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Abstract

Fundamental to elucidating the functional organization of the brain is the assessment of causal 

interactions between different brain regions. Multivariate autoregressive (MVAR) modeling 

techniques applied to multisite electrophysiological recordings are a promising avenue for 

identifying such causal links. They estimate the degree to which past activity in one or more 

brain regions is predictive of another region’s present activity, while simultaneously accounting for 

the mediating effects of other regions. Including as many mediating variables as possible in the 

model has the benefit of drastically reducing the odds of detecting spurious causal connectivity. 

However, effective bounds on the number of MVAR model coefficients that can be estimated 

reliably from limited data make exploiting the potential of MVAR models challenging for even 

modest numbers of recording sites. Here, we utilize well-established dimensionality-reduction 

techniques to fit MVAR models to human intracranial data from ∼100 – 200 recording sites 

spanning dozens of anatomically and functionally distinct cortical regions. First, we show that 

high-dimensional MVAR models can be successfully estimated from long segments of data and 

yield plausible connectivity profiles. Next, we use these models to generate synthetic data with 

known ground-truth connectivity to explore the utility of applying principal component analysis 
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and group least absolute shrinkage and selection operator (gLASSO) to reduce the number of 

parameters (connections) during model fitting to shorter data segments. We show that gLASSO 

is highly effective for recovering ground-truth connectivity in the limited data regime, capturing 

important features of connectivity for high-dimensional models with as little as 10 seconds of data. 

The methods presented here have broad applicability to the analysis of high-dimensional time 

series data in neuroscience, facilitating the elucidation of the neural basis of sensation, cognition, 

and arousal.

Keywords

Effective connectivity; Dynamic connectivity; Partial directed coherence; Insula

1. Introduction

Measuring causal relationships between activity in different regions of the brain is 

fundamental to understanding its functional organization. Standard measures of these causal 

interactions (i.e., effective connectivity) such as Granger Causality (GC) (Granger, 1969; 

Seth et al., 2015) and generalized partial directed coherence (gPDC) (Baccala et al., 

2007) can be obtained by fitting linear multivariate autoregressive (MVAR) models to 

data recorded simultaneously from different locations in the brain. MVAR models estimate 

the present value measured at a target location using a weighted sum of past values 

from all other measurement locations. Importantly, because of their multivariate nature, 

MVAR models represent the interactions between any two locations while simultaneously 

accounting for the mediating effects of other sites (Blinowska et al., 2004). However, these 

models are difficult to implement in practice for even modest numbers of recording sites 

because of the number of parameters that need to be estimated. To fit an MVAR model to 

a dataset with M recording sites and model order (i.e., the number of past values used to 

estimate present values) of p, M estimation problems must be solved, each of which have 

Mp unknown parameters. The length of stationary data required to reliably estimate MVAR 

models is thus proportional to Mp.

Previous studies have suggested guidelines on the amount of data required to obtain reliable 

results using ordinary least-squares (OLS) to estimate model parameters. Schlogl and Supp 

(2006) recommend exceeding 10Mp samples. A more recent study (Antonacci et al., 2020) 

compared OLS and the Least Absolute Shrinkage and Selection Operator (LASSO) method 

(Tibshirani, 1996), which regularizes the OLS problem with a penalty based on the L1 

norm of the MVAR coefficients to stabilize estimation in low data situations. These authors 

reported that OLS suffers relative to LASSO with fewer than 10Mp samples. A subsequent 

study (Antonacci et al., 2021) compared OLS to a stochastic gradient descent version of 

LASSO and showed cases where 20Mp samples were required for accurate estimation by 

OLS.

These rules of thumb for OLS have been obtained with relatively small networks, typically 

M ≤ 10 for simulations and M ≤ 30 for human electrophysiology. Indeed, the difficulty of 

reliably estimating MVAR model coefficients from available data appears to have limited 
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previously reported applications in human electrophysiology to fewer than ∼30 electrodes 

[for example, see Korzeniewska et al. (2011) for a relatively high-dimensional example; 

Brovelli et al. (2004) use of four and six channel models is more typical]. The primary 

contribution of this study is to explore MVAR model estimation methods that enable 

modeling of much larger networks than previously possible from practical data lengths. 

We consider networks with M ∼ 100 – 200 recording sites. In some cases we find that 

∼100Mp samples may be necessary to obtain reliable results with OLS, further motivating 

study of improved estimation methods.

Intracranial electroencephalography (iEEG) recordings from neurosurgical patients can 

simultaneously sample neural activity from hundreds of locations in the brain with high 

spatial and temporal resolution, and thus are a rich source of multivariate data for exploring 

causal interactions in brain networks. However, exploiting the opportunity afforded by 

MVAR modeling with hundreds of electrodes is challenging due to limited data availability. 

For example, with typical iEEG recording parameters of M = 200 and sampling frequency 

of 250 Hz, and a model order of p = 8, 100Mp translates into a required data length of 

>10 minutes for a single static estimate of connectivity; dynamic connectivity analysis (Preti 

et al., 2017) in this scenario would be impractical. Furthermore, even when working with 

longer duration recordings, factors such as the presence of artifacts and nonstationarity can 

limit the total duration of data available for estimating an accurate MVAR model. These 

considerations motivate the development of methods to fit MVAR models in the limited 

data regime. The standard workaround for this problem has been to estimate MVAR models 

using smaller subsets of selected recording sites. Unfortunately, this removes potential 

mediating variables and connections and distorts the true causal network underlying brain 

activity, drastically increasing the likelihood of detecting spurious effective connections 

(Granger, 1980; Kus et al., 2004; Olejarczyk et al., 2017). In particular, multivariate methods 

applied to full datasets are optimal for identifying neural correlates of behavior and arousal 

state transitions (Kus et al., 2004; Olejarczyk et al., 2017)

There have been several attempts to implement dimensionality-reduction techniques to more 

accurately fit MVAR models to large multivariate datasets. Principal component analysis 

(PCA) has been used previously to fit MVAR models to scalp electroencephalography 

data (Joliffe and Morgan, 1992). In this approach, PCA is applied to the electrode-by-

electrode covariance matrix to yield “virtual scalp electrodes”, i.e., electrodes projected 

onto an orthogonalized basis set that more efficiently captures the spatial variability across 

electrodes. To retain greater spatial information, PCA has also been applied separately to 

regions of interest (ROIs) on the scalp determined a priori, prior to concatenating the full set 

of principal components across ROIs as input to the MVAR model (Wang et al., 2016). We 

will refer to this approach as rPCA. Connections between ROIs and their virtual electrodes 

can then be aggregated and summarized using “block” measures of connectivity (Faes et al., 

2012; Faes and Nollo, 2013). In practice, a significant fraction of the original dimensions 

must be retained to avoid the bias associated with discarding weaker components, and this 

limits the degree of dimensionality reduction that can be achieved with PCA methods.

Another dimensionality reduction approach is to select a subset of the available data values 

for inclusion in the MVAR model, which reduces the number of MVAR coefficients that 
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must be estimated. Partial conditioning (Marinazzo et al., 2012) uses a greedy algorithm 

that sequentially selects important variables to a particular driver for conditional Granger 

causality calculations based on mutual information. Another approach (Siggiridou and 

Kugiumtzis, 2016) restricts the number of past values of each variable using time-ordered 

supervised sequential selection to add lags that decrease the Bayesian Information Criterion. 

This approach is specifically tailored for time series, in contrast to more widely applied 

sparse regression subset selection techniques such as the LASSO (Antonacci et al., 2020; 

Antonacci et al., 2019; Valdes-Sosa et al., 2005).

Sparse regression approaches use a regularizer during the model-fitting step, unlike PCA 

and variable or lag selection techniques, which are processing steps implemented prior to 

model-fitting. LASSO retains essential coefficients, i.e., those explaining the most variance 

in the training data, while setting smaller coefficients or those with less explanatory power 

to zero. The group LASSO (gLASSO) approach encourages sparse connections between 

nodes by shrinking all the coefficients associated with smaller node-node interactions in 

the model to zero simultaneously (Bolstad et al., 2011; Haufe et al., 2010). The gLASSO 

enhances the interpretability of the resulting sparse model since it focuses on sparsity 

of connections rather than isolated coefficients. While the gLASSO offers the potential 

for significant reduction in the number of connections, the computational cost is much 

higher than OLS because it requires an iterative solution and selection of a sparsity 

tuning parameter, typically using cross-validation. Both rPCA and gLASSO methods have 

been used separately in previous studies, they have yet to be combined. The motivation 

for combining them is to reduce the computational cost of gLASSO by reducing the 

dimensionality of the gLASSO problem.

The primary goal of this work is to compare systematically the performance of OLS, 

rPCA, gLASSO, and combined rPCA-gLASSO with limited data from high-dimensional 

physiologically plausible iEEG networks. To this end, we first show that high-dimensional 

iEEG data (117 – 216 electrodes) can be fit successfully using MVAR models provided 

sufficient data is available. We then explore the performance of different approaches 

for recovering MVAR models and connectivity profiles in the limited data regime. 

Physiologically realistic simulated data is created using using MVAR models estimated from 

human iEEG data with long data lengths. The simulated networks provide physiologically 

plausible ground-truth models for evaluation of various estimation methods. We use 

simulated data to assess how the combination of gLASSO and rPCA methods compares with 

rPCA-only, gLASSO-only, and standard OLS methods, showcasing the relative performance 

of each modeling strategy. Specifically, we measure each modeling strategy’s ability to 

recover the known ground truth using two metrics. First, we measure the fidelity of the 

estimated network model to the true network by computing the mean-square prediction 

error for data not used to estimate the model. Second, we compare the estimated regional 

connectivity to the ground truth based on the broadband block gPDC (bPDC) measure of 

Faes and Nollo (2013). We show that gLASSO can capture essential features of connectivity 

even in very limited data regimes, motivating an illustration of using gLASSO to assess 

dynamic connectivity. In addition to these simulation experiments, we apply each method 

to resting-state data derived from high-dimensional iEEG recordings to demonstrate their 

relative abilities to recover plausible connectivity profiles.
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2. Methods

2.1. Overview

Our goal was to develop methods for reliably fitting MVAR models to high-dimensional 

neural data. The performance of rPCA and gLASSO estimation methods were objectively 

evaluated on simulated data generated by physiologically realistic “ground-truth” networks. 

Data-predictive and network connectivity metrics were employed to assess estimation 

fidelity as a function of data length. The physiologically realistic networks used as ground-

truth benchmarks in the simulation study were estimated using long segments of resting state 

iEEG data recorded from neurosurgical patients. The Methods section is divided into five 

sub-sections: (1) human subjects and iEEG recordings; (2) overview of MVAR models; (3) 

ground-truth network estimation; (4) methods for estimating MVAR models from simulated 

data, including rPCA, gLASSO, and rPCA-gLASSO; (5) details of the metrics used for 

assessing estimator performance, including the bPDC measure we employed to evaluate 

regional connectivity.

2.2. Human subjects and iEEG recordings

2.2.1. Subjects—iEEG data were used to derive ground-truth networks for simulation 

and to demonstrate that plausible connectivity profiles could be recovered using the 

approach described here. These data were obtained from ten neurosurgical patients (6 

female, ages 21 – 48 years old, median age 34.5 years old; Table 1). The patients had 

been diagnosed with medically refractory epilepsy and were undergoing chronic invasive 

iEEG monitoring to identify potentially resectable seizure foci. All human subject studies 

were carried out in accordance with The Code of Ethics of the World Medical Association 

(Declaration of Helsinki) for experiments involving humans. The research protocols were 

approved by the University of Iowa Institutional Review Board and the National Institutes 

of Health. Written informed consent was obtained from all subjects. Research participation 

did not interfere with acquisition of clinically required data. Subjects could rescind consent 

at any time without interrupting their clinical evaluation. All subjects were native English 

speakers, right-handed, and had left hemisphere language dominance, as determined by 

Wada test.

2.2.2. iEEG recordings—Recordings were made using subdural and depth electrodes 

(Ad-Tech Medical, Oak Creek, WI) (Fig. 1A; Supplementary Figure 1). After rejecting 

electrodes that were located in seizure foci, white matter, or outside the brain, or for noise 

reasons (see below), the median number of recording sites across the 10 subjects was 174 

(range 117 – 216; Supplementary Figure 2; Table 2). Subdural electrode arrays consisted 

of platinum-iridium discs (2.3 mm diameter, 5–10 mm inter-electrode distance), embedded 

in a silicon membrane. These arrays provided extensive coverage of temporal, frontal, 

and parietal cortex (Supplementary Figure 1). Depth arrays (8–12 electrodes, 5 mm inter-

electrode distance) targeted insular cortex, hippocampus, and amygdala, and additionally 

provided coverage of the superior temporal plane and superior temporal sulcus. Note that 

because of the extensive coverage of auditory cortical structures in the temporal lobe, and 

adjacent auditory-related cortical structures in parietal and frontal lobes, our scheme for 

organizing ROIs is auditory-centric. A subgaleal electrode, placed over the cranial vertex 
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near midline, was used as a reference in all subjects. All electrodes were placed solely 

on the basis of clinical requirements, as determined by the team of epileptologists and 

neurosurgeons (Nourski and Howard, 2015).

No-task, resting-state (RS) data were recorded in the dedicated, electrically shielded suite 

in The University of Iowa Clinical Research Unit while the subjects lay in the hospital 

bed. No instructions were given to the subjects about keeping eyes open or closed; because 

these recordings were made during daytime, subjects typically had their eyes open during 

data collection. Resting state data were collected a median of 5.5 days (range 2 – 11 days) 

after electrode implantation surgery. In the first two subjects (L307 and L357), data were 

recorded using a TDT RZ2 real-time processor (Tucker-Davis Technologies, Alachua, FL). 

In the remaining 8 subjects (R369 through R532), data acquisition was performed using a 

Neuralynx Atlas System (Neuralynx Inc., Bozeman, MT). Recorded data were amplified, 

filtered (0.1–500 Hz bandpass, 5 dB/octave rolloff for TDT-recorded data; 0.7–800 Hz 

bandpass, 12 dB/octave rolloff for Neuralynx-recorded data) and digitized at a sampling rate 

of 2034.5 Hz (TDT) or 2000 Hz (Neuralynx). For 8/10 subjects, the duration of recordings 

was 10 mins. For the other two subjects (429R, 532R), the duration was 11 minutes.

2.2.3. iEEG data analysis

2.2.3.1. Anatomical reconstruction and ROI parcellation.: Electrode localization relied 

on post-implantation T1-weighted structural MR images and post-implantation CT images. 

All images were initially aligned with pre-operative T1 images using linear coregistration 

implemented in the FMRIB Software Library (FSL; FLIRT) (Jenkinson et al., 2002). 

Electrodes were identified in the post-implantation MRI as magnetic susceptibility artifacts 

and in the CT as metallic hyperdensities. Electrode locations were further refined within 

the space of the pre-operative MRI using three-dimensional non-linear thin-plate spline 

warping (Rohr et al., 2001), which corrected for post-operative brain shift and distortion. 

The warping was constrained with 50–100 control points, manually selected throughout the 

brain, which aligned to visibly corresponding landmarks in the pre- and post-implantation 

MRIs.

Regional connectivity was assessed by grouping electrodes based on location. Electrodes 

were assigned to one of 50 ROIs organized into 6 ROI groups (Fig. 1A; Supplementary 

Figure 1; Supplementary Table 1) based upon anatomical reconstructions of electrode 

locations in each subject. For subdural arrays, it was informed by automated parcellation 

of cortical gyri (Destrieux et al., 2010; Destrieux et al., 2017) as implemented in the 

FreeSurfer software package. For depth arrays, ROI assignment was informed by MRI 

sections along sagittal, coronal, and axial planes. Heschl’s gyrus (HG) was subdivided into 

the posteromedial (HGPM) and anterolateral (HGAL) portions (core auditory cortex and 

adjacent non-core areas, respectively). This division was made using physiological criteria 

[characteristic short-latency evoked responses to click trains and frequency-following 

responses in HGPM but not HGAL; see Brugge et al. (2009) and Nourski et al. (2016)]. 

Superior temporal gyrus (STG) was subdivided into posterior and middle non-core auditory 

cortex ROIs (STGP and STGM), and auditory-related anterior ROI (STGA) using the 

transverse temporal sulcus and ascending ramus of the Sylvian fissure as macroanatomical 
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boundaries. Middle and inferior temporal gyrus (MTG and ITG) were each divided into 

posterior, middle, and anterior ROI by diving the gyrus into three approximately equal thirds 

along its length. The insula was subdivided into posterior and anterior ROIs, with the former 

considered within the auditory-related ROI group (Zhang et al., 2019). Within cingulate 

gyrus, anterior cingulate cortex (as identified by automatic parcellation in FreeSurfer) was 

considered a prefrontal ROI. Angular gyrus (AG) was divided into posterior and anterior 

ROIs (AGP and AGA) using the angular sulcus as a macroanatomical boundary. Recording 

sites identified as seizure foci or characterized by excessive noise, and depth electrode 

contacts localized to the white matter or outside brain, were excluded from analyses and are 

not listed in Supplementary Table 1.

2.2.3.2. Preprocessing of iEEG data.: For each subject, iEEG data were downsampled to 

250 Hz and divided into segments of varying length (10 – 960 s). Artifact rejection involved 

three steps. First, outlier electrodes were identified based on the average log amplitude in 

one-minute segments across seven frequency bands computed using the demodulated band 

transform (DBT) (Kovach and Gander, 2016): delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 

Hz), beta (14–30 Hz), gamma (30–50 Hz), high gamma (70–110 Hz), and total power. 

Analytical amplitude measured in each band was z-scored across electrodes in each segment 

and averaged across segments. Electrodes with a mean z-score > 3.5 in any band were 

removed, including from further artifact rejection methods.

Second, intervals containing artifacts in the raw voltage traces were rejected on every 

electrode. We identified times when any electrode had extreme absolute raw voltage >10 SD 

for that electrode and marked as artifact the surrounding time until that electrode returned 

to zero voltage, plus an additional 100 ms before and after. Note that because we were 

measuring connectivity, any data interval identified on a single electrode was excluded 

for all electrodes. For each subject, if this procedure identified >1% of recording time as 

artifact, we optimized the total data kept for that subject (= electrodes × non-artifact time) 

by further excluding electrodes if retaining those electrodes caused more loss of data on the 

remaining electrodes via artifact rejection than they themselves contributed.

Third, we applied a specific additional noise criterion to eliminate brief power spikes in the 

high gamma band, a band that in some subjects was particularly sensitive to noise in our 

recording environment. We excluded all intervals containing segments in which high gamma 

power averaged across electrodes was greater than five standard deviations after excluding 

electrodes and times already removed in steps 1 and 2.

2.2.4. Multivariate autoregressive models—Multivariate autoregressive (MVAR) 

models represent the present value at each electrode as a weighted combination of past 

values at all other electrodes. Let ym(n) be the voltage in electrode m at time n. The MVAR 

model is for ym(n) is

ym(n) = ∑
j = 1

M
∑

k = 1

p
am, j(k)yj(n − k) + um(n), m = 1, 2, …, M; n = 1, 2, …, N (1)
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where am,j (k) is the weight applied to electrode j at lag k to predict electrode m, um(n) 

is the model error or innovations process in electrode m, p is the memory or maximum 

lag considered by the model, N is the number of data samples, and M is the number of 

electrodes. The innovations are typically assumed to be white noise that is uncorrelated 

for different electrodes. Note that although MVAR models are linear, they can detect both 

linear and nonlinear causal interactions and may be more robust to noise than methods that 

explicitly capture nonlinearities (Astolfi et al., 2009; Freiwald et al., 1999; Gourévitch et al., 

2006; Korzeniewska et al., 2011; Netoff et al., 2004).

In the large data regime (N large) the MVAR model coefficients am,j (k) may be estimated 

from data using the OLS method (Lutkepohl, 2005). Define

ym = ym(N) ym(N − 1) ⋯ ym(p + 1)
T

Y =

y1(N − 1) ⋯ y1(N − p) y2(N − 1) ⋯ yM(N − 1) ⋯ yM(N − p)
y1(N − 2) ⋯ y1(N − p − 1) y2(N − 2) ⋯ yM(N − 2) ⋯ yM(N − p − 1)

⋮
y1(p) ⋯ y1(1) y2(p) ⋯ yM(p) ⋯ yM(1)

am = am, 1(1) ⋯ am, 1(p) am, 2(1) ⋯ am, M(1) ⋯ am, M(p) T (2)

so that the least squares problem for estimating am is written in matrix form as

am = argmin
am

ym − Yam 2
(3)

The solution to Eq. (3) is given by

aLS
m = YTY −1YTym (4)

assuming YTY is an invertible matrix, which requires N − p ≥ Mp.

In practice, the number of stationary data samples must be significantly larger than the 

minimum to avoid large errors in the MVAR parameter estimates. A rule of thumb of N 
> 10 Mp has been suggested (see, e.g., Schlogl and Supp, 2006). It is important to note 

that such guidelines assume the data samples have some degree of statistical independence. 

Thus, the effective number of samples available is determined by the bandwidth of the 

signal, not the absolute sampling rate. Oversampling the data does not improve estimation 

quality. For example, if the data has a bandwidth of 50 Hz, then the number of effective 

samples available for estimation is approximately 100 samples/s. In our data set we had 

several subjects with more than 200 electrodes. If we assume a modest memory of p = 8, 

then the N > 10 Mp rule of thumb suggests we need at least 16,000 statistically independent 

samples of data. If, for example, we assume an approximate 50 Hz bandwidth, then 16,000 
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samples map to 160 s or nearly three minutes of data. The strong 1/f characteristic of 

electroencephalography data may reduce the effective bandwidth of the data in many 

situations, especially when strong lower frequency rhythmic activity is present, and thus 

significantly more data may be required in some situations.

The requirement of long, stationary data segments significantly limits the utility of the OLS 

approach to MVAR model estimation for large networks and is the primary motivation for 

the evaluation of the rPCA and gLASSO approaches described below.

2.2.5. Ground-truth network estimation—The “true ” networks associated with our 

human subject data were unknown, which makes it impossible to evaluate objectively the 

performance of any MVAR model estimation algorithm from measured data. Hence, we 

used our human subject data to obtain physiologically realistic ground-truth MVAR models. 

The ground-truth models were then used to generate simulated data for objective evaluation 

of the performance of MVAR model estimation algorithms as a function of data duration.

Exploration of our data revealed that the OLS solution for the MVAR model coefficients 

gave spurious results in some electrodes even with data record lengths exceeding four 

minutes, so we employed ridge regression (Hoerl and Kennard, 2000) to regularize the 

estimates for the ground-truth models. That is, instead of Eq. (3), we chose the ground-truth 

models according to

am = argmin
am

ym − Yam 2 + γ am 2
(5)

where the regularization parameter γ is chosen as

γ = 10−4 trace YTY

This value for γ was chosen empirically to provide sufficient regularization in electrodes 

that had spurious connectivity in the OLS approach without significantly altering the 

connectivity in the remaining electrodes. The solution to Eq. (5) is given by

aRR
m = YTY + γI −1YTym (6)

We chose a model order p = 8 for all ground-truth models for several reasons. First, 

initial evaluation suggested that the quality of the model predictive performance did not 

improve appreciably using larger values of p. Second, we wanted the physiologically 

inspired ground-truth models - derived from different subjects - to use the same model 

order to facilitate evaluation of algorithm performance across different ground-truth models. 

Commonly used methods such as Akaike Information Criterion or cross-validation give 

different optimal values of p for different subjects. Third, the data required for model 

estimation is proportional to p, so we chose to work with smallest plausible value. Fourth, 

and perhaps most importantly, the main goal of this process is to create physiologically 

inspired models for the simulation study. Achieving this goal does not require precise 

determination of model order.
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One ground-truth network model was created for each subject for a total of ten different 

models. Simulated data was created from the network model by applying white noise input 

as the innovations process um (n) with variance σ2m given by the estimated prediction error 

variance

σm2 = 1
N − p ym − YaRR

m 2
, m = 1, 2, …, M

Here ym and Y are defined based on the 30 s of test data subsequent to the 4 minutes used to 

estimate aRR
m  from each subject.

2.2.6. Model estimation methods—Simulated data from the ten ground-truth models 

was used to evaluate the performance of four different model MVAR estimation methods 

as a function of data record length: 1) OLS (Eq. (3)); ROI-based principal component 

analysis (rPCA); 3) Self-connected group LASSO (gLASSO); and 4) rPCA with gLASSO 

(rPCA-gLASSO). The rPCA, gLASSO, and rPCA-gLASSO methods are described next.

2.2.6.3. ROI-Based Principal Component Analysis (rPCA).: One of the approaches we 

employed to reduce model dimension – and consequently data requirements – was applying 

PCA to the collection of electrode signals associated with each ROI. Let yj(n) be an Mj-by-1 
vector containing the Mj electrodes of data associated with the Mj electrodes in the jth ROI 

where j = 1, 2, …J. We map yj(n) into an Lj-by-1 Lj ≤ Mj  vector of PCA signals xj(n) as

xj(n) = Wjyj(n) (7)

where Wj is an Lj-by-Mj matrix whose rows are the eigenvectors corresponding to the 

largest eigenvalues of the covariance matrix of yj(n). The number of PCA components Lj 

was chosen so that xj(n) represents a specified fraction of the variance associated with 

yj(n). We chose Lj to represent 95% variance in the results shown later. In our data, these 

thresholds reduced the total number of electrodes by a factor of approximately two. Note 

that given PCA signals xj(n) and Wj one can project back to identify the corresponding 

approximated electrode data as

yj(n) = Wj
Txj(n) = Wj

TWjyj(n) (8)

rPCA is an aggregation approach that creates virtual electrodes representing the unique 

components in the ROI. This approach to reducing the dimensionality of the network is 

depicted in Fig. 2, which also illustrates a segment of the original data signals yj(n), the 

virtual (PCA) signals xj(n), and the back-projected data signals yj(n) from HGAL in one 

subject. While the connectivity between the original physical electrodes is modified when 

operating in the rPCA space, the connectivity between ROIs is preserved to the extent that 

all significant components of the electrode data yj(n) are retained. It is straightforward to 

show that if 100% of the variance is retained in all regions, then Wj is an invertible matrix 

and the connectivity between ROIs is identical between electrode and PCA spaces (see 
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Supplementary Methods). As the fractional variance retained decreases, model complexity 

decreases, resulting in reduced computation and data requirements, but the potential for 

distortion of connectivity between ROIs increases.

The MVAR model for the rPCA data is obtained by rewriting Eq. (1) as

xm(n) = ∑
j = 1

MPCA
∑

k = 1

p
am, j′ (k)xj(n − k) + vm(n), m = 1, 2, …, MPCA; n = 1, 2, …,

N
(9)

where am, j′ (k) is the rPCA MVAR model coefficient representing the influence of PCA 

electrode j at lag k on PCA electrode m, vm (n) is the innovation or model error in PCA 

electrode m, and MPCA is the number of virtual electrodes in the model. OLS estimates for 

the rPCA MVAR model coefficients are obtained analogously to Eqs. (3) and (4).

2.2.6.4. Self-Connected Group LASSO (gLASSO).: The self-connected gLASSO 

(Bolstad et al., 2011) was evaluated to determine the reduction in data requirements possible 

using a penalty that encouraged sparse connectivity between physical or virtual electrodes. 

Define a p-by-1 vector of coefficients associated with the connection from electrodes j to m

am, j = am, j(1) am, j(2) ⋯ am, j(p) T (10)

so that am in Eq. (2) is expressed as

am = am, 1T am, 2T ⋯ am, MT T
(11)

The gLASSO problem is then expressed as

am = argmin
am

ym − Yam 2 + λ ∑
j = 1
j ≠ m

M
am, j 2 (12)

Use of the two-norm of am,j in the regularization term ensured that coefficients relating 

electrode j to electrode m were penalized as a group, that is, they were set to zero as a group. 

Note that self-connections were not penalized, which is why j=m was excluded from the 

regularizer. Larger values of the regularization parameter λ resulted in a smaller number of 

nonzero connections at the expense of larger modeling error.

The solution to Eq. (12) was obtained using standard convex optimization methods based on 

the code of (Bolstad et al., 2011). Five-fold cross-validation was used to select λ:

1. Split available data into five equal portions or folds.

2. Use all folds but the kth fold of data to train different models for a range of 11 

candidate λ values. The candidate values for λ were chosen by first finding the 

smallest λ which guarantees all coefficients are zero (Bolstad et al., 2011). The 
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11 candidate values were chosen evenly spaced between 0% (OLS) and 40% of 

this value. This maximum was chosen based on the observation that the models 

have very few nonzero connections at and beyond 40% of the λ that guarantees 

all zero connections.

3. Use the kth fold to determine the squared prediction error of each candidate 

model when applied to data not used to train the model.

4. Repeat steps 2 and 3 five times with different folds held out from training and 

average the resulting squared errors.

5. Choose the model corresponding to the value λ that results in the minimum 

averaged error.

This process was repeated for each target electrode m in the model. Thus, the coefficient 

vectors used to predict different electrodes may have had different levels of sparsity. Some 

areas of the brain are more densely connected than others, so it is plausible that the 

connectivity to different electrode locations has varying levels of sparsity.

Note that the gLASSO regularizer in Eq. (12) is known to shrink the model coefficients 

in a manner that depends on λ (Bolstad et al., 2011). Hence, after determining which 

connections were present using the gLASSO procedure, we estimated the coefficients 

associated with the active connections by solving a least-squares problem involving only 

those connections. That is, the gLASSO was used for subset selection - to determine which 

subset of the connections should be included in the model – and least squares was used to 

estimate the corresponding coefficients of the reduced complexity model.

The acronym rPCA-gLASSO refers to the process of applying the gLASSO method to the 

rPCA model described in Eq. (9).

2.2.7. Performance characterization—The performance of four different modeling 

approaches was evaluated using simulated data. We simulated the specified length of 

data for each of ten subjects using the corresponding ground-truth model and estimate 

model coefficients from the simulated data. All estimated MVAR models assumed the 

correct model order of p = 8 so that we could evaluate estimation algorithm performance 

independent of model order selection. This process was repeated ten times for each ground-

truth model and data length and the performance averaged over these ten trials. Two 

different measures were employed to characterize model performance: the model prediction 

error on data not used to train the model and comparison between the connectivity estimated 

from the estimated MVAR model coefficients and the ground-truth network connectivity of 

the MVAR process used to create the simulated data.

It is useful to rewrite Eq. (1) in matrix form as

y(n) = ∑
k = 1

p
A(k)y(n − k) + u(n) (13)
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where y(n) is the M-by-1 vector of data at all M electrodes, A(k) is an M-by-M matrix of 

model coefficients at lag k whose i,j element is ai,j(k), and u(n) is the M-by-1 vector of 

model errors or innovations. We shall assume that Eq. (13) represents the rPCA case as well, 

with the appropriate substitutions of the virtual electrode data.

2.2.7.5. Mean-square Prediction Error.: Let z(n) denote new simulated data and A(k) the 

estimated MVAR model coefficients. The mean square prediction error is

eN
2 =

1
NT − p ∑n = p + 1

NT z(n) − ∑k = 1
p A(k)z(n − k) 2

2

1
NT − p ∑n = p + 1

NT z(n) − ∑k = 1
p A(k)z(n − k) 2

2 (14)

where NT is the number of simulated test samples corresponding to 16 minutes of data. 

Thus, eN2 is the factor by which the mean-square prediction error with the estimated model 

coefficients exceeds that of the ground truth.

2.2.7.6. Partially Directed Coherence Measure.: Many different measures of 

connectivity have been proposed to represent MVAR models. Here, we used the bPDC (Faes 

and Nollo, 2013) to characterize the connectivity between ROIs, i.e., vector time series, with 

a scalar metric. Eq. (13) may be expressed in the frequency domain as

A(f)Y(f) = U(f) (15)

where

A(f) = I − ∑
k = 1

p
A(k)e−jk2πf (16)

Here j = −1 and f is frequency normalized by the sampling frequency, i.e., −0.5 < f ≤ 0.5 

with units of cycles per sample. Further, let superscript H denote the complex conjugate 

transpose operator, Σ = E U(f)UH(f)  denote the error covariance matrix, assumed constant 

over frequency, and Φ = Σ−1 the inverse error covariance matrix. The gPDC metric (Baccala 

et al., 2007) from electrode j to electrode i is written

πij2 (f) = ϕii Aij(f) 2

∑m = 1
M ϕmm Amj(f) 2 (17)

where ϕkk is the kth diagonal element of Φ and Aij(f) is the i,j element of A(f). Faes and 

Nollo (2013) extend the gPDC to the bPDC for the relationship from the jth vector time 

series to the ith vector time series as

πi, j2 (f) = 1 −
Pjj(f) − Ai, j

H (f)ΦiiAi, j(f)
Pjj(f) , i = 1, 2, …, J; j = 1, 2, …, J (18)

Endemann et al. Page 13

Neuroimage. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Aij(f) is the block of A(f) associated with the connection from the jth to ith vector 

time series, Φii is the block of Φ associated with the ith vector time series, and

Pjj(f) = ∑
m = 1

J
Am, j

H ΦmmAm, j

We computed broad band connectivity by integrating πi, j2 (f) over frequency. Define the 

ground-truth broad band connectivity from electrode j to i as ci,j and the estimated broad 

band connectivity in trial k as c i, j
(k). We compared the ground-truth bPDC to the mean 

estimated bPDC over ten trials visually (e.g., see Fig. 4, Supplementary Figures 3–6). As 

a global quantitative measure of fidelity, for each subject and data length we computed 

the mean-absolute-difference connectivity between the ground-truth and estimated bPDC 

connectivity, defined as

Δ =
∑k = 1

10 ∑i = 1
R ∑j = 1

j ≠ i

R
ci, j − c i, j

(k)

10 R2 − R
(19)

2.2.8. Dynamic Connectivity Analysis—Methods that effectively estimate 

connectivity from relatively short data lengths enable investigation of dynamic connectivity, 

i.e., rapid changes in connectivity. We used model fits to recorded data to demonstrate the 

utility of estimation methods presented here and motivate further development of estimation 

methods that are effective at short data lengths. Ten minutes of human brain data from one 

subject were analyzed. The gLASSO method was applied to consecutive non-overlapping 10 

s and 60 s segments of the data record to estimate MVAR models for each segment.

3. Results

3.1. Effective connectivity in ground-truth networks

Ground-truth networks were estimated from human data to create a physiologically realistic 

testbed for evaluating the performance of the OLS, rPCA, gLASSO, and rPCA-gLASSO 

methods. Resting state iEEG recordings were obtained in ten neurosurgical patients (Fig. 1 

A; Supplementary Figure 1; Table 2). MVAR model fits to 4-minute data segments were 

used to derive effective connectivity profiles (Fig. 1 C-D). Connectivity matrices at the 

single electrode and ROI levels displayed strong symmetry. In the connectivity matrices of 

Fig. 1, the electrode locations and ROIs are ordered in a roughly hierarchical fashion, so as 

expected, connectivity was strongest along the diagonal.

To explore further the consistency of these results with previous reports and the 

physiological realism of our ground-truth networks, we evaluated the connectivity patterns 

in all subjects to and from the anterior and posterior subdivisions of the insula (Fig. 3), areas 

that are anatomically close to each other with distinct functions but strong interconnectivity 

(Augustine, 1996; Cauda et al., 2011; Cloutman et al., 2012; Zhang et al., 2019). The results 

Endemann et al. Page 14

Neuroimage. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of Fig. 3 are consistent with these previous reports. Posterior insula (InsP) is considered 

a sensory region, both interoceptive and exteroceptive, and in the ROIs sampled would be 

expected to have strong connections to early auditory cortical structures. This is evident in 

the analyzed dataset as the strong bright yellow vertical band in Fig. 3 A corresponding 

to primary auditory cortex (HGPM) on Heschl’s gyrus. By contrast, anterior insula (InsA) 

is a higher order structure with strong connectivity to the higher order auditory cortical 

structure planum polare (PP; Fig. 3 B) and to orbitofrontal gyrus (OG) in prefrontal cortex. 

Additionally, bidirectional connectivity was observed between InsP and InsA.

3.2. Simulation Experiment

The performance of the four MVAR model estimation methods was evaluated using model 

fits to data of varying lengths simulated from the physiologically realistic ground-truth 

models described in the previous subsection. We report the data length T in s to simplify the 

application of the results to the original subject data; with the sampling rate fixed at 250 Hz, 

the number of samples N = 250T. In the connectivity example shown in Fig. 4, the OLS and 

rPCA estimates failed to capture any features of the ground-truth connectivity matrix for T = 

10 or 30 s, in contrast to rPCA-gLASSO and gLASSO. Modest improvement was observed 

for rPCA at T = 60 s, but connectivity tended to be substantially overestimated for both 

methods. Comparable results were observed in the ground-truth models from all subjects 

(Supplementary Figures 3–6). This is illustrated more directly in Fig. 5, which shows 

scatterplots of estimated vs. true connectivity for a single subject for T = 10, 30, and 60 s. 

Only the strongest connections were estimated correctly with OLS and rPCA estimates even 

for T = 60 s. There was a slight underestimation of connectivity values for rPCA-gLASSO 

and slight overestimation for gLASSO estimates, but in general these estimates were much 

more accurate. An example from a second subject is shown in Supplementary Figure 7. 

Model performance was quantified across subjects using mean-square prediction error (Eq. 

14) and bPDC fidelity cMAD (Eq. 19) as shown in Fig. 6. As T increased, both metrics 

improved for all estimators. However, the rPCA-gLASSO and gLASSO estimates performed 

substantially better than the OLS estimate in the most data-limited case (T =10 s). In fact, 

a data length of T = 960 s was required for OLS to show superior one-step prediction 

error compared to gLASSO (Fig. 6B). We note as well that while the rPCA-gLASSO and 

gLASSO estimates performed comparably to each other on these metrics, the gLASSO 

model required significantly more computation to estimate.

3.3. Plausibility analysis

The data of Figs. 4 – 6 indicate that gLASSO and rPCA-gLASSO estimates provided 

superior performance in capturing known connectivity from ground-truth models. We next 

explored the performance of OLS, gLASSO, and rPCA-gLASSO estimation methods when 

applied to 1-minute segments of the original human subject data that was used to generate 

the ground-truth models. Each estimation method was applied to four 1-minute segments 

of the human subject data. The ground-truth connectivity was not known, so in Fig. 7 we 

compare bPDC connectivity profiles to and from the anterior and posterior subdivisions of 

the insula in all subjects to assess consistency with the results for longer data segments 

shown in Fig. 1 and with previous reports from the literature. The severe overestimation of 

connectivity associated with the OLS method was clearly evident, as was the more modest 
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overestimation with gLASSO and rPCA-gLASSO. The latter two approaches captured 

the differential connectivity of InsP and InsA to early (HGPM) versus higher order (PP) 

auditory structures and the strong interconnection between InsP and InsA, indicating that 

results were plausible even in the absence of ground-truth knowledge.

3.4. Dynamics of iEEG connectivity

The data of Fig. 5 and Supplementary Figure 7 indicate that gLASSO and rPCA-gLASSO 

can reliably estimate connectivity even for short data lengths (T = 10 s). The possibility of 

estimating high-dimensional network models from relatively short data segments enables the 

study of changes in connectivity that occur over time, a growing area of interest in research 

on brain networks (Preti et al., 2017). To illustrate the importance of performing dynamic 

connectivity analysis with high temporal resolution, we explored dynamic connectivity 

during ten minutes of resting state iEEG data in one subject using the gLASSO estimation 

method with models based on T = 60 and 10 s (Fig. 8). To visualize changes in connectivity 

over time, we stacked the connectivity estimates between all ROIs into a single vector and 

sorted the connectivity from smallest to largest mean connectivity over the ten minutes. 

Sorted connectivity is displayed on the vertical axis and time on the horizontal axis. Thus, 

each row depicts the temporal evolution of connectivity between two ROIs. The results 

based on a 10-s segment revealed temporal patterns that were smoothed over by the longer 

60-s window. In some cases, rapid changes in connectivity were completely obscured for 

the 60-s models. Thus, methods to facilitate accurate representations of network connectivity 

over short times scales are essential to capture the dynamics of the brain in resting state.

4. Discussion

It has been widely noted in the literature that long recording durations are needed to 

estimate high-dimensional MVAR models in time series data. For example, Schlogl and 

Supp (2006) propose that the number of data samples should exceed ten times the product of 

the memory times the number of electrodes (10Mp). Antonacci and colleagues (2020) show 

in simulations of relatively small networks that the OLS method performance improves 

when increasing data samples from 10Mp to 20Mp. Such requirements likely explain why 

MVAR models have not been reported in the literature for more than ∼30 electrodes. Our 

human subject and experimental results with OLS model estimation indicate that factors 

of 10 – 20 may be too small for networks in the 100–200 electrode range. We found 

that four minutes (∼60,000 samples) of human subject-based resting-state data proved 

inadequate for OLS estimation of MVAR models with ∼100–200 electrodes and memory 

of eight (Mp ∼ 1600), which is why we employed ridge regression to estimate ground-truth 

models from four minutes of data. Our simulation studies show that the OLS approach 

consistently overestimates connectivity for T = 60 s (Figs. 4 and 5; Supplementary Figures 

3–6), corresponding to a data length of 15,000 samples. For this dataset, 10Mp ranged from 

9360 to 17,280 (average = 13,520). Clearly there is a need for estimation methods that are 

effective with less data.

The overestimation of connectivity observed with the OLS approach is indicative that the 

matrix inverse required to compute Eq. (4) is ill-conditioned. The Mp-by-Mp matrix YTY
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is an estimate of the covariance matrix of the data. Few statistical results are available 

for the properties of this matrix due to the temporal dependence of the columns of 

Y. However, if the columns of Y are independent – a more stringent condition – and 

multivariate Gaussian, then YTY is a sample covariance matrix with a Wishart distribution 

(Muirhead, 1982). Such matrices have been studied extensively and the distributions of 

the eigenvalues are known (Muirhead, 1982), though they are complex and challenging 

to interpret. Asymptotic distributions of eigenvalues follow the Marchenko-Pastur law 

(Pastur and Marchenko, 1967). For our purposes, it is sufficient to note that the small 

eigenvalues of a sample covariance matrix require much more data for reliable estimation 

than the large eigenvalues. Inversion of YTY involves inverting the eigenvalues, so the small, 

underestimated eigenvalues of YTY become dominant in YTY −1
, resulting in potentially 

very large noisy contributions to the OLS weights in Eq. (4) and consequent overestimation 

of connectivity. This effect is mitigated by ridge regression, which is why we chose 

ridge regression for estimating ground-truth models. Addition of γI in Eq. (6) ensures 

all eigenvalues of the matrix being inverted exceed γ, thus limiting the magnification of 

noisy contributions in the model weights. The down-side of using ridge regression is that the 

model squared error increases as γ increases.

One approach to enabling MVAR modeling of large networks is to reduce the inherent 

dimensionality of the problem. We applied PCA to regional collections of electrodes to 

create a smaller number of virtual electrodes that represent the regional activity. The rPCA 

approach modifies interelectrode connectivity, but preserves regional connectivity provided 

relevant activity is represented in the principal components. Although rPCA maximizes the 

variance represented in the region for a given dimension, interregional connectivity bias 

is not necessarily proportional to variance represented. It is theoretically possible that a 

smaller PCA component discarded in the rPCA process makes a significant contribution 

to interregional connectivity. This potential is illustrated by the 960 s results shown in 

Fig. 6. The performance of rPCA is worse than that of the OLS approach, reflecting 

the bias incurred by discarding five percent of the variance. The rPCA approach cannot 

predict components that have been discarded. Note that Fig. 5D indicates in the large data 

regime many of the larger rPCA connectivity values have a slight negative bias; that is, the 

estimated rPCA connectivity is smaller than the true value. However, Figs. 4–6 indicate that 

the rPCA approach is less sensitive to overestimation artifacts than the OLS method with 

shorter data record lengths. Hence, there is a tradeoff between the connectivity bias incurred 

by discarding dimensions and the reduction in estimator variance associated with smaller 

problem size. Concerns over connectivity bias led us to explore retention of 95 percent of the 

variance in each region, which limited the dimensionality reduction achieved via rPCA to a 

factor of about two in our data.

The gLASSO regularizer is motivated by the expectation of sparse connectivity in the brain, 

such as that associated with small world networks (Achard et al., 2006; Bullmore and 

Sporns, 2009; Sporns and Zwi, 2004), and effectively reduces the dimensionality of the 

problem by “turning off” or pruning connections that do not have a significant impact on the 

squared error for a given data length. The potential connectivity bias associated with pruning 

connections is justified because these connections have the weakest impact on the squared 
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error for the available data as determined by cross-validation. This procedure ensures that 

the reduction in estimator variability due to reduced dimensionality outweighs potential bias 

for the data set. The histograms in Fig. 5 indicate that weaker connections are most likely to 

be turned off by gLASSO. Furthermore, the stronger connections are slightly overestimated 

for all data lengths. Although gLASSO is a shrinkage method, this slight overestimation 

is a consequence of debiasing the active connection coefficients using OLS. Note that the 

gLASSO approach results in sparser models as the data length decreases (see, e.g., Figs. 

4 and 5) because it becomes more difficult to establish the significance or presence of 

additional connections as the data length available for training the model decreases. We note, 

however, that these benefits of the gLASSO method accrue at the expense of significant 

computational cost.

The rPCA-gLASSO approach is motivated by the significant computational cost of 

gLASSO, since reducing dimensionality with rPCA before applying gLASSO reduces 

the overall computational burden. The model coefficients associated with predicting any 

one electrode can be estimated as an individual optimization problem. Thus, reducing the 

effective number of electrodes by a factor of two using rPCA will cut the total computational 

runtime of solving an MVAR model in half—independent of the method used to solve 

for each electrode’s associated coefficients. This improvement becomes considerably more 

noticeable when hyperparameter tuning methods are incorporated into the model-fitting step, 

such as cross-validation, to optimize the sparsity hyperparameter (λ) for each electrode in 

a gLASSO model. However, the rPCA-gLASSO method is subject to the connectivity bias 

discussed in the rPCA approach. This is evident in Fig. 5A-C in the underestimation of the 

strong connections even when OLS is used for debiasing. This underestimation is consistent 

with the bias we see in the stronger rPCA connectivity in the large data case of Fig. 

5D. In general, rPCA-gLASSO is recommended when computational constraints prevent a 

full gLASSO solution, or in very low data scenarios where the additional dimensionality 

reduction from rPCA may offset the corresponding connectivity bias. For example, Fig. 5A 

illustrates that rPCA-gLASSO is less subject to overestimation of connectivity and Fig. 6 

suggests rPCA-gLASSO better estimates the true connectivity than gLASSO for T = 10 

s and T = 30 s. Note that rPCA methods only apply to regional connectivity estimation 

involving multiple electrodes sampling a region. If electrode-by-electrode connectivity is 

needed, then rPCA is not applicable.

The shrinkage associated with LASSO-based methods is not evident in Fig. 5 because 

least-squares based debiasing is used to estimate the MVAR coefficients for the connections 

that are not pruned by the gLASSO process. This results in about the same number 

of overestimated and underestimated bPDC values with longer (T = 30 s and T = 60 

s) data lengths. With shorter data lengths (e.g., T = 10 s) somewhat more connections 

are overestimated than underestimated, which is due to the tendency of least-squares to 

overestimate connectivity when the data length shrinks relative to the number of parameters. 

However, the debi-ased gLASSO and rPCA-gLASSO methods exhibit dramatically less 

overestimation of connectivity than the OLS and rPCA methods. As noted above, the 

bias associated with the rPCA method leads to the strongest connectivities being slightly 

underestimated.
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Our simulation study enables objective evaluation of estimator performance by comparison 

to the ground truth for a biologically realistic model. We chose to quantify performance 

using mean-square prediction error (Eq. 14; Fig. 6B), mean absolute deviation of bPDC 

connectivity (Eq. 19; Fig. 6A), and estimated versus ground-truth bPDC (Fig. 5). The 

mean-square prediction error represents the MVAR model fidelity, while bPDC is one way 

of assessing connectivity. Note that there are many different connectivity metrics that could 

be used to measure performance as well, and different metrics may show different sensitivity 

to estimation errors. We chose the bPDC because of its widespread and effective use in 

previous neuroscience studies and its simplicity. Note that the mean absolute deviation of 

bPDC connectivity is more sensitive to data length than the one-step mean-square prediction 

error. Overestimation of connectivity affects bPDC more than mean-square prediction error 

on the test data, which is to be expected since the OLS procedure minimizes the prediction 

error on the training data. It is likely that multiple connectivity patterns could produce 

comparable prediction error, especially with relatively short data records. The OLS estimator 

is biased toward overestimation of connectivity. In effect it produces large connectivity 

values that tend to offset one another and give reasonable squared prediction error.

We chose to consider only a fixed model order of p=8. This simplified comparison of results 

for ground-truth models associated with different subjects and reduces potential difficulties 

of interpreting performance across ground-truth models with different model order. Model 

order has a direct impact on model complexity and model-order selection can be viewed as a 

form of regularization. Low data scenarios call for lower model orders than those supported 

by higher data scenarios. This dependence is reflected in commonly used order-selection 

strategies such as the Akaike Information Criterion (Cavanaugh and Neath, 2019) and in 

the recommendation that the data length be >10Mp (Schlogl and Supp, 2006). By fixing 

the order of our estimated models, we can isolate the impact of the estimation method on 

estimation quality.

We implemented rPCA to reduce dimensionality in the data but still retain spatial 

information. Alternatively, PCA can be run on the full time-series dataset followed 

by projecting the PCA-based model residuals back to a full-dimensional representation 

(Schmidt et al., 2016). The disadvantage of the latter approach is that it precludes 

considering the regional structure, which is needed to assess regional connectivity. 

Additionally, the benefit of the rPCA method over the projection method arises due to 

the inability to project the model’s coefficients back to a high-dimensional state—meaning 

that only the error terms of the projected model can be used for estimation of connectivity. 

Since the calculation of the very popular connectivity metric—the gPDC—requires the use 

of model coefficients, the rPCA method is advantageous in this domain of work.

Application of these estimation methods to human subject data suggests that plausible 

connectivity estimates are obtained with T = 60 s and M = 200 electrodes (Fig. 7). We chose 

to explore connectivity to and from anterior versus posterior insula, due to this region’s 

importance in intero- and exteroceptive sensory processing, salience, emotion, homeostasis, 

and consciousness (Huang et al., 2021; Zhang et al., 2019). Although anatomically adjacent, 

anterior and posterior insula have distinct functional roles and connectivity profiles (Cauda 

et al., 2011). For example, the anterior portion of the insula is thought to couple tightly 

Endemann et al. Page 19

Neuroimage. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with prefrontal regions and amygdala. The posterior portion, on the other hand, is more 

closely linked to activity propagated from early auditory regions, including Heschl’s gyrus 

(Zhang et al., 2019). The results of Fig. 3 are consistent with these functional distinctions. 

The strong connections identified in the present analysis are also consistent with results 

of tracer injection studies (reviewed in Augustine, 1996). In addition, the relatively strong 

connectivity of InsA with the IFG and rostral superior temporal regions STGA and PP 

is consistent with previous probabilistic tractography results (Cloutman et al., 2012). 

Effective connectivity derived from MVAR model fits was consistent with these previous 

studies. Even for shorter data lengths, model fits relying on gLASSO were able to capture 

expected connectivity profiles and community structure in brain networks, for example 

demonstrating strong connectivity between auditory cortical structures (upper left quadrants 

in the hierarchically-sorted adjacency matrices shown in Fig. 4 and Supplementary Figures 

3-6). Motivated by the reasonable recovery of GT connectivity for T = 10 s demonstrated in 

Fig. 5 and Supplementary Figure 7, we also show that models fit to short data lengths (T = 

10 s) may capture rapid dynamics of network connectivity that are obscured at a resolution 

of T = 60 s. Importantly, given the likelihood that brain activity is nonstationary except 

over very brief intervals, the capability to fit models to short data segments allows for more 

accurate piecewise-stationary estimates of dynamic brain activity.

The results indicate that the rPCA-gLASSO and gLASSO methods reliably estimate MVAR 

models for large networks with far less data than previously thought possible. The capability 

to estimate models for networks with large numbers of electrodes reduces the likelihood 

of detecting spurious effective connections resulting from removed or missing mediating 

electrode channels and leads to improved connectivity analyses. Furthermore, reducing data 

requirements reduces concerns about nonstationarity in the data, and creates new analysis 

opportunities, such as assessment of dynamic connectivity. Consequently, the methods 

presented here will have broad application and substantial impact for interpreting resting 

state data recorded from human subjects, as well as large scale multielectrode recordings in 

experimental animals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Raw data and ground-truth networks.
A. Example of electrode coverage of the left hemisphere in a representative subject (L442). 

Top-to-bottom: Lateral view of the left hemisphere, top-down view of the superior temporal 

plane, ventral view of the left hemisphere. Recording sites are color-coded according to the 

ROI group. Sites identified as seizure foci or characterized by excessive noise, and depth 

electrode contacts localized to the white matter are denoted by white symbols. Insertion 

points of depth electrodes implanted in the superior temporal plane are shown on the lateral 

view as black symbols. B. Example raw data from the subject in A. Data is shown for one 
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recording site in each ROI. C. Scalar (electrode level) gPDC connectivity for the subject in 

A estimated from 4 minutes of data fit via a ridge-regression model according to Eq. (6). D. 
bPDC connectivity (Eq. 18) for the same subject. Color bars in panels C and D represent 

ROI groups, color-coded as shown in the legend of panel A. See Table 2 for list of ROI 

abbreviations.
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Fig. 2. Illustration of rPCA method.
A: PCA was applied to electrodes within pre-assigned ROIs (see Fig. 1) to create virtual 

electrodes. B: Illustration of rPCA applied to one ROI (HGAL) in one subject, showing 

original data (left), virtual electrode representation of these data (middle), and data 

backprojected into original data space (right).
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Fig. 3. Summary of connectivity of insula for all subjects.
A: Posterior insula (InsP). B: Anterior insula (InsA). Only ROIs with coverage in 6 or more 

subjects are shown. Color bars underneath each panel represent ROI groups, color-coded as 

shown in the legend of Fig. 1A. See Table 2 for list of ROI abbreviations.
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Fig. 4. Recovery of ground-truth ROI connectivity (bPDC) in subject 442L.
Adjacency matrices show rows as origin ROIs, and columns as target ROIs. Each 

connectivity matrix depicts the average result over ten trials. The delta values displayed 

above each recovery matrix represent the mean absolute error of the average recovery matrix 

compared to the ground-truth (GT) matrix as defined in Eq. (19). The same color scale 

is used for all adjacency matrices shown. The maximum color value is based on the 95th 

percentile of the ground-truth matrix. Color bars next to the connectivity matrices represent 

ROI groups, color-coded as shown in the legend of Fig. 1A.
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Fig. 5. Comparison of ground-truth vs recovered connectivity.
Scatter plots of average (10 trials) estimated versus ground-truth bPDC for subject 442L for 

different estimation methods. The rPCA-gLASSO and gLASSO estimation results include 

histogram of connections that are pruned to zero by the gLASSO procedure. The dashed 

vertical lines in the scatterplots denote the median of the ground-truth connectivity values 

that have been pruned. A Connectivity estimated for T = 10 s of simulated data. B T = 30 s. 

C. T = 60 s. D. T = 960 s (OLS and rPCA only).
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Fig. 6. Model performance.
Summary of estimation performance as a function of data length across all simulated 

ground-truth models. The results for each model are averaged over ten trials and the box 

plots characterize average performance across the ten models. A. Mean-absolute-difference 

connectivity between the ground-truth and estimated bPDC connectivity (Δ; Eq. 19). B. 
Normalized one-step mean-square prediction error (Eq. 14). Box and whiskers plots depict 

medians (horizontal lines), means (white symbols), quartiles (boxes), ranges (whiskers) and 

outliers (red crosses).
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Fig. 7. Connectivity estimated from human subject data.
Estimated connectivity (bPDC) from (left) and to (right) posterior insula (A) and anterior 

insula (B). Each subplot represents a different modeling strategy applied to four 1-minute 

segments of recorded data that was used to estimate the original 10 GT models. The RIDGE 

model data are replotted from Fig. 3, and were fit to four minutes of resting-state data. To 

determine if we can recover these models using limited data, we applied each modeling 

approach to four one-minute segments of the human subject data. Results are averaged 

across all four segments for each subject/model-type. Highlighted ROIs are discussed 
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specifically in the text. Color bars underneath each panel represent ROI groups, color-coded 

as shown in the legend of Fig. 1A. See Table 2 for list of ROI abbreviations.
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Fig. 8. Example connectivity dynamics.
gLASSO-estimated sorted dynamic connectivity for subject L403 at two time scales. In each 

panel, the line plot depicts the mean across connectivity indices to illustrate the overall 

temporal evolution. The estimates are derived from T = 60 s (A) and T = 10 s (B) segments 

of human subject data.
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Table 1

Subject demographics.

Subject Age Sex Seizure focus

L307 32 M L insula

L357 36 M L medial temporal

R369 30 M R medial temporal

R376 48 F R medial temporal

R429 32 F R anterior and medial temporal

R434 39 F R medial temporal

L442 33 F R temporal (multiple medial and neocortical)

L514 46 M L insula (anterior)

R515 21 F R medial temporal

R532 42 F R ventral frontal (posterior)

F, female; L, left; M; male; R, right. The hemisphere with predominant electrode coverage is indicated by the prefix of the subject code.
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