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A B S T R A C T   

An immunoinformatics-based approach was used to identify potential multivalent subunit CTL vaccine candi-
dates for SARS-CoV-2. Criteria for computational screening included antigen processing, antigenicity, allerge-
nicity, and toxicity. A total of 2604 epitopes were found to be strong binders to MHC class I molecules when 
analyzed using IEDB tools. Further testing for antigen processing yielded 826 peptides of which 451 were 9-mers 
that were analyzed for potential antigenicity. Antigenic properties were predicted for 102 of the 451 peptides. 
Further assessment for potential allergenicity and toxicity narrowed the number of candidate CTL epitopes to 50 
peptide sequences, 45 of which were present in all strains of SARS-CoV-2 that were tested. The predicted CTL 
epitopes were then tested to eliminate those with MHC class II binding potential, a property that could induce 
hyperinflammatory responses mediated by TH2 cells in immunized hosts. Eighteen of the 50 epitopes did not 
show class II binding potential. To our knowledge this is the first comprehensive analysis on the proteome of 
SARS-CoV-2 for prediction of CTL epitopes lacking binding properties that could stimulate unwanted TH2 re-
sponses. Future studies will be needed to assess these epitopes as multivalent subunit vaccine candidates which 
stimulate protective CTL responses against SARS-COV-2.   

1. Introduction 

Coronaviruses (CoVs), first reported in the 1930s, are a group of 
pathogenic viruses belonging to the family Coronoviridae and order 
Nidovirales. They are known to cause respiratory or intestinal infections 
in humans and in various animals (Cheng et al., 2007). Studies have 
suggested that up to 30% of all common colds could be attributed to 
coronaviruses (El-Sahly et al., 2000). 

CoVs are enveloped and have a non-segmented, positive-sense, single 
strand RNA genome with size ranging from 26,000 to 37,000 bases 
(Young et al., 2020). This is the largest known genome among RNA vi-
ruses (Weiss and Navas-Martin, 2005). In 2003, a coronavirus named 
Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) 
caused a global outbreak affecting more than 8000 people with a mor-
tality rate of approximately 10% (Cheng et al., 2007; Parry, 2003). 
SARS-CoV was reported to cause more severe disease than the other 
previously known human coronaviruses including high fever, shortness 
of breath, and atypical pneumonia (Ksiazek et al., 2003). 

The recent outbreak in China and global spread of a novel corona-
virus similar to SARS-CoV named SARS Coronavirus 2 (SARS CoV-2) has 
caused a major pandemic. Initial comparisons revealed that SARS-CoV-2 
was approximately 79% similar to SARS-CoV at the nucleotide level. Of 
course, patterns of similarity vary greatly between genes, and SARS-CoV 
and SARS-CoV-2 exhibit only ~72% nucleotide sequence similarity in 
the spike (S) protein, the key surface glycoprotein that interacts with 
host cell receptors (Zhang and Holmes, 2020). 

Although the genome of SARS-CoV-2 exhibits a higher sequence 
homology to Bat-CoV-RaTG13 isolated from Rhinolophus affinis the 
origin of the virus is still controversial. While the intermediate host of 
SARS-CoV-2 has not been confirmed, reports suggest that pangolins are 
the likely host due to 99% sequence homology between the consensus 
sequence derived from metagenomic samples from the pangolin species 
and SARS-CoV-2 (Zhang et al., 2020). The SARS-CoV-2 genome contains 
14 ORFs that encode 27 proteins. The orf1ab and orf1a genes are located 
at the 5′-terminus of the genome and encode 15 non-structural proteins 
(NSPs) from NSP1 to NSP10, and from NSP12 to NSP16. The 3′-terminus 
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of the genome contains 4 structural proteins (S, E, M and N) and 8 
accessory proteins (3a, 3b, p6, 7a, 7b, 8b, 9b and orf14). Though the two 
viruses, SARS-CoV and SARSCoV-2, are quite similar with respect to 
amino acid sequences among the proteins they share, there are some 
notable differences. The 8a protein is present in SARS-CoV and absent in 
SARS-CoV-2; the 3b protein is 154 amino acids in SARS-CoV but shorter 
in SARS-CoV-2 with only 22 amino acids. The S protein is responsible for 
target cell receptor-binding (angiotensin converting enzyme-2 [ACE2]) 
and subsequent viral entry into host cells. It comprises an N-terminal S1 
subunit responsible for virus–receptor binding and a C-terminal S2 
subunit responsible for virus–cell membrane fusion (Du et al., 2009, 
2017). The M and E proteins play important roles in viral assembly, and 
the N protein is necessary for RNA synthesis (Tian et al., 2020). 

Neutralizing antibodies (nAb) specific for viral pathogens induced by 
vaccines or viral infections play crucial roles in preventing future dis-
ease. Currently developed SARS-CoV- and MERS-CoV-specific nAbs 
include monoclonal antibodies, their functional antigen-binding frag-
ment, the single-chain variable region fragment, or single-domain an-
tibodies (Jiang et al., 2020). They target receptor-binding domains 
(RBD) for these viruses and therefore interfere with S2-mediated 
membrane fusion or entry into the host cell, thus inhibiting viral in-
fections. No SARS-CoV-2-specific nAbs have been confirmed although 
there are emerging reports that suggest SARS-CoV- and MERS-CoV- 
specific nAbs have potential cross-neutralizing activity against SARS- 
CoV-2 infection (Jiang et al., 2020). 

In recent years, epitope prediction algorithms have been developed, 
validated and proven to be accurate tools for predicting the binding 
affinities of peptides to MHC molecules, with wide allelic coverage 
(Lundegaard et al., 2010; Nielsen and Andreatta, 2016). The discovery 
of T-cell epitopes derived from Vaccinia virus validated the power and 
value of prediction of computational in silico analysis for identifying 
CD8 + T-cell epitopes on a large scale (Moutaftsi et al., 2006). In that 
pioneering work, 49 CTL epitopes were found, and these were shown to 
account for 95% of the total Vaccinia virus CD8 response. Since then, 
enumerable studies have used in silico epitope discovery approaches to 
identify putative epitopes for inclusion in rationally designed multi- 
valent vaccines aimed at preventing infections caused by an array of 
viral and bacterial pathogens. For example, studies have shown that 
epitope-based vaccines can effectively elicit protective immune re-
sponses against various pathogens, such as HIV and influenza viruses 
(Oyarzún and Kobe, 2016; Ben-Yedidia and Arnon, 2007). Delivery of 
epitopes as DNA vaccines (Wilson et al., 2003) or DNA-launched 
nanoparticle vaccines (Xu et al., 2020) are known to induce strong 
CTL responses. 

To date, few studies have analyzed or tested the possibility of using 
CoV proteins as vaccine targets for cytotoxic T lymphocyte (CTL)-based 
cellular immunity which is essential for combating any virus infection 
such as the one caused by SARS-CoV-2 (Baruah and Bose, 2020; Bhat-
tacharya et al., 2020; Grifoni et al., 2020a). These studies only analyzed 
potential epitopes present in the surface glycoprotein (spike). In this 
study, we undertook a comprehensive evaluation of the SARS-CoV-2 
proteome. Such an approach for screening genome-wide SARS-CoV-2 
epitopes could lead to the design and development of an effective CTL- 
based multivalent subunit vaccine (Rappuoli et al., 2016; Bruno et al., 
2015). Identification of candidate CTL epitopes was carried out using 
immune epitope database (IEDB) tools for the major population distri-
bution of class I and class II HLA loci (Fleri et al., 2017; Yao et al., 2013; 
Mohan et al., 2018). The results of the present study identify 18 po-
tential CTL epitopes that lack predicted ability to bind MHC class II 
molecules that could promote harmful hyperinflammatory respiratory 
pathogenesis (cytokine storms) seen in some COVID-19 patients. Results 
support the idea that immunoinformatic-driven immunogen screening is 
a promising strategy to accelerate vaccine development for emerging 
highly pathogenic pathogens. 

2. Materials and methods 

2.1. Collection of proteome data 

The complete proteome of SARS-CoV-2 was retrieved from NCBI- 
GenBank database (https://www.ncbi.nlm.nih.gov/genbank/). The 
accession number of reference proteome is NC_045512. All the proteins 
of the proteome were individually subjected to the reverse vaccinology 
workflow for prediction of CTL epitopes as shown in Fig. 1. 

2.2. CTL epitope prediction 

MHC class I-binding SARS-CoV-2 epitopes of 8, 9, 10 and 11 amino 
acids in length were predicted using the IEDB-AR resource (http://tools. 
iedb.org/mhci/) (Fleri et al., 2017). The HLA-A alleles selected for the 
study included A*0101, A*2402, A*2601, A*3101, A*3303, A*0201, 
A*0206, A*0301, A*1101. These were chosen because they are known 
to be widely distributed in the population worldwide (Yao et al., 2013; 
Mohan et al., 2018). CTL epitopes were predicted using various methods 
such as Artificial Neural Network (ANN), Stabilized Matrix Method 
(SMM, Scoring Matrices derived from Combinatorial Peptide Libraries; 
Comblib_Sidney 2008), Consensus, NetMHCpan (Fleri et al., 2017). The 
epitopes that scored a percentile rank of 1% or less were considered as 
strong binders of MHC class I and were selected for further studies 
(Mohan et al., 2018; Solanki and Tiwari, 2018). 

2.3. MHC class I epitope processing analysis 

Antigens to be presented by MHC class I molecules undergo a pro-
teolytic cascade known as antigen processing within antigen-presenting 
cells (APCs). Proteosomal cleavage is followed by peptide transport 
using transporter associated with antigen presentation (TAP) and ulti-
mately, MHC class I binding. The NetMHCpan method of IEDB-AR 
database processing predictor tool (http://tools.iedb.org/processing/) 
was used to measure the overall score for each of the SARS-CoV-2 CTL 
epitopes identified (Peters et al., 2003; Tenzer et al., 2005). Peptides 
with positive total score were chosen for subsequent studies (Mohan 
et al., 2018; Solanki and Tiwari, 2018). 

2.4. MHC class I immunogenicity prediction 

Activation of CTLs expressing T cell receptors for peptides depends 
upon how strongly the processed peptides (epitopes) bind to class I MHC 
molecules. Once activated, a cascade of activation events that elicit an 
immune response that results in killing of target cells expressing the 
antigenic epitope. Immunogenicity of peptides is also influenced by 
properties including the size of associated side chains and position of 
each amino acid in the peptide. The pMHC immunogenicity prediction 
tool of IEDB server (http://tools.iedb.org/immunogenicity/) was 
employed for immunogenic analysis of nine-mer selected epitopes (Calis 
et al., 2013). Epitopes that yielded negative scores were excluded and 
those with positive scores were only selected for further analysis. Only 
nine-mer peptides can be validated by pMHC tools and hence only 9-mer 
peptides were analyzed using this tool and were used for further ana-
lyses. The higher the score, the greater the probability that a given 
peptide is capable of eliciting an immune response (Mohan et al., 2018; 
Solanki and Tiwari, 2018). 

2.5. Assessment of antigenic epitopes 

Selected potent epitopes predicted for immunogenicity were evalu-
ated for antigenicity using VaxiJen server with a threshold of 0.4. 
Probable protective antigenic epitopes are selected for subsequent study 
(Doytchinova and Flower, 2007). 
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2.6. Identification of multiple allele binders 

All the promiscuous peptides identified as antigenic for each MHC 
class I allele were manually compared with one another for the pre-
diction of multiple allele binders. 

2.7. Toxicity and allergenicity analysis 

Toxicity levels of predicted potent epitopes was investigated using 
the online server, ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpr 
ed/multi_submit.php) with default parameters (Gupta et al., 2013). In 
addition, allergenicity of potent CTL epitopes was also analyzed using 
AllerTop (https://www.ddg-pharmfac.net/AllerTOP/) to identify epi-
topes that might induce allergic reactions (Dimitrov et al., 2013). 
Screening of non-toxic and non-allergen epitopes that can elicit strong 
immune response are suitable as they will not harm the host. The pep-
tides which are found to be toxic or allergenic were excluded from the 
study and the remaining peptides were used for molecular docking 
studies. 

2.8. Molecular docking 

Validation of CTL epitopes was done using an open-source program 
named AutoDock Vina (Trott and Olson, 2010). Molecular docking was 
performed with the known crystal structures of HLA alleles (A*0101, 
A*0201, A*0301, A*1101, A*2402), PDB IDs of which are, 4NQV,3UTQ, 
3RL1, 2HN7, 2BCK respectively. The top binding epitopes were identi-
fied for each allele. Epitopes which bind to more than one allele were 
also analyzed. The insights of interaction of epitopes with the amino 
acids of HLA molecules were also examined. 

2.9. Identification of multi-strain consensus epitopes 

Epitopes found in more than one isolate of SARS-CoV-2 were also 
identified. For this the proteome of ten different isolates of SARS-CoV-2 
were obtained from NCBI GenBank database, the accession numbers of 
which are: MT126808.1, LC528233.1, MT123291.1, MT066176.1, 
MT152824.1, MT019533.1, MT007544.1, MN985325.1, MT039873.1 
and MN997409.1. Epitopes present in more than one of these isolates 
were designated as consensus epitopes and consensus vaccine 
candidates. 

2.10. Prediction of MHC class II-binding peptides 

The predicted SARS-CoV-2 CTL epitopes were analyzed for MHC 
class II-binding. Peptides of 15 amino acids in length were predicted 
using a novel artificial neural network-based method, NN-align 
(http://tools.iedb.org/mhcii/) that allows for simultaneous identifica-
tion of the MHC class II binding core and binding affinity. MHC class II 
HLA alleles selected for analysis included 27 alleles: DRB1*01:01, 
DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*07:01, DRB1*08:02, 
DRB1*09:01, DRB1*11:01, DRB1*12:01, DRB1*13:02, DRB1*15:01, 
DRB3*01:01, DRB3*02:02, DRB4*01:01, DRB5*01:01, DQA1*05:01/ 
DQB1*02:01, DQA1*05:01/DQB1*03:01, DQA1*03:01/DQB1*03:02, 
DQA1*04:01/DQB1*04:02, DQA1*01:01/DQB1*05:01, HLA- 
DQA1*01:02/DQB1*06:02, DPA1*02:01/DPB1*01:01, DPA1*01:03/ 
DPB1*02:01, DPA1*01:03/DPB1*04:01, DPA1*03:01/DPB1*04:02, 
DPA1*02:01/DPB1*05:01, and, DPA1*02:01/DPB1*14:01 (Greenbaum 
et al., 2011). IEDB recommended 2.20 tool was used for prediction. The 
non-binding epitopes were selected for further analysis. 

3. Results 

3.1. MHC class I binding CTL epitopes prediction 

The complete SARS-CoV-2 proteome was analyzed for the presence 
of possible T-cell epitopes using a variety of IEDB-AR tools. Epitopes 
with lower percentile rankings (1.0) were selected and designated as 
best binders. A total of 2604 epitopes which are 8, 9, 10 and 11 mers in 
length, were found to be strong binders to MHC class I molecules. The 
highest number of epitopes were predicted for HLA A*3303 (515) and 

Fig. 1. Illustration of systematic reverse vaccinology work flow for prediction of SARS-CoV-2 CTL epitopes.  

Table 1 
Prediction of potential CTL epitopes for nine HLA alleles.  

HLA Alleles Length of peptides Number of peptides 

8 9 10 11 

HLA A*0101 2 103 112 34 251 
HLA A*0201 3 124 104 14 245 
HLA A*0206 0 145 102 3 250 
HLA A*0301 1 126 127 17 271 
HLA A*1101 5 164 133 55 357 
HLA A*2402 1 136 122 21 280 
HLA A*2601 1 146 96 1 244 
HLA A*3101 21 94 73 3 191 
HLA A*3303 42 288 156 29 515 
Total number of peptides 76 1326 1025 177 2604  
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lowest peptides for HLA A*3101 (191) (Table 1). The number of mapped 
CTL epitopes in proteins: Envelope Protein, Membrane Glycoprotein, 
Nucleocapsid Phosphoprotein, ORF10 protein, ORF1ab polyprotein, 
ORF3a protein, ORF6 protein, ORF7a protein, ORF7b protein, ORF8 
protein, Surface Glycoprotein were 30(1.15%), 111(4.26%), 72(2.76%), 
12(0.46%), 1921(73.77%), 95(3.65%), 11(0.42%), 39(1.50%), 25 
(0.96%), 25(0.96%), 263(10.10%) respectively (Fig. 2). Epitopes 
showing a percentile rank of 1% and less were considered as best 
binding epitopes. A total of 2604 predicted CTL epitopes were then 
subjected to further analysis (Supplementary Table 1). 

3.2. Assessment of epitope processing 

Each of the 2604 CTL epitopes was analyzed for their ability to un-
dergo antigen processing using the processing tool available on the IEDB 
server. Only 826 (31.72%) of the candidate CTL epitopes were found to 
possess high processing potential (Fig. 3). Peptides predicted as binders 
to HLA A*0201 (125), HLA A*3101 (123) and HLA-A*0206 (111) had 
the strongest predicted ability to undergo processing, while minimum 
processing potential was observed for HLA A*0301 (Nielsen and 
Andreatta, 2016), HLA A*1101 (66) and HLA A*3303 (66) alleles. In the 
case of HLA A*3303 and HLA A*0301, approximately 90% of the pep-
tides were eliminated. 

3.3. Analysis of epitope immunogenicity and antigenicity 

Among the 826 peptides found to have processing potential, 451 
were found to be 9-mers. For each SARS-CoV-2 protein studied, the 
percentage of CTL epitopes which are nine-mers in length were found to 
be in the range of 40 to 81.82%. These were analyzed for immunoge-
nicity using the IEDB pMHC immunogenicity predictor tool which 
identified 260 with immunogenic properties. It is noteworthy that none 
of the peptides contained in ORF10 were found to have immunogenic 
potential (Table 2). Among the 260 positively-scored epitopes, potential 
antigenicity was assessed using the VaxiJen server which identified 102 
fulfilling the criteria used to define potential antigenicity. 

3.4. Identification of multiple allele binders 

A total of 25 out of 102 selected peptides were found to have the 
potential to bind more than one HLA allele and, thus, were defined as 
consensus epitopes. Among these consensus epitopes, CSLSHRFYR 
would bind with more than 2 HLA alleles (HLA-A*11:01, HLA-A*31:01 
and HLA-A*33:03). 

3.5. Prediction of toxic and allergenic epitopes 

Epitopes with predicted toxicity and allergenicity have the potential 
to trigger serious adverse reactions if used in multivariant subunit vac-
cines (Chung, 2014). In the evaluation of 102 epitopes identified as 
SARS-CoV-2 candidate CTL epitopes, one peptide (TYKPNTWCI) was 
predicted to be both toxic and allergenic. In addition, 51 other peptides 
were found to have potential allergenicity. Excluding these for further 
analysis yielded a total of 50 epitopes defined as promiscuous CTL epi-
topes with a potential to serve as CTL vaccine candidates for SARS-CoV- 
2. Most of these peptides are present in each of the 10 selected SARS- 
CoV-2 isolates analyzed whereas LYENAFLPF and TQWSLFFFL were 
observed in 7 out of 10 isolates. Three predicted epitopes, FLAFLLFLV, 
LIDFYLCFL and HSIGFDYVY, were not conserved in any of the selected 
proteomes (Fig. 4; Supplementary Table 2). 

3.6. Molecular docking 

We modeled 3D structures of selected promiscuous CTL epitopes 
using ChemSketch and Discovery Studio Visualizer software. These 
epitopes were docked into binding cavities of 5 HLA A-alleles (A*0101, 
A*0201, A*0301, A*1101, A*2402) using AutoDock Vina software. The 
top binding peptides for each HLA molecule were investigated. Epitopes 
HSIGFDYVY and STQWSLFFF were found to have the lowest binding 
energy (− 9.2 kcal/mol) with HLA A*0101. The top binder for HLA 
A*0201 was TQWSLFFFL, with a binding energy of − 8.8 kcal/mol. The 
epitopes EFTPFDVVR, FAIGLALYY and TQWSLFFFL were found to be 
the top binders for HLA molecules HLA A*0301, HLA A*1101 and HLA 
A*2402 with the binding energy values of − 8.5, − 8.9 and − 10 kcal/mol 
respectively (Table 3). The molecular interactions of epitopes TQW and 
STQ are presented in Fig. 5a and c. The 2D ligand interaction maps for 
epitopes TQW and STQ are Fig. 5b, Fig. 5d respectively. 

3.7. Elimination of MHC class II-binding epitopes 

In light of the need to identify SARS-CoV-2 T cell epitopes that will 
optimally serve as vaccine candidates while having little or no potential 
to promote pulmonary immunopathology caused by TH2 responses, we 
examined each of the candidate CTL epitopes’ ability to bind MHC class 
II molecules across 27 alleles. The cytokine release syndrome (CRS) 
induced by excessive TH2 responses has been shown to accentuate the 
pathogenesis of SARS corona viruses (Nicholls et al., 2003; Zheng et al., 
2020). Late T cell responses may instead amplify pathogenic inflam-
matory outcomes in the presence of sustained high viral loads in the 
lungs, by multiple hypothetical possible mechanisms (Guo et al., 2020; 

Fig. 2. MHC binding analysis of peptides of SARS-CoV-2.  
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Fig. 3. MHC allele specific distribution of SARS-CoV-2 predicted peptides.  

Table 2 
Immunogenicity and antigenicity prediction of putative CTL epitopes of SARS-CoV-2.  

Protein Name Length (mer) Potent Processed epitopes % of 9 mer epitopes Potent immunogenic epitopes Antigenicity (Threshold ≥ 4) 

Envelope protein 8 0     
9 9 81.82 7 3  
10 2     
11 0    

Membrane glycoprotein 8 2     
9 27 58.70 23 7  
10 16     
11 1    

Nucleocapsid phosphoprotein 8 0     
9 9 52.94 6 2  
10 7     
11 1    

ORF10 protein 8 0     
9 2 40 0 0  
10 3     
11 0    

ORF1ab polyprotein 8 5     
9 328 55.03 182 72  
10 248     
11 15    

ORF3a protein 8 0     
9 16 50.00 10 3  
10 14     
11 2    

ORF6 protein 8 0     
9 1 50.00 1 1  
10 1     
11 0    

ORF7a protein 8 0     
9 7 70.00 2 1  
10 3     
11 0    

ORF7b 8 0     
9 3 42.86 3 2  
10 4     
11 0    

ORF8 protein 8 0     
9 7 63.63 3 2  
10 4     
11 0    

Surface glycoprotein 8 0     
9 42 47.19 23 9  
10 41     
11 6     
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Li et al., 2008; Liu et al., 2019). Severe and fatal COVID-19 (and SARS) 
outcomes are associated with elevated levels of inflammatory cytokines 
and chemokines, including IL-6 (Giamarellos-Bourboulis et al., 2020; 
Wong et al., 2004; Zhou et al., 2020). 

MHC class II molecules bind peptides larger than those that bind to 
class I molecules due to their open-ended binding grove. We therefore 
analyzed the ability of 15-mer SARS-CoV-2 peptide sequences that 
contained the predicted CTL epitopes for binding to class II molecules. 
Among the 50 CTL epitopes identified, 18 were found to be MHC class II 
non-binders (Table 4). These epitopes would be expected to stimulate 
CTL responses without promoting TH2 responses capable of promoting 
CRS. 

4. Discussion 

At the end of 2019, infections caused by a novel coronavirus named 
SARS-CoV-2 led to the COVID-19 pandemic affecting millions of people 
world-wide. At the time of the writing of this article, the global health 
challenge accounts for ~9.65 million confirmed cases and ~ 491,128 
fatalities (WHO, 2020). No effective therapies to treat patients suffering 
from COVID-19 have been identified. Moreover, despite the initiation of 
several vaccine strategies to prevent SARS-CoV-2 infections, none have 
been authorized for use at this time. Most of these investigations are 
focused on the generation of SARS-CoV-2-specific nAb responses in 
subjects participating in vaccine clinical trials. 

Computational genomic approaches to vaccine development allow 
prediction of immunogenic epitopes without the need to grow the 
pathogen in vitro, a process known as reverse vaccinology. It employs a 
wide range of bioinformatics tools to predict immunogenic epitopes that 
have the potential to stimulate protective B- and T-cell responses 
mediated by nAbs and CTLs, respectively. When applied to the identi-
fication of conventional vaccine candidates that exploit B cell responses, 
reverse vaccinology relies on the principle that the target antigen of a 
protective antibody will elicit the same antibody response when used as 
an immunogen. In contrast, in silico analysis of pathogen genomes to 

identify T cell epitopes must consider epitope processing and presenta-
tion associated with activation of CD4+ TH cells and CD8+ CTLs. In the 
present study, we first identified potential SARS-CoV-2 CTL epitopes and 
then computationally analyzed the ability of peptide sequences con-
taining those epitopes to bind MHC class II alleles. Our goal was to 
determine whether any of the former (CTL epitopes) also had MHC class 
II binding potential. The latter property is one that may be considered 
harmful in light of the need to minimize SARS-CoV-2-induced cytokine 
release syndrome (CRS) seen in some patients. 

A total of 2604 best binding epitopes were predicted for the SARS- 
CoV-2 proteome. Peptides with low percentile ranking scores (0.1) 
were defined as best (strong) class I binding molecules and the percentile 
ranking criterion of <1.00 was used as the basis for identifying epitopes 
for nine alleles of HLA-A loci. Percentile rank is generated by comparing 
the peptide’s IC50 against those of a set of random peptides from 
SWISSPROT database. To our knowledge, this is the first study reporting 

Fig. 4. Radar graph indicating the presence of predicted epitopes in 10 selected 
strains of SARS-CoV-2. The graph illustrates the ten SARS-CoV-2 strains as 
concentric rings in the following order from the center to outer circles: 
MT123291.1, MT066176.1, MT152824.1, MT019533.1, MT007544.1, 
MN985325.1, MT039873.1, MN997409.1, MT126808.1, LC528233.1 respec-
tively.” First four-letter amino acid sequences are shown for each of the 9-mer 
peptides listed in Supplementary Table 2. 

Table 3 
Validation of predicted epitopes using molecular docking analysis.  

S. 
No. 

Predicted 
Epitopes 

Binding Energy (kcal/mol) against 

HLA- 
A*0101 

HLA- 
A*0201 

HLA- 
A*0301 

HLA- 
A*1101 

HLA- 
A*2402 

1 FLAFVVFLL − 7.5 − 7.1 − 7.9 − 7.2 − 9.3 
2 FVVFLLVTL − 8 − 7.1 − 7.5 − 8.8 − 9.4 
3 SVLLFLAFV − 8.1 − 7.9 − 7.4 − 7.8 − 8.2 
4 FVLAAVYRI − 7.7 − 7.7 − 6.5 − 6.6 − 8.2 
5 SFRLFARTR − 7.4 − 7 − 7.5 − 7 − 8 
6 FLFLTWICL − 8 − 7.4 − 8 NB − 9.4 
7 LWPVTLACF − 7.9 − 7.1 − 7.5 − 8 − 8.6 
8 SYFIASFRL − 7.6 − 7.5 − 8.2 − 7.3 − 9.9 
9 LSPRWYFYY − 7.4 − 7.2 − 7.1 − 8.4 − 9.8 
10 FLARGIVFM − 5.5 − 6.6 − 6.9 − 6.2 − 7.1 
11 LAYYFMRFR − 6.7 − 6.7 − 7.3 − 7.9 − 8.8 
12 LSYGIATVR − 6.4 − 6.7 − 6.3 − 6.9 − 7.9 
13 TQWSLFFFL − 8.2 − 8.8 − 8.2 − 8.4 − 10 
14 VMVELVAEL − 6 − 7.4 − 6.4 − 6.9 − 6.9 
15 WLMWLIINL − 7.2 − 5.6 − 7.2 − 6.9 − 8.7 
16 EFTPFDVVR − 8.1 − 6.6 − 8.5 − 8.8 − 7.9 
17 EIAIILASF − 7.3 − 5.8 − 7 − 7.5 − 8.7 
18 FAIGLALYY − 6 − 7.8 − 8 − 8.9 − 9.8 
19 FLAYILFTR − 7.5 − 6.8 − 7 − 8.5 − 8.4 
20 FVVEVVDKY − 7 − 7.3 − 7.4 − 7.3 − 8.7 
21 HLYLQYIRK − 7.7 − 7.5 − 7.6 − 7.8 − 9.1 
22 HSIGFDYVY − 9.2 − 7 − 8.3 − 7.7 − 9.4 
23 ILHCANFNV − 7.2 − 7.6 − 7.4 − 7.4 − 8.8 
24 IYLYLTFYL − 7.8 − 7.1 − 7.9 − 7.4 − 9.3 
25 KLNVGDYFV NB NB NB NB NB 
26 KSAGFPFNK − 8.1 − 7.3 − 8.2 − 7.7 − 8.6 
27 LQLGFSTGV − 7 − 6 − 6.9 − 7 − 8.4 
28 LYENAFLPF − 7.4 − 8.1 − 7.1 − 8.6 − 8.4 
29 MFLARGIVF − 6.2 − 7.3 − 7.3 − 6.8 − 9.2 
30 NLSDRVVFV − 7.2 − 6.6 − 7.7 − 6.9 − 8.5 
31 NTVIWDYKR − 6.7 − 6.5 − 8 − 7.8 − 7.7 
32 RLIIRENNR NB NB NB NB NB 
33 RNYVFTGYR − 8 − 7 − 7.8 − 8.1 − 8.3 
34 RQLLFVVEV − 7.4 − 7.3 − 7.1 − 8 − 7.5 
35 SQLGGLHLL − 7 − 6.7 − 6.6 − 6.7 − 7.7 
36 STQWSLFFF − 9.2 − 7.1 − 7.6 − 6.6 − 9.6 
37 SVIYLYLTF − 8 − 6.9 − 6.8 − 7.6 − 8.3 
38 VIYLYLTFY − 7.4 − 7.4 − 8 − 8 − 9.9 
39 FLQSINFVR − 7.5 − 6.3 − 7.5 − 7.6 − 9.5 
40 WLIVGVALL − 7.1 − 7.3 − 7.1 − 6.7 − 8.5 
41 FQVTIAEIL − 6.8 − 6.9 − 7.3 − 7.9 − 8 
42 ILFLALITL − 6.9 − 6.7 − 7.2 − 8 − 8 
43 FLAFLLFLV − 7.1 − 6.4 − 7.3 − 6.8 − 8.7 
44 LIDFYLCFL − 8.1 − 6.8 − 8.3 − 7.7 − 7.8 
45 YIDIGNYTV − 7.2 − 7.2 − 7.2 − 7.9 − 7.8 
46 KWYIRVGAR − 7 − 7.3 − 7.1 − 8 − 7.9 
47 WTAGAAAYY − 6.1 − 7.3 − 7.3 − 6.9 − 6.6 
48 FTISVTTEI − 6.9 − 6.8 − 7.3 − 7.5 − 8.7 
49 PYRVVVLSF NB NB NB NB NB 
50 VVFLHVTYV − 6.9 − 7.2 − 7.3 − 8.1 − 8.1 

NB - Ligand not binding to the target MHC allele at the peptide binding groove. 
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a comprehensive analysis of T cell epitope mapping for SARS-CoV-2. 
Recent studies reported the prediction of T cell epitopes in the SARS- 
CoV-2 spike glycoprotein (Baruah and Bose, 2020; Bhattacharya et al., 

2020). Another used the B cell epitopes available in the IEDB server for 
the prediction of both CTL and T-helper epitopes (Grifoni et al., 2020a). 

The predicted best binders observed in this study were derived from 
an analytical workflow that used highly stringent selection criteria 
including analysis of processing, allergenicity, antigenicity, toxicity and 
physiochemical properties (Mohan et al., 2018). Application of these 
selection parameters is important because, ultimately, they help to 
ensure that future use of the predicted immunogenic peptides identified 
will stimulate CTL immunity while minimizing or eliminating adverse 
reactions to the host. The results indicated that 826 (31.72%) of the 
predicted epitopes will effectively undergo antigen processing. These 
peptides were further evaluated for their immunogenicity using the 
pMHC immunogenicity predictor tool. This tool analyzes the in-
teractions of the peptide-MHC complex present on the antigen pre-
senting cells with the T cell receptor (TCR). This bioinformatics 
screening step yielded a total of 260 (31.48%) predicted immunogenic 
9-mer length epitopes. The selected peptides were further evaluated for 
their antigenicity using an algorithm available on the VaxiJen server 
which predicts the physical interaction of immunogenic peptides within 
TCR synapses as well as their predicted ability to trigger intracellular 
signals leading to elicitation of T-cell activation (Doytchinova and 
Flower, 2007). This screening step resulted in the elimination of 130 
peptide sequences, leaving 130 nine-mers which scored positive for 
antigenicity. After the exclusion of toxic and allergenic epitopes, 50 out 
of 2604 best binding peptides were found to be potential CTL epitopes 
which could be used as possible vaccine candidates for SARS-CoV-2. 

Molecular modeling simulation software (AutoDock) was then used 

Fig. 5. Molecular and 2D ligand interaction maps of predicted epitopes TQWS (a, c) and SYFI (b, d) with HLA allele A*2402.  

Table 4 
Predicted non-binders to MHC Class II.  

S. 
No 

Peptide Protein Binding Allele(s) 

1 LSPRWYFYY Nucleocapsid 
phosphoprotein 

HLA-A*01:01 

2 FLARGIVFM nsp6 HLA-A*02:01; HLA- 
A*02:06 

3 MFLARGIVF nsp6 HLA-A*24:02 
4 EFTPFDVVR 3C-like proteinase HLA-A*33:03 
5 FAIGLALYY nsp13 HLA-A*26:01 
6 RNYVFTGYR nsp13 HLA-A*31:01 
7 FVVEVVDKY nsp12 HLA-A*26:01 
8 ILHCANFNV nsp12 HLA-A*02:01 
9 KSAGFPFNK nsp12 HLA-A*11:01 
10 RQLLFVVEV nsp12 HLA-A*02:06 
11 HSIGFDYVY nsp14 HLA-A*26:01 
12 LQLGFSTGV nsp14 HLA-A*02:06 
13 NLSDRVVFV nsp14 HLA-A*02:01 
14 NTVIWDYKR nsp15 HLA-A*33:03 
15 SQLGGLHLL nsp15 HLA-A*02:06 
16 WLIVGVALL ORF3a protein HLA-A*02:01 
17 YIDIGNYTV ORF8 protein HLA-A*02:01; HLA- 

A*02:06 
18 VVFLHVTYV Surface glycoprotein HLA-A*02:06  
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to predict non-covalent binding affinities of each of the identified pep-
tides to MHC class I loci. The following HLA molecules that we tested 
were predicted to form a stable complex with the predicted binders: 
A*0101, A*0201, A*0301, A*1101, A*2402. All the peptides exhibited a 
stronger binding affinity towards HLA A*2402 with low binding en-
ergies. The epitopes HSIGFDYVY and STQWSLFFF were found to be 
binding with a lower binding energy (− 9.2 kcal/mol) with HLA A*0101. 
HLA A*0201 was found to have the epitope TQWSLFFFL as the top 
binder, with a binding energy of − 8.8 kcal/mol. The epitopes 
EFTPFDVVR, FAIGLALYY and TQWSLFFFL were found to be the top 
binders of the HLA molecules HLA A*0301, HLA A*1101 and HLA 
A*2402 with the binding energy values of − 8.5, − 8.9 and − 10 kcal/mol 
respectively (Table 3; Fig. 5a,b). 

Out of all the epitopes docked, TQWSLFFFL was showing a good 
binding energy (− 10 kcal/mol) on binding towards HLA A*2402. Also, 
it is the top binder of HLA A*0201, making this epitope a potential 
candidate to be studied further. The eight epitopes, HSIGFDYVY, 
STQWSLFFF, TQWSLFFFL, SVLLFLAFV, EFTPFDVVR, FAIGLALYY, 
FVVFLLVTL, SYFIASFRL were found to be the top 5 binders for at least 
two HLA molecules indicating their potential as epitopes for the 5 HLA 
alleles that were tested here. 

Of the 50 epitopes that were identified in this study only one of the 
peptides was reported earlier. Peptide, WTAGAAAYY, from surface 
glycoprotein that binds to HLA-A*0101 and HLA-A*2601 alleles was 
already reported (Baruah and Bose, 2020). The remaining 49 peptides 
are novel epitopes that are reported for the first time. Thirty-eight of 
these were found to possess binding affinities for single HLA alleles. The 
remaining candidate epitopes had binding affinity for more than one 
HLA class I allele. Overall, the array of predicted peptides showed the 
greatest predisposition for binding to HLA-A*0206 (16 out of 50, 32%), 

It is widely believed that the SARS-CoV-2 surface glycoprotein 
(spike) is the major antigenic protein that can be exploited for vaccine 
strategies aimed at inducing nAb responses. While virus-stimulated 
natural immunity to SARS-CoV-2 as well as future vaccine-induced im-
munity will largely rely on humoral immune responses to prevent 
infection, vaccine efforts aimed at inducing SARS-CoV2-specific T cell 
immunity should also be considered as part of the overall public health 
arsenal to prevent COVID-19. A recent study using peripheral blood 
mononuclear cells from convalescent COVID-19 donors demonstrated 
circulating SARS-CoV-2 − specific CD8+ and CD4+ T cells in all subjects 
tested (Grifoni et al., 2020b). CD4+ T cell responses to spike protein 
were robust and correlated with the magnitude of the anti-SARS-CoV-2 
IgG and IgA titers. The M, spike and N proteins each accounted for 
11–27% of the total CD4+ response. For CD8+ T cells, spike and M were 
recognized. Knowledge of the T cell responses to COVID-19 can guide 
selection of appropriate immunological endpoints for COVID-19 candi-
date vaccine clinical trials. 

Vaccine development against viral infections classically focuses on 
vaccine-elicited recapitulation of the type of protective immune 
response elicited by natural infection. Such foundational knowledge is 
currently missing for SARS-CoV-2. In particular, we lack knowledge 
concerning how the balance and the phenotypes of responding immune 
cells vary as a function of disease course and severity. Such knowledge 
can guide selection of vaccine strategies most likely to elicit protective 
immunity to prevent COVID-19 disease. Furthermore, knowledge of the 
T cell responses can guide selection of appropriate immunological 
endpoints for COVID-19 candidate vaccine clinical trials. 

Our comprehensive evaluation of putative immunogenic CTL epi-
topes within the orf1ab polyprotein demonstrates the presence of many 
non-structural SARS-CoV-2 proteins that contain such candidate epi-
topes. Many epitopes with the predicted ability to stimulate protective 
cellular immunity were also observed in structural proteins of the virus 
including its envelope, membrane glycoprotein and surface glycopro-
tein. Future studies will need to be undertaken using in vitro and in vivo 
strategies to evaluate potential efficacy of the full array of predicted CTL 
epitopes that can be used in conjunction with those that induce nAb 

against SARS-CoV-2. 
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