0 (3.16) 0 (3.48) 0 (4.98)

10 0.16 (2.31) 0 (2.20) 0 (2.06) 0 (2.30) 0 (1.70) 0 (2.10) 0 (2.18) 0 (2.98) 0 (2.54) 0 (2.96)

1 0.34 (1.00) 0 (1.62) 0 (1.38) 0 (2.24) 0 (2.04) 0 (3.32) 0 (2.52) 0 (4.56) 0 (5.14) 0 (5.00)

300 2 0.24 (2.00) 0.06 (1.64) 0 (1.78) 0 (1.70) 0 (2.02) 0 (2.24) 0 (2.28) 0 (3.74) 0 (5.08) 0 (3.92)

5 0.30 (2.66) 0.02 (2.12) 0 (1.92) 0.02 (1.65) 0 (2.04) 0 (2.52) 0 (2.88) 0 (2.84) 0 (2.58) 0 (3.60)

10 0.36 (2.72) 0 (2.60) 0 (2.62) 0 (2.10) 0 (2.28 0 (2.64) 0 (2.94) 0 (2.58) 0 (3.10) 0 (3.64)

Note: Performance of TenSQR of estimating deletion in terms of False Negative rate of detecting deletions and Deviation of estimated deletion length (in paren-

thesis) on the simulated data with e ¼ 2� 10�3 and 1000� coverage for a mixture of two strains, depending on diversity (div) and frequency of the low abundant

strain (fmin) which includes a deletion of length (ldel) 100 bp, 200 bp and 300 bp.

Table 2. Performance comparisons of TenSQR, aBayesQR and PredictHap on a real HIV-1 5-virus-mix data

p17 p24 p2-p6 PR RT RNase int vif vpr vpu gp120 gp41 nef

TenSQR PredProp 1 1.6 1 1 1.4 1 1 1 1 1.6 2.2 1.2 0.8

RRHXB2 100 98.9 100 100 99.2 100 100 100 100 92.8 96.0 99.0 0

RR89.6 100 100 100 100 98.0 100 100 100 100 94.0 97.2 100 95.7

RRJR-CSF 100 100 100 100 100 100 100 100 100 100 98.3 97.7 99.8

RRNL4–3 100 99.3 100 100 99.5 100 100 100 100 100 99.8 99.5 99.7

RRYU2 100 99.3 100 99.7 99.7 100 100 100 100 100 94.9 100 98.6

aBayesQR PredProp 1 1 1 1 1 1 1 1 1.2 1 0.8 0.8 1.2

RRHXB2 100 99.4 100 100 98.5 100 99.9 100 100 99.6 98 0 95.8

RR89.6 100 98.7 100 100 98.6 100 100 100 100 92 96.5 98.9 95.5

RRJR-CSF 100 99.6 100 100 99 100 100 100 100 98.8 97.7 99.1 98.2

RRNL4–3 100 100 100 100 98.9 100 100 99.8 100 100 96.3 98.8 100

RRYU2 100 99.7 100 100 99.2 100 99.5 99.7 100 100 0 98.6 99.2

PredictHaplo PredProp 1 0.6 1 1 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8

RRHXB2 100 0 100 100 100 98.9 100 100 100 93.2 0 0 0

RR89.6 100 100 100 100 100 100 99.8 100 100 0 97.8 100 98.87

RRJR-CSF 100 100 100 100 100 100 100 100 100 100 99.7 100 100

RRNL4–3 100 99.1 100 100 100 100 100 100 100 100 100 100 100

RRYU2 100 0 100 100 100 0 0 0 100 100 98.6 100 100

Note: Predicted Proportion (PredProp) and Reconstruction Rate [RR (%)] for TenSQR, aBayesQR and PredictHaplo applied to reconstruction of HIV-

1HXB2, HIV-189.6, HIV-1JR-CSF, HIV-1NL4-3 and HIV-1YU2 for all 13 genes of the HIV-1 dataset. Values in the genes where all the strains are perfectly

reconstructed without errors are denoted as boldface. (The inferred frequencies are shown in Table S2 in Supplementary Material B).
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genome, we follow the strategy outlined in Section 3.4; the full re-

gion is split into a sequence of blocks of length 2500 bp where the

consecutive windows overlap by 500 bp. We run TenSQR on those

blocks and assemble the entire region by connecting reconstructed

strains in the consecutive blocks. Relative strain frequencies are esti-

mated using an expectation-maximization algorithm described in

(Eriksson et al., 2008). Applying the described procedure to 565 979

paired-end reads that pass the quality filter, TenSQR reconstructed

two full-length viral sequences with relative abundances 74% and

26% that diverge from each other by 0.47% within regions between

200 bp and 5550 bp. Among all the competing methods considered

in Section 3.1, PredictHaplo is the only one that completed recon-

struction within 48 h. PredictHaplo, which typically underestimates

the number of strains—especially in quasispecies characterized by

low diversity (Ahn and Vikalo, 2017)—reconstructed only one

strain which matches the dominant strain reconstructed by

TenSQR.

4 Conclusion

In this article, we presented a novel tensor factorization based algo-

rithm for the reconstruction of viral quasispecies from HTS data. In

particular, sequencing data is represented by a sparse binary tensor

and the viral strains in a quasispecies are reconstructed in an itera-

tive manner; at each iteration, the most abundant sequence among

those obtained by factorizing the tensor is selected and data origi-

nated from the most abundant sequence is removed from the tensor.

Benchmarking tests on synthetic datasets demonstrate that the pro-

posed scheme, referred to as TenSQR, is capable of reconstructing

quasispecies characterized by imbalanced frequencies of strains,

detecting and recovering low abundant strains more reliably than

state-of-the-art algorithms. Further studies on a real HIV-1 and

Zika dataset demonstrate that TenSQR outperforms existing meth-

ods in more general settings and is applicable to quasispecies recon-

struction from virus-infected patient samples.

Future work will include the development of an improved meth-

odology that permits accurate recovery of long insertions potentially

present in rare viral strains.
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