
entropy

Article

Mechanism Integrated Information

Leonardo S. Barbosa 1, William Marshall 1,2, Larissa Albantakis 1 and Giulio Tononi 1,*

����������
�������

Citation: Barbosa, L.S.; Marshall, W.;

Albantakis, L.; Tononi, G. Mechanism

Integrated Information. Entropy 2021,

23, 362. https://doi.org/10.3390/

e23030362

Academic Editors: Raúl Alcaraz and

Kyumin Moon

Received: 12 January 2021

Accepted: 12 March 2021

Published: 18 March 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA;
leonardo.barbosa@wisc.edu (L.S.B.); wmarshall3@wisc.edu (W.M.); albantakis@wisc.edu (L.A.)

2 Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada
* Correspondence: gtononi@wisc.edu

Abstract: The Integrated Information Theory (IIT) of consciousness starts from essential phenomeno-
logical properties, which are then translated into postulates that any physical system must satisfy
in order to specify the physical substrate of consciousness. We recently introduced an informa-
tion measure (Barbosa et al., 2020) that captures three postulates of IIT—existence, intrinsicality
and information—and is unique. Here we show that the new measure also satisfies the remaining
postulates of IIT—integration and exclusion—and create the framework that identifies maximally
irreducible mechanisms. These mechanisms can then form maximally irreducible systems, which in
turn will specify the physical substrate of conscious experience.

Keywords: causation; consciousness; intrinsic; existence

1. Introduction

Integrated information theory (IIT; [1–3]) identifies the essential properties of con-
sciousness and postulates that a physical system accounting for it—the physical substrate
of consciousness (PSC)—must exhibit these same properties in physical terms. Briefly, IIT
starts from the existence of one’s own consciousness, which is immediate and indubitable.
The theory then identifies five essential phenomenal properties that are immediate, in-
dubitable and true of every conceivable experience, namely intrinsicality, composition,
information, integration and exclusion. These phenomenal properties, called axioms, are
translated into essential physical properties of the PSC, called postulates. The postulates
are conceptualized in terms of cause–effect power and given a mathematical formulation
in order to make testable predictions and allow for inferences and explanations.

So far, the mathematical formulation employed well-established measures of informa-
tion, such as Kullback–Leibler divergence (KLD) [4] or earth mover’s distance (EMD) [3].
Ultimately, however, IIT requires a measure that is based on the postulates of the theory and
is unique, because the quantity and quality of consciousness are what they are and cannot
vary with the measure chosen. Recently, we introduced an information measure, called
intrinsic difference [5], which captures three postulates of IIT—existence, intrinsicality and
information—and is unique. Our primary goal here is to explore the remaining postulates
of IIT—composition, integration and exclusion—in light of this unique measure, focusing
on the assessment of integrated information ϕ for the mechanisms of a system. In doing so,
we will also revisit the way of performing partitions.

The plan of the paper is as follows. In Section 2, we briefly introduce the axioms and
postulates of IIT; in Section 3, we introduce the mathematical framework for measuring
ϕ based on intrinsic difference (ID), which satisfies the postulates of IIT and is unique; in
Section 4, we explore the behavior of the measure in several examples; and in Section 5, we
discuss the connection between the new framework, previous versions of IIT and future
developments.
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2. Axioms and Postulates

This section summarizes the axioms of IIT and the corresponding postulates. For a
complete description of the axioms and their motivation, the reader should consult [2,3,6].

Briefly, the zeroth axiom, existence, says that experience exists, immediately and
indubitably. The zeroth postulate requires that the PSC must exist in physical terms. The
PSC is assumed to be a system of interconnected units, such as a network of neurons.
Physical existence is taken to mean that the units of the system must be able to be causally
affected by or causally affect other units (take and make a difference). To demonstrate
that a unit has a potential cause, one can observe whether the unit’s state can be caused
by manipulating its input, while to demonstrate that a unit has a potential effect one can
manipulate the state of the unit and observe if it causes the state of some other unit [7].

The first axiom, intrinsicality, says that experience is subjective, existing from the
intrinsic perspective of the subject of experience. The corresponding postulate requires that
a PSC has potential causes and effects within itself.

The second axiom, composition, says that experience is structured, being composed
of phenomenal distinctions bound by phenomenal relations. The corresponding postulate
requires that a PSC, too, must be structured, being composed by causal distinctions speci-
fied by subsets of units (mechanisms) over subsets of units (cause and effect purviews) and
by causal relations that bind together causes and effects overlapping over the same units.
The purviews are then subset of units whose states are constrained by another subset of
units, the mechanisms, in its particular state. The set of all causal distinctions and relations
within a system compose its cause–effect structure.

The third axiom, information, says that experience is specific, being the particular way
it is, rather than generic. The corresponding postulate states that a PSC must specify a
cause–effect structure composed of distinctions and relations that specify particular cause
and effect states.

The fourth axiom, integration, says that experience is unified, in that it cannot be
subdivided into parts that are experienced separately. The corresponding postulate states
that a PSC must specify a cause–effect structure that is unified, being irreducible to the
cause–effect structures specified by causally independent subsystems. Integrated infor-
mation (Φ) is a measure of the irreducibility of the cause–effect structure specified by a
system [8]. The degree Φ to which a system is irreducible can be interpreted as a measure
of its existence. Mechanism integrated information (ϕ) is an analogous measure that quan-
tifies the existence of a mechanism within a system. Only mechanisms that exist within a
system (ϕ ą 0) contribute to its cause–effect structure.

Finally, the exclusion axiom says that experience is definite, in that it contains what it
contains, neither less nor more. The corresponding postulate states that the cause–effect
structure specified by a PSC should be definite: it must specify a definite set of distinctions
and relations over a definite set of units, neither less nor more. The PSC and associated
cause–effect structure is given by the set of units for which the value of Φ is maximal,
and its distinctions and relations corresponding to maxima of ϕ. According to IIT, then, a
system is a PSC if it is a maximum of integrated information, meaning that it has higher
integrated information than any overlapping systems [3,9]. Moreover, the cause–effect
structure specified by the PSC is identical to the subjective quality of the experience [10].

3. Theory

We first describe the process for measuring the integrated information (ϕ) of a mecha-
nism based on the postulates of IIT. In order to contribute to experience, a mechanism must
satisfy the postulates described in Section 2 (note that mechanisms cannot be composi-
tional because, as components of the cause–effect structure, they cannot have components
themselves). We then present some theoretical developments related to partitioning a mech-
anism in order to assess integration and to measuring the difference between probability
distributions for quantifying intrinsic information. The subsequent process of measuring
the integrated information of the system (Φ) will be discussed elsewhere.
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3.1. Mechanism Integrated Information

Our starting point is a stochastic system S “ tS1, S2, . . . , Snuwith state space ΩS and
current state st P ΩS (Figure 1a). The system is constituted of n random variables that
represent the units of a physical system and has a transition probability function

ppst`1 | stq “ PpSt`1 “ st`1 | St “ stq, st, st`1 P ΩS, (1)

which describes how the system updates its state (see Appendix A.1 for details). The goal
is to define the integrated information of a mechanism M Ď S in a state mt P ΩM based
on the postulates of IIT. To this end, we will develop a difference measure ϕpmt, Zt˘1, ψq
which quantifies how much a mechanism M in state mt constrains the state of a purview, a
set of units Zt˘1 Ď S, compared to a partition

ψ “ tpM1, Z1q, pM2, Z2q, . . . , pMk, Zkqu, (2)

of the mechanism and purview into k independent parts (Figure 1b). As we evaluate
the IIT postulates step by step, we will provide mathematical definitions for the required
quantities, introduce constraints on ϕ and eventually arrive at a unique measure. Since
potential causes of M “ mt are always inputs to M, and potential effects of M “ mt
are always outputs of M, we will omit the corresponding update indices (t´ 1, t, t` 1)
unless necessary.

Figure 1. Theory. (a) System S with four random variables. (b) Example of a mechanism M “ tA, Cu in state m “ tÒ, Òu
constraining a cause purview Z “ tBu and an effect purview Z “ tB, Du. Dashed lines show the partitions. The bar plots
show the probability distributions, that is the cause repertoire (left) and effect repertoire (right). The black bars show the
probabilities when the mechanism is constraining the purview, and the white bars show the probabilities after partitioning
the mechanism.

3.1.1. Existence

For a mechanism to exist in a physical sense, it must be possible for something to
change its state, and it must be able to change the state of something (it has potential causes
and effects). To evaluate these potential causes and effects, we define the cause repertoire
πcpZ | mq (see Equation (A2)) and the effect repertoire πepZ | mq (see Equation (A1)),
which describe how m constrains the potential input or output states of Z Ď S respectively
(Figure 1b) [3,11–13].

The cause and effect repertoires are probability distributions derived from the system’s
transition probability function (Equation (1)) by conditioning on the state of the mechanism
and causally marginalizing the variables outside the purview (SzZ). Causal marginalization
is also used to remove any contributions to the repertoire from units outside the mechanism
(SzM). In this way, we capture the constraints due to the mechanism in its state and nothing
else. Note that the cause and effect repertoires generally differ from the corresponding
conditional probability distributions.
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Having introduced cause and effect repertoires, we can write the difference

ϕepm, Z, ψq “ DpπepZ | mq, π
ψ
e pZ | mqq,

where π
ψ
e pZ | mq corresponds to the partitioned effect repertoire (see Equation (A3)) in

which certain connections from M to Z are severed (causally marginalized). When there is
no change after the partition, we require that

ϕepm, Z, ψq “ 0.

The same analysis holds for causes, replacing πe with πc in the definition of ϕcpm, Z, ψq.
Unless otherwise specified, in what follows we focus on effects.

3.1.2. Intrinsicality

The intrinsicality postulate states that, from the intrinsic perspective of the mechanism
M “ m over a purview Z, the effect repertoire πepZ|mq is set and has to be taken as is.
This means that, given the purview units and their connections to the mechanism, the
constraints due to the mechanism are defined by how all its units at a particular state m at t
constrain all units in the effect purview at t` 1 and cause purview at t´ 1. For example, if
the mechanism fully constrains all of its purview units except for one unit which remains
fully unconstrained, the mechanism cannot just ignore the unconstrained unit or optimize
its overall constraints by giving more weight to some states than others in the effect
repertoire. For this reason, the intrinsicality postulate should make the difference measure
D between the partitioned and unpartitioned repertoire sensitive to a tradeoff between
“expansion” and “dilution”: the measure should increase if the purview includes more
units that are highly constrained by the mechanism but decrease if the purview includes
units that are weakly constrained. The mathematical formulation of this requirement is
given in Section 3.3.

3.1.3. Information

The information postulate states that a mechanism M, by being in its particular state
m, must have a specific effect, which means that it must specify a particular effect state
z over the purview Z. The effect state should be the one for which m makes the most
difference. To that end, we require a difference measure of the form

ϕepm, Z, ψq “ DpπepZ | mq, π
ψ
e pZ | mqq “ max

zPΩZ

ˇ

ˇ

ˇ
f
´

πepz | mq, π
ψ
e pz | mq

¯
ˇ

ˇ

ˇ
,

such that the difference D between effect repertoires is evaluated as the maximum of the
absolute value of some function f that is assessed for particular states. The function f is
one of the main developments of the current work and is discussed in Section 3.3.

3.1.4. Integration

The integration postulate states that a mechanism must be unitary, being irreducible
to independent parts. By comparing the effect repertoire πepZ | mq against the partitioned
repertoire π

ψ
e pZ | mq, we can assess how much of a difference the partition ψ makes to the

effect of m. To quantify how irreducible m’s effect is on Z, one must compare all possible
partitioned repertoires to the unpartitioned effect repertoire. In other words, one must
evaluate each possible partition ψ. Of all partitions, we define the minimum information
partition (MIP)

ψ˚ “ argmin
ψ

ϕepm, Z, ψq,

which is the one that makes the least difference to the effect. The intrinsic integrated effect
information (or integrated effect information for short) of the mechanism M in state m
about a purview Z is then defined as



Entropy 2021, 23, 362 5 of 29

ϕepm, Zq “ ϕepm, Z, ψ˚q.

If ϕepm, Zq “ 0, there is a partition of the candidate mechanism that does not make a
difference, which means that the candidate mechanism is reducible.

3.1.5. Exclusion

The exclusion postulate states that a mechanism must be definite, it must specify a
definite effect over a definite set of units. That is, a mechanism must be about a maximally
irreducible purview

Z˚e “ argmax
ZĎS

ϕepm, Zq,

which maximizes integrated effect information and is in the effect state

z˚e “ argmax
zPΩZ˚e

ˇ

ˇ

ˇ
f
´

πepz | mq, π
ψ˚

e pz | mq
¯
ˇ

ˇ

ˇ
.

The purview Z˚e is then used to define the integrated effect information of the mechanism M

ϕepmq “ ϕepm, Z˚e q.

Returning to the existence postulate, a mechanism must have both a cause and an
effect. By an analogous process using cause repertoires πc instead of effect repertoires πe,
we can define the integrated cause information of m

ϕcpmq “ ϕcpm, Z˚c q,

and the integrated information of the mechanism

ϕpmq “ min
 

ϕcpmq, ϕepmq
(

. (3)

Thus, if a candidate mechanism M in state m is reducible over every purview either on the
cause or effect side, ϕpmq “ 0 and M does not contribute to experience. Otherwise, M “ m
is irreducible and forms a mechanism within the system. As such, it specifies a distinction

Xpmq “
 

pZ˚c “ z˚c , Z˚e “ z˚e , ϕpmqq : Z˚c , Z˚e Ď S, z˚c P ΩZ˚c , z˚e P ΩZ˚e

(

,

which links its maximally irreducible cause with its maximally irreducible effect, for M Ď S,
m P ΩM and ϕpmq P tx P R : x ą 0u. While a mechanism always specifies a unique ϕpmq
value, due to symmetries in the system it is possible that there are multiple equivalent
solutions for Z˚c “ z˚c or Z˚e “ z˚e . We expect such “ties” to be exceedingly rare in physical
systems with variable connection strengths, as well as a certain amount of indeterminism
and outline possible solutions to resolves “ties” in the discussion, Section 5.

3.2. Disintegrating Partitions

According to the integration postulate, a mechanism can only exist from the intrinsic
perspective of a system if it is irreducible, meaning that any partition of the mechanism
would make a difference to its potential cause or effect. Accordingly, computing the
integrated information of a mechanism requires partitioning the mechanism and assessing
the difference between partitioned and unpartitioned repertoires. In this section we give
additional mathematical details and theoretical considerations for how to partition a
mechanism together with its purview Z.

Generally, a partition ψ of a mechanism M and a purview Z is a set of parts as
defined in Equation (2), with some restrictions on pMi, Ziq. The partition "cuts apart" the
mechanism, severing any connections from Mi to Zj (i ‰ j). We use causal marginalization
(see Appendix A) to remove any causal power Mi has over Zj (i ‰ j) and compute a
partitioned repertoire. Practically, it is as though we do not condition on the state of Mi
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when consider Zj. Before describing the restrictions on pMi, Ziq we will look at a few
examples to highlight the conceptual issues. First, consider a third-order mechanism
M “ tA, B, Cu with the same units (as inputs or outputs) in the corresponding third order
purview Z “ tA, B, Cu. A standard example of a partition of this mechanism is

ψ1 “ tptA, Bu, tA, Buq, ptCu, tCuqu,

which cuts units tA, Bu away from unit tCu. Now consider the situation where we would
like to additionally cut tBu in the purview away from tA, Bu in the mechanism. This
partition can be represented as

ψ2 “ tptA, Bu, tAuq, pt∅u, tBuq, ptCu, tCuqu.

This example raises the issue of whether to allow the empty set as part of a partition.
The question is not only conceptual but also practical, in a situation where tA, Bu and tCu
have opposite effects (e.g., excitatory and inhibitory connections), then it may be that the
MIP ψ˚ “ ψ2 (see Section 4.2 for an example). Here, the mechanism is always partitioned
together with a purview subset.

While the definition of ψ should include partitions such as ψ2 above, this raises
additional issues. Consider the partition

ψ3 “ tptA, B, Cu, tA, Buq, pt∅u, tCuqu.

In ψ3, the set of all mechanism units is contained in one part. Should such a partition count
as “cutting apart” the mechanism? The same problem arises for partitions of first-order
mechanisms. Consider, for example, M “ tAuwith purview Z “ tA, B, Cu and partition

ψ4 “ tptAu, tA, Buq, pt∅u, tCuqu.

A first-order mechanism should be considered completely irreducible by definition,
yet for the proposed partition only a small fraction of its constraint is considered integrated
information: while M “ A may constrain A, B, and C, only its constraints over C would be
evaluated by ψ4. A similar argument applies to ψ3, which would only allow us to evaluate
the constraint of the mechanism M “ tA, B, Cu on C, not the entire purview Z “ tA, B, Cu.
In sum, ψ3 and ψ4 should not be permissible partitions by the integration postulate. The
set of mechanism units may not remain integrated over a purview subset once a partition
is applied.

Based on the above argument, we propose a set of disintegrating partitions

ΨpM, Zq “

#

tpMi, Ziqu
k
i“1

ˇ

ˇ

ˇ

ˇ

ˇ

k P t2, 3, 4, . . .u, Mi P PpMq, Zi P PpZq,

ď

Mi “ M,
ď

Zi “ Z, Zi X Zj “ Mi XMj “ H for all i ‰ j, Mi “ M ùñ Zi “ H

+

, (4)

such that for each ψ P ΨpM, Zq: tMiu is a partition of M and tZiu is a partition of Z but
allows the empty set to be used as a part. Moreover, if the mechanism is not partitioned
into at least two parts, then the mechanism must be cut away from the entire purview.

In summary, the above definition of possible partitions ensures that the mechanism set
must be divided into at least two parts, except for the special case where one part contains
the whole mechanism but no units in the purview (complete partition, ψ0). This special
partition can be interpreted as “destroying” the whole mechanism at once and observing
the impact its absence has on the purview.
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3.3. Intrinsic Difference (ID)

In this section we define the measure D, which quantifies the difference between the
unpartitioned and partitioned repertoires specified by a mechanism and thus plays an
important role in measuring integrated information. We propose a set of properties that D
should satisfy based on the postulates of IIT described above, and then identify the unique
measure that satisfies them.

Our desired properties are described in terms of discrete probability distributions
Pn “ rp1, p2, . . . , pns and Qn “ rq1, q2, . . . , qns. Generally, Pn represents the cause or effect
repertoire of a mechanism πpZ|mq, while Qn represents the partitioned repertoire πψpZ|mq.

The first property, causality, captures the requirement for physical existence (Section 3.1.1)
that a mechanism has a potential cause and effect,

DpPn, Qnq “ 0 ðñ Pn ” Qn. (5)

The interpretation is that the integrated information m specifies about Z is only zero if the
unpartitioned and partitioned repertoires are identical. In other words, by being in state
m, the mechanism M does not constrain the potential state of Z above its partition into
independent parts.

The second property, intrinsicality, captures the requirement that physical existence
must be assessed from the perspective of the mechanism itself (Section 3.1.2). The idea
is that information should be measured from the intrinsic perspective of the candidate
mechanism M in state m, which determines the potential state of the purview Z by itself,
independent of external observers. In other words, the constraint m has over Z must
depend only on their units and connections. In contrast, traditional information measures
were conceived to quantify the amount of signal transmitted across a channel between a
sender and a receiver from an extrinsic perspective, typically that of a channel designer
who has the ability to optimize the channel’s capacity. This can be done by adjusting
the mapping between the states of M and Z through encoders and decoders to reduce
indeterminism in the signal transmission. However, such a remapping would require more
than just the units and connections present in M and Z, thus violating intrinsicality [5].

The intrinsicality property is defined based on the behavior of the difference measure
when distributions are extended by adding units to the purview or increasing the number
of possible states of a unit [14]. A distribution Pn

1 is extended by a distribution Pn
2 to create

a new distribution Pn
1 b Pn

2 , where b is the Kronecker product. When a fully selective
distribution (one where an outcome occurs with probability one) is extended by another
fully selective distribution, the measure should increase additively (expansion). However, if
a distribution is extended by a fully undetermined distribution (one where all n outcomes
are equally likely), then the measure should decrease by a factor of n (dilution). For
expansion, suppose Pn

1 and Pn
2 are fully selective distributions, then for any Qn

1 and Qn
2

we have
DpPn

1 b Pn
2 , Qn

1 bQn
2q “ DpPn

1 , Qn
1q `DpPn

2 , Qn
2q. (6)

For dilution, suppose Pn
2 and Qn

2 are fully undetermined distributions, then for any Pn
1 , Qn

1
we have

DpPn
1 b Pn

2 , Qn
1 bQn

2q “
1
n

DpPn
1 , Qn

1q. (7)

Together, Equations (6) and (7) define the intrinsicality property.
The final property, specificity, requires that physical existence must be about a specific

purview state (Section 3.1.3),

DpPn, Qnq “ max
α
| f ppα, qαq|. (8)

The function f pp, qq defines the difference between two probability distributions at a
specific state of the purview. The mechanism is defined based on the state that maximizes
its difference within the system.
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Previous work employed similar properties to quantify intrinsic information but used
a version of the specificity property that did not include the absolute value [5]. In that
work, the goal was to compute the intrinsic information of a communication channel, with
an implicit assumption that the source is sending a specific message. In that context, a
signal is only informative if it increases the probability of receiving the correct message.
Here we are interested in integrated information within the context of the postulates of IIT
as a means to quantify existence, which requires causes and effects. A mechanism can be
seen as having an effect (or cause) whether it increases or decreases the probability of a
specific state.

Together, the three properties (causality, specificity, and intrinsicality) characterize
a unique measure, the intrinsic difference, for measuring the integrated information of a
mechanism. Note that while causality (Equation (5)) and expansion (Equation (6)) prop-
erties are traditionally required by information measures (see [15]), here we also require
dilution (Equation (7)) and specificity (Equation (8)). While the maximum operation present
in specificity in order to select one specific purview state seems to us uncontroversial, one
may argue that the dilution factor 1

n in Equation (7) is somewhat arbitrary. However, note
that if specificity requires that information is specific to one state, after adding a fully
undetermined distribution of size n to the purview, the amount of causal power measured
by the function f in state α will be invariably divided by n. This way, we believe that the
dilution factor must be necessarily 1

n , at least in this particular case.

Theorem 1. If DpPn, Qnq satisfies the causality, intrinsicality, and specificity properties, then

DpPn, Qnq “ max
α
| f ppα, qαq|,

where

f pp, qq “ k p log
ˆ

p
q

˙

.

The full mathematical statement of the theorem and its proof are presented in Appendix B.
For the rest of the manuscript we assume k “ 1 without loss of generality. Here, our main
interest is using ID to quantify the difference between unpartitioned and partitioned cause
or effect repertoires when assessing the integrated information of a mechanism,

ϕpm, Zq “ D
´

πpZ | mq, πψ˚pZ | mq
¯

“ max
zPΩZ

ˇ

ˇ

ˇ

ˇ

πpz | mq log
ˆ

πpz | mq
πψ˚pz | mq

˙ˇ

ˇ

ˇ

ˇ

.

One can interpret the integrated information as being composed of two terms. First,
the informativeness

ˇ

ˇ

ˇ

ˇ

log
ˆ

πpz | mq
πψ˚pz | mq

˙
ˇ

ˇ

ˇ

ˇ

,

which reflects the difference in Hartley information contained in state z before and after
the partition. Second, the selectivity

πpz | mq,

which reflects the likelihood of the cause or effect. Together, the two terms can be inter-
preted as the density of information for a particular state [5].

4. Methods and Results

Throughout this section we investigate each step necessary to compute ϕpmq, the
integrated information of a mechanism M in state m. To this end, we construct systems S
formed by units A, B, C, . . . that are either Ò (1) or Ó (´1) at time t with probability of being
Ò defined by (Figure 2a)
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PpYt “ 1 | At´1 “ at´1, Bt´1 “ bt´1, . . .q “
1

1` exp
!

´
2pat´1`bt´1`...`hq

τ

) , (9)

for all Y P S, where A, B, . . . are the units that input to Y. Besides the sum of the input states,
the function depends on two parameters: h P R defines a bias towards being Ò (h ą 0)
or Ó (h ă 0), while τ P tx P R : x ě 0u defines how deterministic unit A is. For τ ÝÑ 8,
the unit turns Ò or Ówith equal probability (fully undetermined), while for τ “ 0 it turns
Ò whenever the sum of the inputs is greater than the threshold η, and turns Ó otherwise
(fully selective; Figure 2a). This way, τ “ 0 means that the unit is fully constrained by the
inputs (deterministic), τ “ 1 means the unit is partially constrained, and τ “ 10 means the
unit is only weakly constrained, etc. Unless otherwise specified, in the following we focus
on investigating effect purviews.

4.1. Intrinsic Information

We start by investigating the role of intrinsicality in computing the integrated infor-
mation of a mechanism. To this end, we will compare ϕepm, Z, ψ0q for various mechanism-
purview pairs, which evaluates the ID over a complete partition

ψ0 “ tptMu, t∅uq, pt∅u, tZuqu

of mechanism M and purview units Z, leaving the purview fully unconstrained after
the partition (in this case, the partitioned repertoires are equivalent to the unconstrained
repertoires defined in Equation (A5) and Equation (A4)). Intrinsicality requires that the ID
must increase additively when fully constrained units are added to the purview (expansion,
Equation (6)) and decrease exponentially when fully unconstrained units are added to
the purview (dilution, Equation (7)). We define the system S depicted in Figure 2b to
investigate the expansion and dilution of a mechanism M “ tAu over different purviews
Z Ď S. Next, we fix the mechanism M in state m “ 1 and measure the ID of this mechanism
over effect purviews with varying levels of indeterminism τ but a fixed threshold h “ 0
(partially deterministic majority gates).

First consider the purview Z “ tBuwith a fully constrained unit (τB “ 0), such that
(Figure 2B)

ϕepm, Z, ψ0q “ IDpπepB | A “Òq, π
ψ0

e pB | A “Òqq “ 0.69.

Now consider the same mechanism over a larger purview Z “ tB, Cu, which has an
additional, partially constrained unit C (τC “ 1). This purview has a larger repertoire
of possible states, resulting in a larger difference between partitioned and unpartitioned
probabilities of one state (high informativeness). At the same time, the probability of this
state is still very high in absolute terms (high selectivity). Thus, the ID of m over tB, Cu is
higher than over tBu alone (Figure 2c):

ϕepm, Z, ψ0q “ IDpπepBC | A “Òq, π
ψ0

e pBC | A “Òqq “ 1.11.

The higher value for Z “ tB, Cu reflects the expansion that occurs whenever informativeness
increases while selectivity is still high. Notice that the expansion here is subadditive since
the new unit is constrained but not fully constrained (or fully selective).

Finally, consider another purview Z “ tB, Du, where D is only weakly constrained
(τD “ 10). While the new purview has a state where informativeness is marginally
higher than before, selectivity is much lower (the state has much lower probability). For
this reason, ϕepm, Z, ψ0q is lower for Z “ tB, Du than for the smaller purview Z “ tBu,
reflecting dilution (Figure 2c):

ϕepm, Z, ψ0q “ IDpπepBD | A “Òq, π
ψ0

e pBD | A “Òqq “ 0.43.
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Notice that dilution here is not exactly a factor of 2 since the new unit is weakly constrained
by the mechanism but not fully unconstrained.

Figure 2. Intrinsicality. (a) Activation functions without bias (η “ 0) and different levels of constraint (τ “ 0, τ “ 1 and
τ “ 10). (b) System S analyzed in this figure. The remaining panels show on top the causal graph of the mechanism
M “ tAu at state m “ t1u constraining different output purviews and on the bottom the probability distributions of the
purviews (effect repertoires). The black bars show the probabilities when the mechanism is constraining the purview, and
the white bars show the unconstrained probabilities after the complete partition ψ0. The “*” indicates the state selected by
the maximum operation in the intrinsic difference (ID) function. (c) The mechanism fully constrains the unit B in the purview
Z “ tBu (τB “ 0), resulting in state z “ tÒu defining the amount of intrinsic information in the mechanism as ϕpm, Z, ψ0q “

IDpπepB|M “Òq | π
ψ0

e pB|M “Òqq “ πepB “Ò |A “Òq ¨ | logpπepB “Ò |A “Òq{π
ψ0

e pB “Ò |M “Òqq| “ 1 ¨ 0.69 “ 0.69. (d) After
adding a slightly undetermined unit (τC “ 1) to the purview (Z “ tB, Cu), the intrinsic information increases to 1.11. The new

maximum state (z “ tÒ, Òu) has now much higher informativeness (| logpπepBC “ÒÒ |A “Òq{πψ0

e pBC “ÒÒ |A “Òqq| “ 1.26)
but only slightly lower selectivity (πpBC “ÒÒ |A “Òq “ 0.89), resulting in expansion. (e) When instead of C, we add the
very undetermined unit D to the purview (τD “ 10), the new purview (Z “ tB, Du) has a new maximum state (z “ tÒ, Òu)

with marginally higher informativeness (| logpπepBC “ÒÒ |A “Òq{πψ0

e pBC “ÒÒ |A “Òqq| “ 0.79) and very low selectivity
(πepBC “ÒÒ |A “Òq “ 0.55), resulting in dilution.

Next we investigate the role of the information postulate, which requires that the
mechanism must be specific, meaning that a mechanism must both be in a specific state
and specify an effect state (or a cause state) of a specific purview. Consider the system in
Figure 3a where we focus on a high-order mechanism with four units M “ tA, B, C, Du
over a purview with three units Z “ tA, B, Cu. The threshold and amount of indeterminism
of the purview units are fixed: h “ ´3 and τ “ 1, which makes the purview units function
like partially deterministic AND gates. We show not only that the mechanism can be more
or less informative depending on its state but also that the specific purview state selected
by the ID measure depends both on the probability of the state and on how much the state
is constrained by the mechanism.

When the state of the mechanism is m “ tÓ, Ó, Ó, Óu (Figure 3b), the most informative
state in the purview is z “ tÓ, Ó, Óu since all units are more likely to be turned Ó than they
are after partitioning (high informativeness), and at the same time this state still has high
probability (high selectivity). Out of all states, z “ tÓ, Ó, Óumaximizes informativeness and
selectivity in combination, resulting in

ϕepm, Z, ψ0q “ IDpπepABC | ABCD “ÓÓÓÓq, π
ψ0

e pABC | ABCD “ÓÓÓÓqq

“ 0.27.
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Figure 3. Information. (a) System S analyzed in this figure. All units have τ “ 1 and η “ ´3
(partially deterministic AND gates). The remaining panels show on the left the time unfolded graph
of the mechanism M “ tA, B, C, Du constraining different output purviews and on the right the
probability distribution of the purview Z “ tA, B, Cu (effect repertoires). The black bars show
the probabilities when the mechanism is constraining the purview, and the white bars show the
unconstrained probabilities after the complete partition. The “*” indicates the state selected by the
maximum operation in the ID function. (b) The mechanism at state m “ tÓ, Ó, Ó, Óu. The purview
state z “ tÓ, Ó, Óu is not only the most constrained by the mechanism (high informativeness) but
also very dense (high selectivity). As a result, it has intrinsic information higher than all other
states in the purview and defines the intrinsic information of the mechanism as 0.27. (c) If we
change the mechanism state to m “ tÓ, Ò, Ò, Òu, the probability of observing the purview state
z “ tÓ, Ó, Óu is now smaller than chance. However, this probability is still very different from chance
and therefore very constrained by the mechanism (high informativeness). At the same time, the
state is still very dense, meaning it has a probability of happening much higher than all other states
(high selectivity). Together, they define the intrinsic information of the state, which is higher than
the intrinsic information of all other states in the purview, defining the intrinsic information of the
mechanism as 0.08.

A different scenario is depicted if we change the state of the mechanism to ABCD “

tÓ, Ò, Ò, Òu (Figure 3c). In this mechanism state the constrained probability of ABC “ tÓ, Ó, Óu
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is lower than than the probability after partitioning. However, the mechanism is informative
because the probabilities are different. At the same time, the state ABC “ tÓ, Ó, Óu still has
high probability while being constrained by the mechanism ABCD “ tÓ, Ò, Ò, Òu. Together
the product of the informativeness and selectivity is higher for the purview state tÓ, Ó, Óu
than any other state, resulting in

ϕepm, Z, ψ0q “ IDpπepABC | ABCD “ÓÒÒÒq, π
ψ0

e pABC | ABCD “ÓÒÒÒqq

“ 0.08.

Although it may be counterintuitive to identify an effect state whose probability is
decreased by the mechanism, it highlights an important feature of intrinsic information:
it balances informativeness and selectivity. Informativeness is about constraint, meaning
how much the probability of observing a given state in the purview changes due to being
constrained by the mechanism. At the same time, selectivity is about probability density
at a given state, meaning that this constraint is only relevant if the state is realized by the
purview. If the mechanism is informative while increasing selectivity, then there is no
tension between the two. However, whenever the mechanism decreases the probability
of a state, there is a tension between how informative and how selective that state is.
As long as together the product of informativeness and selectivity of a state (in this case
ABC “ tÓ, Ó, Óu) is higher than all other states, it is selected by the maximum operation in
the ID function and thus determines the intrinsic information of the mechanism.

4.2. Integrated Information

The integration postulate of IIT requires that mechanisms be integrated or irreducible
to parts. In this section we use the system defined in Figure 4a, with η “ 0 and τ “ 1 for all
units, to investigate how mechanisms are impacted by different partitions. We compute the
ID between the intact and all possible partitioned effect repertoires to measure the impact
of each partition ψ P ΨpM, Zq. We identify the partition with lowest ID as the MIP of the
candidate mechanism over a purview.

First, when considering the mechanism M “ tA, Eu “ tÒ, Óu over the purview
Z “ tA, Eu, the complete partition ψ0 (partitioning the entire mechanism away from the
entire purview) assigns a positive value

ϕepm, Z, ψ0q “ IDpπepAE | AE “ÒÓq, π
ψ0

e pAE | AE “ÒÓqq “ 0.36.

However, if we try the partition

ψ1 “ tptAu, tAuq, ptEu, tEuqu,

we find that the candidate mechanism is not integrated (as is obvious after inspecting
Figure 4b):

ϕepm, Z, ψ1q “ IDpπepAE | AE “ÒÓq, π
ψ1

e pAE | AE “ÒÓqq “ 0.

We conclude that this candidate mechanism does not exist within the system over this
purview.

Next, we consider the candidate mechanism M “ tA, Bu “ tÒ, Òu over the purview
Z “ tA, Bu. We observe that the partition

ψ2 “ tptAu, tA, Buq, ptBu, t∅uqu,

defines an intrinsic difference

ϕepm, Z, ψ2q “ IDpπepAB | AB “ÒÒq, π
ψ2

e pAB | AB “ÒÒqq “ 0.36,
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which is smaller than the one assigned by the complete partition ψ0,

ϕepm, Z, ψ0q “ IDpπepAB | AB “ÒÒq, π
ψ0

e pAB | AB “ÒÒqq “ 0.51.

Although the ID over ψ2 is smaller than that over the complete partition, this information
is not zero. Moreover, the partition ψ2 yields an ID value that is smaller than any other
partition ψ P ΨpAB, ABq. In this case, we say that ψ2 is the MIP (ψ˚ “ ψ2q, and that the
candidate mechanism M “ tA, Bu has integrated effect information (Figure 4c):

ϕepm, Zq “ IDpπpAB | AB “ÒÒq|πψ˚pAB | AB “ÒÒqq “ 0.36.

Finally, for the candidate mechanism M “ tA, B, Du “ tÒ, Ò, Óu over the purview
Z “ tE, Fu, any partition that does not include the empty set as a part in tMiu leads to
nonzero ID. However, if we allow the empty set for Mi (as discussed in Section 3.2), the
candidate mechanism is reducible because disintegrating it with the partition

ψ˚ “ tptAu, t∅uq, pt∅u, tFuq, ptB, Du, tEuqu

makes no difference to the purview states, resulting in

ϕepm, Zq “ IDpπepEF | ABD “ÒÒÓq, π
ψ˚

e pEF | ABD “ÒÒÓqq “ 0.

This occurs since B and D have opposite effects over the purview unit E, and by cutting
both inputs to E we avoid changing the repertoire. Therefore, M “ tA, B, Du does not exist
as a mechanism over the purview Z “ tE, Fu.

Figure 4. Integration. (a) System S analysed in this figure and in Figure 5. All units have τ “ 1 and η “ 0 (partially
deterministic MAJORITY gates). The remaining panels show on the top the time unfolded graph of different mechanisms
constraining different output purviews and on the bottom the probability distributions (effect repertoires). The black
bars show the probabilities when the mechanism is constraining the purview, and the white bars show the partitioned
probabilities. The “*” indicates the state selected by the maximum operation in the ID function. (b) The mechanism
M “ tA, Eu in state m “ tÒ, Óu constraining the purview Z “ tA, Eu. While the complete partition has nonzero intrinsic
information, the mechanism is clearly not integrated, as revealed by the MIP partition ψ˚ “ tptA, u, tAuq, ptE, u, tEuqu,
resulting in zero integrated information. (c) The mechanism M “ tA, Bu in state m “ tÒ, Òu constraining the purview
Z “ tA, Bu. The partition ψ˚ “ tptA, u, tA, Buq, ptBu, tHuqu has less intrinsic information than any other partition, i.e., it is
the MIP of this mechanism, and it defines the integrated information as 0.36. (d) The mechanism M “ tA, B, Du in state
m “ tÒ, Ò, Óu constraining the purview Z “ tE, Fu. The tri-partition ψ˚ “ tptAu, tHuq, ptH, u, tFuq, ptB, Du, tEuqu is the
MIP and it shows that the mechanism is not integrated, i.e, the mechanism has zero integrated information.
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4.3. Maximal Integrated Information

The last postulate we investigate is exclusion, which dictates that mechanisms are
defined over a definite purview, the one over which the mechanism is maximally irreducible
(has maximal integrated effect information). Using the system defined in Figure 4a, we
investigate two candidate mechanisms. First, we study the candidate mechanism M “

tAu “Ò, similar to the one in Figure 2. Since M “ tAu is first order (constituted of one
unit), there is only one possible partition (the complete partition)

ψ˚ “ ψ0 “ tptAu, t∅uq, pt∅u, tZuqu.

Figure 5. Exclusion. Causal graphs of different mechanisms constraining different purviews. The
system S used in these examples is the same as in Figure 4a. Each line shows the mechanism M
constraining different purviews Z. (a) The mechanism M “ tAu at state m “ tÒu. The bottom
line shows the purview Z P S with maximum integrated effect information and the MIP is the
complete partition. (b) The mechanism M “ tA, B, C, Du at state m “ tÒ, Ò, Ò, Óu. The bottom
line is the purview Z P S with maximum integrated effect information and the MIP is ψ˚ “

tptA, B, Cu, tA, B, Cuq, ptDu, t∅uqu.
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After computing ϕepm, Zq for all possible purviews Z P S, we find that the mechanism
has maximum integrated effect information over the purview Z˚e “ tA, Fu, thus according
to Equation (3) we have

ϕepmq “ IDpπepAF | A “Òq, π
ψ˚

e pAF | A “Òqq “ 0.36.

Next, similarly to Figure 3, we investigate the candidate mechanism M “ tA, B, C, Du “
tÒ, Ò, Ò, Óu. After computing ϕepm, Z, ψq over all possible purviews in the system (Z Ď S)
and over all possible partitions for each purview (ψ P ΨpABCD, Zq), we find that the
mechanism has maximum integrated effect information over the purview Z˚e “ tA, B, Cu,
with partition

ψ˚ “ tptA, B, Cu, tA, B, Cuq, ptDu, t∅uqu,

and that

ϕepmq “ IDpπepABC | ABCD “ÒÒÒÓq, π
ψ˚

e pABC | ABCD “ÒÒÒÓqq

“ 0.04.

Finally, IIT requires that mechanisms have both causes and effects within the system.
We perform an analogous process using the cause repertoire πcpZ | ABCD “ÒÒÒÓq (see
Equation (A2) and Figure 6) to identify the maximally irreducible cause purview Z˚c . We
find that Z˚c “ tA, B, Fuwith MIP

ψ˚ “ tptAu, tAuq, ptB, C, Du, tFuu,

and integrated cause information

ϕcpmq “ IDpπcpABF | ABCD “ÒÒÒÓq, π
ψ˚

c pABF | ABCD “ÒÒÒÓqq

“ 0.09.

Since M “ tA, B, C, Du “ tÒ, Ò, Ò, Óu has an irreducible cause (ϕc ą 0) and effect
(ϕe ą 0), we say that the mechanism ABCD exists within the system with integrated
information

ϕpmq “ mintϕepmq, ϕcpmqu “ 0.04.

This means that, given the system S, the mechanism M “ tA, B, C, Du Ď S in state
m “ tÒ, Ò, Ò, Óu P ΩM specifies the distinction

XptA, B, C, Du “ tÒ, Ò, Ò, Óuq

“
 

pZ˚c “ tA, B, Fu “ tÒ, Ó, Óu, Z˚e “ tA, B, Cu “ tÒ, Ò, Òu, ϕptA, B, C, Duq “ 0.04q
(

.
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Figure 6. Integrated cause information. (a) Causal graph of mechanism M “ tA, B, C, Du at state
m “ tÒ, Ò, Ò, Óu constraining the purview Z “ tA, B, Fu, which has the maximum integrated informa-
tion of all Z Ď S and defines the mechanism integrated information. (b) The black bars show the
probabilities when the mechanism is constraining the purview (cause repertoire), and the white bars
show the probabilities after the partition (partitioned cause repertoire). The “*” indicates the state
selected by the maximum operation in the ID function and defines Z˚

c .

5. Discussion

Mechanism integrated information ϕpmq is a measure of the intrinsic cause–effect
power of a mechanism M “ m within a system. It reflects how much a mechanism as a
whole (above and beyond its parts) constrains the units in its cause and effect purview. We
characterize three properties of information based on the postulates of IIT: causality, intrinsi-
cality, and specificity, and demonstrate that there is a unique measure (ID) that satisfies these
properties. Notably, intrinsicality requires that information increases when expanding
a purview with a fully constrained unit (expansion) but decreases when expanding a
purview with a fully unconstrained unit (dilution). In situations with partial constraint,
finding a unique measure gives us a principled way to balance expansion and dilution.

Early versions of IIT used the KLD to measure the difference between probability
distributions [4,16]. The KLD was a practical solution given its unique mathematical
properties and ubiquity in information theory; however, there was no principled reason to
select it over any other measure. In [3], the KLD was replaced by the EMD, which was an
initial attempt to capture the idea of relations among distinctions. The more two distinctions
overlap in their purview units and states, the smaller the EMD distance between them; this
distance was used as the ground distance to compute the system integrated information (Φ).
This aspect of the EMD is now encompassed by including relations as an explicit part of
the cause–effect structure, defined in a way that is consistent with the postulates of IIT [10].
The new intrinsic difference measure is the first principled measure based on properties
derived from the postulates of IIT. Importantly, ID is shown to be the unique measure that
satisfies the three properties—causality, intrinsicality and specificity—the KLD and EMD
measures do not satisfy intrinsicality or specificity. See Appendix C for an example of how
the different measures change the purview with maximum integrated information.

Furthermore, we define a set of possible partitions of a mechanism and its purview
(ΨpM, Zq), which ensures that the mechanism is destroyed (“distintegrated”) after the
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partition operation is applied. Previous formulations of mechanism integrated information
restricted the set of all possible partitions to bipartitions of a mechanism and its purview but
allowed for partitions that do not qualify as “disintegrating” the mechanism (for example,
cutting away a single purview unit) [3]. For most mechanisms the minimum information
partition ψ˚ still partitions the mechanism in two parts; exceptions tend to occur if multiple
inputs to the same unit counteract each other. The requirement for disintegrating partitions
is more consequential, especially for first-order mechanisms (those composed of a single
unit). Without this restriction, the ψ˚ of a first-order mechanism would always be to
cut away its weakest purview unit, and the integrated information of the mechanism
would then be equal to the information the mechanism specifies about its least constrained
purview unit. With the disintegrating partitions, a first-order mechanism must be cut away
from its entire purview, reflecting the notion that everything that a first-order mechanism
does is irreducible (since it is unified).

The particular partition ψ˚ P ΨpM, Zq that yields the minimum ID between partitioned
and unpartitioned repertoires defines the integrated information of a mechanism over a
purview. The balance between expansion and dilution, together with the set of possible
partitions, allows us to find the purviews Z˚c and Z˚e with maximum integrated cause and
effect information. Moreover, the ID measure identifies the specific cause state z˚c and effect
state z˚e that maximize the mechanism’s integrated cause and effect information. Finally,
the overall integrated information of a mechanism M in state m is the minimum between
its integrated cause and effect information: ϕpmq “ mintϕcpmq, ϕepmqu.

Mechanisms that exist within a system (ϕpmq ą 0) specify a distinction (a cause and
effect) for the system, and the set of all distinctions and the relations among them define
the cause–effect structure of the system [10]. As mentioned above (Section 3.1.5), it is in
principle possible that there are multiple solutions for Z˚c “ z˚c or Z˚e “ z˚e for a given
mechanism m in degenerate systems with symmetries in connectivity and functionality
(but note that ϕpmq is uniquely defined). However, by the exclusion postulate, distinctions
within the cause–effect structure of a conscious system should specify a definite cause
and effect, which means that they should specify a definite cause and effect purview in a
specific state. As also argued in [17], distinctions that are underdetermined should thus
not be included in the cause–effect structure until the tie between purviews or states can be
resolved. In physical systems that evolve in time with a certain amount of variability and
indeterminism, ties are likely short lived and may typically resolve on a faster scale than
the temporal scale of experience.

The principles and arguments applied to mechanism information will need to be
extended to relation integrated information and system integrated information, laying the
ground work for an updated 4.0 version of the theory. Relations describe how causes and
effects overlap in the cause–effect structure, by being over the same units and specifying
the same state. Like distinctions, relations exist within the cause–effect structure, and
their existence is quantified by an analogous notion of relation integrated information (ϕr).
Similarly, the intrinsic existence of a candidate system and its cause–effect structure as a
PSC with an experience is quantified by system integrated information (Φ). Both ϕr and Φ
measure the difference made by “cutting apart” the object (relation or system) according
to its ψ˚. As a measure of existence, the difference measures used for ϕr and Φ must also
satisfy the causality, intrinsicality and specificity properties. In the case of Φ, the expansion
and dilution properties will need to be adapted to the combinatorial nature of the measure,
since adding a single unit to a PSC doubles the number of potential distinctions.

According to IIT, a system is a PSC if its cause–effect structure is maximally irreducible
(it is a maximum of system integrated information, Φ). Moreover, if a system is a PSC,
then its subjective experience is identical to its cause–effect structure [3]. Since the quantity
and quality of consciousness are what they are, the cause–effect structure cannot vary
arbitrarily with the chosen measure of intrinsic information. For this reason, a measure of
intrinsic information that is based on the postulates and is unique is a critical requirement
of the theory.
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Appendix A. Cause and Effect Repertoires

The cause and the effect repertoire can be derived from the system defined in Equation (1).
The random variables Si define the system state space ΩS “

Śn
i“1 ΩSi , where

Ś

is the
cross product of each individual state space. We also require that the random variables are
conditional independent

ppst`1|stq “

n
ź

i“1

ppsi,t`1|stq,

that the transitions are time invariant

ppst`1|stq “ ppst|st´1q,

and that the probabilities are well-defined for all possible states

D ppst`1|stq for all st, st`1 P ΩS.

Given the former definitions, the stochastic system S corresponds to a causal network
where ppst`1|stq “ ppst`1|dopstqq [12,18,19].

We use uppercase letters as parameters of the probability function to define probability
distributions, e.g., ppSt`1|stq “ tppst`1|stq : st`1 P ΩSu, and the operators

ř

and
ś

are
applied to each state independently.

Appendix A.1. Causal Marginalization

Given a mechanism M Ď S in a state mt P ΩM and a purview Z Ď S, causal marginal-
ization serves to remove any contributions to the repertoire of states ΩZ that are outside
the mechanism M and purview Z. Explicitly, given the set W “ SzM, we define the effect
repertoire of a single unit Zi P Z as

πepZi | mq “
ÿ

wtPΩW

p
`

Zi,t`1 | mt, wt
˘

|ΩW |
´1.

Note that, for causal marginalization, we impose a uniform distribution as ppWtq. This
ensures that the repertoire captures the constraints due to the mechanism alone and not to
whatever external factors might bias the variables in W to one state or another.
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Given the set V “ SzZ, the cause repertoire for a single unit Mi P M, using Bayes’
rule, is

πcpZ | miq “

ÿ

vt´1PΩV

p
`

mi,t | Zt´1, vt´1
˘

ÿ

st´1PΩS

p
`

mi,t | st´1
˘

,

where again we impose the uniform distributions as ppVt´1q, ppZt´1q, and ppSt´1q.
Note that the transition probability function ppZt`1 | mtq not only contains dependen-

cies of Zt`1 on mt but also correlations between the variables in Z due to common inputs
from units in W, which should not be counted as constraints due to mt. To discount such
correlations, we define the effect repertoire over a set Z of r units Zi as the product of the
effect repertoires over individual units

πepZ | mq “
r
â

i“1
πepZi | mq, (A1)

where
Â

is the Kronecker product of the probability distributions. In the same manner,
given that the mechanism M has q units Mi, we define the cause repertoire of Z as

πcpZ | mq “

q
ź

i“1

πcpZ | miq

ÿ

zPΩZ

q
ź

i“1

πcpz | miq

. (A2)

Appendix A.2. Partitioned Repertoires

Given a partition ψ P ΨpM, Zq constituted of k parts (see Equation (4)), we can define
the partitioned repertoire

πψpZ | mq “
k
â

j“1
πpZj | mjq, (A3)

with πp∅|mjq “ πp∅q “ 1. In the case of mj “ ∅, πpZj|∅q “ πpZjq corresponds to an
unconstrained effect repertoire

πepZq “
r
â

i“1
πepZiq “

r
â

i“1

ÿ

stPΩS

ppZi,t`1 | stq|ΩS|
´1, (A4)

which follows from Equation (A1) and cause repertoire

πcpZq “
1
|ΩZ|

, (A5)

which follows from Equation (A2).

Appendix B. Full Statement and Proof of Theorem 1

We now give the full statement and proof of the Theorem 1, demonstrating the
uniqueness of the function f (see also [15,20]). We start with some preliminary definitions:

R` “ tx P R : x ą 0u, N2 “ t2, 3, 4, . . .u,

J “ p0, 1q, Ĵ “ p0, 1s, J̄ “ r0, 1s, K “ pJ̄ˆ J̄qzpĴˆ t0uq,

Iδpxq “ ty P J : |x´ y| ă δu.
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For each n P N2, we further define

Γn “

#

Xn “ px1, . . . , xnq : x1, . . . , xn P J̄ ,
n
ÿ

α“1

xα “ 1

+

,

Vn “ p1, 0, . . . , 0q P Γn, Un “

ˆ

1
n

, . . . ,
1
n

˙

P Γn,

∆n “ tpXn, Ynq P Γn ˆ Γn : pxα, yαq P K, for all α P t1, . . . , nuu.

Using these definitions, we further define the following properties.

Property I : Causality. Let pPn, Qnq P ∆n. The difference DpPn, Qnq is defined as
D : ∆n Ñ R, such that

DpPn, Qnq “ 0 ðñ Pn “ Qn.

Property II : Intrinsicality. Let pPl , Qlq P ∆l and pPm, Qmq P ∆m. Then

(a) expansion: DpV l bVm, Pl bQmq “ DpV l , Plq `DpVm, Qmq,

(b) dilution: DpPl bUm, Ql bUmq “
DpPl , Qlq `DpUm, Umq

m
,

where Pl b Qm “ pp1q1, . . . , p1qm, . . . , plq1, . . . , plqmq P Γlm and from Property I
DpUm, Umq “ 0.
Property III : Specificity. The difference must be state-specific, meaning there exists
f : K ÝÑ R such that for all pPn, Qnq P ∆n we have DpPn, Qnq “ f ppα, qαq, where
α P t1, . . . , nu, pα P Pn and qα P Qn. More precisely, we define

DpPn, Qnq :“ max
α
t| f ppα, qαq|u,

where f is continuous on K, analytic on Ĵˆ J and f p0, qαq is analytic on J.

The following lemma allows the analytic extension of real analytic functions.

Lemma A1 (See Proposition 1.2.3 in [21]). If f and g are real analytic functions on an open
interval U P R and if there is a sequence of distinct points txnun P U with x0 “ lim

nÑ8
xn P U

such that
f pxnq “ gpxnq,

then
f pxq “ gpxq, for all x P U.

Corollary A1 (See Corollary 1.2.6 in [21]). If f and g are analytic functions on an open interval
U and if there is an open interval W Ď U such that

f pxq “ gpxq, for all x P W,

then
f pxq “ gpxq, for all x P U.

The following lemma shows that a strict maximum over continuous functions, each
evaluated at fixed points, must hold for an open interval around such fixed points.

Lemma A2. Let gα : J Ñ R be continuous functions, where α P t1, . . . , nu, fix x1, . . . , xn P J. If
there exists α˚ such that for α ‰ α˚,

gα˚pxα˚q ą gαpxαq,
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then there exists δ ą 0 such that

max
α
tgαpx̂αqu “ gα˚px̂α˚q,

for all x̂α P Iδpxαq and for all α P t1, . . . , nu.

We now provide the solution to a functional equation similar to the Pexider logarithmic
equation [22].

Lemma A3. Let f , g, h : J Ñ R be analytic functions on J. Suppose the functional equation

| f ppqq| “ maxt|gppq|, |hppq|u `maxt|gpqq|, |hpqq|u,

holds for all pq P Iδpp1q1q, where Iδpp1q1q Ď J. Then there exists c, d P R such that

f pxq “ c logpxq ` d, for all x P J.

Proof. First, for some i P tg, hu suppose that there exists ppi, qiq P Jˆ J such that piqi P

Iδpp1q1q and

|ippiq| “ maxt|gppiq|, |hppiq|u

is a strict maximum. Then by Lemma A2 there exists δp ą 0 such that

|ippq| “ maxt|gppq|, |hppq|u, for all p P Iδpppiq. (A6)

Second, if there does not exist ppi, qiq P Jˆ J such that piqi P Iδpp1q1q and |ippiq| is a strict
maximum, then we set qi “ q1, pi “ p1 and δp “

δ
q1 so that Equation (A6) holds since

|gppq| “ |hppq| for all pp, qq P Jˆ J such that pq P Iδpp1q1q. Next, define δ1 :“ mintδ´ |piqi ´

p1q1|, δpq1u. Suppose that there exists qj P J such that piqj P Iδ1ppiqiq, and for some j P tg, hu,

|jpqjq| “ maxt|gpqjq|, |hpqjq|u

is a strict maximum. Then by Lemma A2 there exists δq ą 0 such that

|jpqq| “ maxt|gpqq|, |hpqq|u, for all q P Iδqpqjq. (A7)

Finally, if there does not exist qj P J such that piqj P Iδ1ppiqiq and |jpqjq| is a strict maximum,
then we set qj “ qi and δq “

δ1

pi
so that Equation (A7) holds since |gpqq| “ |hpqq| for all

pp, qq P Jˆ J such that pq P Iδ1ppiqiq. Let pq “ x and define δ2 :“ mintδ1´ |piqj´ piqi|, δq piu,
then

| f pxq| “ |ippq| ` |jpqq|, for all x P Iδ2ppiqjq.

Moreover, it follows that one of the following options must be true

f pxq “ ˘ippq ˘ jpqq, for all x P Iδ2ppiqjq.

Since the functions are analytic on J and therefore twice differentiable, then

B

Bq

„

B

Bp
r f pxqs



“ x
d

dx2 f pxq `
d

dx
f pxq “ ˘

B

Bq

„

B

Bp
ippq



˘
B

Bq

„

B

Bp
jpqq



“ 0.

Integrating with respect to x yields

f pxq “ c logpxq ` d,
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for c, d P R and for all x P Iδ2px1q where x1 “ p1q1. Since f is analytic on J and since
Iδ2px1q Ă J, by Corollary A1, we can extend f pxq such that

f pxq “ c logpxq ` d, for all x P J.

Lemma A4. If D : ∆n Ñ R satisfies properties I and III for some f : K ÝÑ R, then

f pp, pq “ 0, for all p P J̄.

Proof. Let P2 “ pp, 1´ pq P Γ2. By properties I and III

0 “ DpP2, P2q “ maxt| f pp, pq|, | f p1´ p, 1´ pq|u, for all p P J̄. (A8)

Theorem A1. Let pPn, Qnq P ∆n for some n P N2 and D : ∆n Ñ R where D satisfies properties I,
II and III. Then

DpPn, Qnq “ max
α
t| f ppα, qαq|u, (A9)

where for some k P Rzt0u,

f pp, qq “ k p log
ˆ

p
q

˙

, for all pp, qq P K. (A10)

Proof of Theorem A1. First we show that the function in Equation (A10) satisfies properties
I, II and III. To see that the function satisfies Property I, notice that for each pPn, Qnq P ∆n

where Pn ‰ Qn, since k ‰ 0, then there exists β P t1, . . . , nu such that

DpPn, Qnq “ max
α

"
ˇ

ˇ

ˇ

ˇ

kpα log
ˆ

pα

qα

˙
ˇ

ˇ

ˇ

ˇ

*

ě

ˇ

ˇ

ˇ

ˇ

ˇ

kpβ log

˜

pβ

qβ

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ą 0,

and for each Pn “ Qn,

DpPn, Pnq “ max
α

"
ˇ

ˇ

ˇ

ˇ

kpα log
ˆ

pα

pα

˙
ˇ

ˇ

ˇ

ˇ

*

“ 0.

To see that it satisfies Property II.a, for each Pl P Γl and for each Qm P Γm

DpV l bVm, Pl bQmq “ max
"
ˇ

ˇ

ˇ

ˇ

k log
ˆ

1
p1q1

˙
ˇ

ˇ

ˇ

ˇ

, 0
*

“

ˇ

ˇ

ˇ

ˇ

k log
ˆ

1
p1q1

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

k log
ˆ

1
p1

˙
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

k log
ˆ

1
q1

˙
ˇ

ˇ

ˇ

ˇ

“ max
"
ˇ

ˇ

ˇ

ˇ

k log
ˆ

1
p1

˙
ˇ

ˇ

ˇ

ˇ

, 0
*

`max
"
ˇ

ˇ

ˇ

ˇ

k log
ˆ

1
q1

˙
ˇ

ˇ

ˇ

ˇ

, 0
*

“ DpV l , Plq `DpVm, Qmq.

Similarly by Property II.b notice that for each pPl , Qlq P ∆l
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DpPl bUm, Ql bUmq “ max
α

"
ˇ

ˇ

ˇ

ˇ

kpα

m
log

ˆ

pα

qα

˙
ˇ

ˇ

ˇ

ˇ

*

“
1
m

max
α

"
ˇ

ˇ

ˇ

ˇ

kpα log
ˆ

pα

qα

˙
ˇ

ˇ

ˇ

ˇ

*

“
1
m

DpPl , Qlq.

It is clear that the function f in Equation (A10) satisfies Property III.
The remaining part of the proof is divided into two steps:

Step 1. First we show that under four assumptions, f satisfies properties I, II and III iff
f pp, qq “ kp log

´

p
q

¯

, k P Rzt0u.

Step 2. Next we show that if any of our assumptions is violated, then no suitable f exists.

Verification of Step 1. We apply Property II.a with P2 “ pp, 1´ pq, Q2 “ pq, 1´ qq for some
p, q P J where p ‰ q. We then have

DpV2 bV2, P2 bQ2q “ DpV2, P2q `DpV2, Q2q.

By Property III, the following identity holds

maxt| f p1, pqq|, | f p0, pp1´ qqq|, | f p0, p1´ pqqq|, | f p0, p1´ pqp1´ qqq|u

“ maxt| f p1, pq|, | f p0, 1´ pq|u `maxt| f p1, qq|, | f p0, 1´ qq|u.
(A11)

Our first assumption (AS1) states that there exists some p1, q1 P J such that | f p1, p1q1q| is a
strict maximum. By Lemma A2, there exists a δ ą 0 such that

| f p1, pqq| “ maxt| f p1, pq|, | f p0, 1´ pq|u `maxt| f p1, qq|, | f p0, 1´ qq|u, (A12)

for all pq P Iδpp1q1q. Further, by Lemma A3 there exists c, d P R such that

f p1, qq “ c logpqq ` d, for all q P J,

and since by Property III f is continuous, the application of Lemma A4 yields

lim
qÑ1

f p1, qq “ lim
qÑ1

c logpqq ` d “ d “ 0,

i.e., for k1 “ ´c, we have

f p1, qq “ k1 log
ˆ

1
q

˙

, for all q P J. (A13)

Now applying Property II.b for l “ 2, P2 “ V2, Q2 “ pr, 1´ rq for all r P J and for each
m P N2, we have

DpV2 bUm, Q2 bUmq “
1
m

DpV2, Q2q,

and by Property III

max
"
ˇ

ˇ

ˇ

ˇ

f
ˆ

1
m

,
r
m

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

f
ˆ

0,
1´ r

m

˙
ˇ

ˇ

ˇ

ˇ

*

“
1
m

maxt| f p1, rq|, | f p0, 1´ rq|u, (A14)

for all r P J. Our second assumption (AS2) states that there exists q1 P J such that | f p1, q1q| ą

| f p0, 1´ q1q|. For some a P t´1, 1u, we have

maxt| f p1, q1q|, | f p0, 1´ q1q|u “ a f p1, q1q.
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Further, by Lemma A2 and Equation (A13), there exists δ ą 0 such that

maxt| f p1, rq|, | f p0, 1´ rq|u “ a f p1, rq “ ak1 log
ˆ

1
r

˙

, for all r P Iδpq1q.

Plugging this result back into Equation (A14) yields

max
"
ˇ

ˇ

ˇ

ˇ

f
ˆ

1
m

,
r
m

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

f
ˆ

0,
1´ r

m

˙
ˇ

ˇ

ˇ

ˇ

*

“
ak1

m
log

ˆ

1
r

˙

, for all r P Iδpq1q. (A15)

Our third assumption (AS3) states that
ˇ

ˇ

ˇ
f
´

0, 1´r
m

¯
ˇ

ˇ

ˇ
is never a strict maximum in Equation (A15),

so that for some b P t´1, 1u, we have

max
"
ˇ

ˇ

ˇ

ˇ

f
ˆ

1
m

,
r
m

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

f
ˆ

0,
1´ r

m

˙
ˇ

ˇ

ˇ

ˇ

*

“ b f
ˆ

1
m

,
r
m

˙

, for all r P Iδpq1q.

Let q “ r
m and let I “ I δ

m

` r
m
˘

X I δ
m

` q1
m
˘

. Then by Equation (A15)

f
ˆ

1
m

, q
˙

“
km

m
log

ˆ

1
mq

˙

, for all q P I,

where km “
ak1
b . By Corollary A1, we can extend f

´

1
m , q

¯

to J

f
ˆ

1
m

, q
˙

“
km

m
log

ˆ

1
mq

˙

, for all q P J, (A16)

where km P t`k1,´k1u.

Let n P N2 and let 0 ă q2 ă
n´1
2n , then q2 P J. By Property II.b for l “ 2, P2 “

´

n´1
2n , n`1

2n

¯

, Q2 “ pq2, 1´ q2q and m “ pn´ 1qpn` 1q, we have

DpP2 bUm, Q2 bUmq “
1
m

DpP2, Q2q,

and by Property III

max
"
ˇ

ˇ

ˇ

ˇ

f
ˆ

1
2npn` 1q

,
q2

pn´ 1qpn` 1q

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

f
ˆ

1
2npn´ 1q

,
1´ q2

pn´ 1qpn` 1q

˙
ˇ

ˇ

ˇ

ˇ

*

“
1

pn´ 1qpn` 1q
max

"
ˇ

ˇ

ˇ

ˇ

f
ˆ

n´ 1
2n

, q2

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

f
ˆ

n` 1
2n

, 1´ q2

˙
ˇ

ˇ

ˇ

ˇ

*

.

By Equation (A16), we have

max
"
ˇ

ˇ

ˇ

ˇ

k2npn`1q

2npn` 1q
log

ˆ

n´ 1
2nq2

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

k2npn´1q

2npn´ 1q
log

ˆ

n` 1
2np1´ q2q

˙
ˇ

ˇ

ˇ

ˇ

*

“
1

pn´ 1qpn` 1q
max

"
ˇ

ˇ

ˇ

ˇ

f
ˆ

n´ 1
2n

, q2

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

f
ˆ

n` 1
2n

, 1´ q2

˙
ˇ

ˇ

ˇ

ˇ

*

.

Since q2 ă
n´1
2n ă 1

2 , this yields

ak2npn`1qpn´ 1q

2n
log

ˆ

n´ 1
2nq2

˙

“ max
"
ˇ

ˇ

ˇ

ˇ

f
ˆ

n´ 1
2n

, q2

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

f
ˆ

n` 1
2n

, 1´ q2

˙
ˇ

ˇ

ˇ

ˇ

*

,

for some a P t`1,´1u. Then we have that for the sequence h 1
2

:“
!

n´1
2n

)

n
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kpn pn log
ˆ

pn

q

˙

“ maxt| f ppn, qq|, | f p1´ pn, 1´ qq|u, (A17)

for all ppn, qq P h 1
2
ˆp0, pnq, where kpn “ apn k2npn`1q. Our fourth and last assumption (AS4)

is that | f p1´ pn, 1´ qq| is a strict maximum only for a finite number of pn P h 1
2
. More

specifically, let

P̄ “ tpn P h 1
2

: D q P p0, pnq s.t. | f p1´ pn, 1´ qq| ą | f ppn, qq|u.

Then (A4) states that suptP̄u ă 1
2 where, for convention, suptP̄u :“ ´8 if P̄ “ H. Let

n1 :“ 0 if P̄ “ H, else there exists n1 P N2 such that suptP̄u “ n1´1
2n1 . Define h11

2
“ t n`n1´1

2pn`n1qun.

Then for a fixed pn P h11
2
, there exists qn P p0, pnq such that

maxtb f ppn, qnq, | f p1´ pn, 1´ qnq|u “ b f ppn, qnq,

for some b P t`1,´1u. By Lemma A2, there exists δ ą 0 such that

maxtb f ppn, qq, | f p1´ pn, 1´ qq|u “ b f ppn, qq, for all q P Iδpqnq.

By Equation (A17), for In “ p0, pnq X Iδpqnq, we have

f ppn, qq “ kpn pn log
ˆ

pn

q

˙

, for all ppn, qq P h 1
2
ˆ In, (A18)

where the sign b was absorbed by the constant kpn . By Corollary A1, for a fixed p˚n P h 1
2
,

we can extend f pp˚n , qq to J, i.e.,

f pp˚n , qq “ kp˚n p˚n log
ˆ

p˚n
q

˙

, for all q P J.

For a fixed q˚ P J, since by Property III f is continuous, we have

lim
nÑ8

kpn “ k P t`k1,´k1u.

By Lemma A1, we can uniquely extend f ppn, q˚q to J such that

f pp, q˚q “ kp log
ˆ

p
q˚

˙

, for all p P J.

Since this is true for all q˚ P J, we have that

f pp, qq “ kp log
ˆ

p
q

˙

, for all pp, qq P pJˆ Jq.

Note that k “ 0 violates Property I since for some q P J and Q2 “ pq, 1´ qq ‰ V2, we have

DpV2, Q2q “ maxt| f p1, qq|, | f p0, 1´ qq|u “ 0.

By Property III, f is continuous in K and the following limits exist for all p, q P J:
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f p1, qq “ lim
pÑ1´

kp log
ˆ

p
q

˙

“ k log
ˆ

1
q

˙

,

f pp, 1q “ lim
qÑ1´

kp log
ˆ

p
q

˙

“ kp logppq,

f p0, qq “ lim
pÑ0`

kp log
ˆ

p
q

˙

“ 0,

f p0, 1q “ lim
pÑ0`

kp logppq “ 0,

f p0, 0q “ lim
pÑ0`

kp log
ˆ

p
p

˙

“ 0,

f p1, 1q “ lim
pÑ1´

kp log
ˆ

p
p

˙

“ 0.

Consequently,

f pp, qq “ kp log
ˆ

p
q

˙

, for all pp, qq P K.

Verification of Step 2. Up until here we have showed that Equation (A10) not only defines
a function which satisfies properties I, II and III, but it also defines the only function which
satisfies properties I, II and III for l “ m “ 2 given the following assumptions

AS1: D p1, q1 P J such that | f p1, p1q1q| is a strict maximum in Equation (A11),
AS2: D q1 P J such that | f p1, q1q| ą | f p0, 1´ q1q| in Equation (A14),

AS3:
ˇ

ˇ

ˇ
f
´

0, 1´r
m

¯
ˇ

ˇ

ˇ
is never a strict maximum in Equation (A15),

AS4: suptP̄u ă 1
2 .

All that is left to prove the theorem is to show that violating any of these assumptions
also violates some property. First assume that (A1), (A2) and (A3) are true but (A4) is
violated, i.e., suptP̄u “ limnÑ8 pn “

1
2 for pn P h 1

2
. Let p1n “ 1´ pn, q1 “ 1´ q and

let g “ t1´ piui be the sequence of ordered elements in P̄ such that pi ă pi`1. Then by
Equation (A17), for all p1n P g, there exists q1 P pp1n, 1q such that

f pp1n, q1q “ kpn1
p1´ p1nq log

ˆ

1´ p1n
1´ q1

˙

.

By Lemma A2, for a fixed p˚n P g, there exists δ1 ą 0 such that

f pp˚n , qq “ kp˚n p1´ p˚nq log
ˆ

1´ p˚n
1´ q

˙

, for all q P Iδ1pq
1q.

Since this holds for all p˚n P g, we have

f
`

p1n, q
˘

“ kpn1
p1´ p1nq log

ˆ

1´ p1n
1´ q

˙

, for all pp1n, qq P gˆ Iδ1pq
1q.

Similarly to Equation (A18), using the sequence g instead of the sequence h 1
2
, this result

can be extended to Jˆ J, i.e.,

f pp, qq “ kp1´ pq log
ˆ

1´ p
1´ q

˙

, for all pp, qq P pJˆ Jq. (A19)

Applying Property II.b to l “ m “ 2, P2 “ pp, 1´ pq, Q2 “ pq, 1´ qqwith q ‰ p yields

DpP2 ˚U2, Q2 ˚U2q “
1
2

DpP2, Q2q.
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Further, by Property III

max
"

ˇ

ˇ

ˇ
f
´ p

2
,

q
2

¯
ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ

ˇ

f
ˆ

1´ p
2

,
1´ q

2

˙
ˇ

ˇ

ˇ

ˇ

*

“
1
2

maxt| f pp, qq|, | f p1´ p, 1´ qq|u.

However this contradicts Equation (A19) since

max

#
ˇ

ˇ

ˇ

ˇ

ˇ

k
´

1´
p
2

¯

log

˜

1´ p
2

1´ q
2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

ˇ

k
ˆ

1´
1´ p

2

˙

log

˜

1´ 1´p
2

1´ 1´q
2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

+

‰
1
2

max
"
ˇ

ˇ

ˇ

ˇ

kp1´ pq log
ˆ

1´ p
1´ q

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

kp log
ˆ

p
q

˙
ˇ

ˇ

ˇ

ˇ

*

.

Next we assume that (AS1) and (AS2) are true but (AS3) is violated, meaning that there
exists pm1, r1q P N2 ˆ Iδpq1q such that | f

´

0, 1´r
m

¯

| is a strict maximum in Equation (A15), i.e.,

f
ˆ

0,
1´ r1

m1

˙

“
ak1

m1
log

ˆ

1
r1

˙

,

for some a P t´1, 1u. For some q1 “ 1´r1
m1 P I δ

m1

´

1´q1
m1

¯

, we have

f
`

0, q1
˘

“
ak1

m1
log

ˆ

1
1´m1q1

˙

.

By Lemma A2, there exists δ1 ą 0 such that

f p0, qq “
ak1

m1
log

ˆ

1
1´m1q

˙

, for all q P Iδ1
`

q1
˘

.

By Corollary A1, we can extend f p0, qq to
´

0, 1
m1

¯

, i.e.,

f p0, qq “
ak1

m1
log

ˆ

1
1´m1q

˙

, for all q P
ˆ

0,
1

m1

˙

.

However, this implies that f is discontinuous and violates Property III since

lim
qÑ 1

m1

f p0, qq “ lim
qÑ 1

m1

ak1

m1
log

ˆ

1
1´m1q

˙

“ ˘8.

We now assume that AS1 is true but AS2 is violated, i.e.,

| f p1, qq| ď | f p0, 1´ qq|, for all q P J.

For some p1, q1 P J and δ ą 0, by Equation (A11) and by Equation (A13)
ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
pq

˙
ˇ

ˇ

ˇ

ˇ

“ | f p0, 1´ pq| ` | f p0, 1´ qq|, for all pq P Iδpp1q1q. (A20)

Let q1, q2 P J and let p1q1, p1q2 P Iδ1pp1q1q, then

Fpq1q “

ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
q1

˙
ˇ

ˇ

ˇ

ˇ

´ | f p0, 1´ q1q| “ | f p0, 1´ p1q| ´
ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
p1

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
q2

˙
ˇ

ˇ

ˇ

ˇ

´ | f p0, 1´ q2q| “ Fpq2q.
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Therefore, Fpqq “ d is constant and

| f p0, 1´ qq| “
ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
q

˙
ˇ

ˇ

ˇ

ˇ

` d, for all q P I δ
p1
pq1q.

Plugging this back into Equation (A20) we see that d “ 0, and for some a P t´1, 1u, there
exists q˚ P I δ

p1
pq1q such that

f p0, q˚q “ ak1 log
ˆ

1
1´ q˚

˙

.

By Lemma A2, there exists δ1 ą 0 such that

f p0, qq “ ak1 log
ˆ

1
1´ q

˙

, for all q P Iδ1pq
˚q,

and by Corollary A1

f p0, qq “ ak1 log
ˆ

1
1´ q

˙

, for all q P J.

However this is a contradiction since by Equation (A13), for k1 ‰ 0 and x ă 1
2 , we have

| f p1, xq| “
ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
x

˙
ˇ

ˇ

ˇ

ˇ

ą

ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
1´ x

˙
ˇ

ˇ

ˇ

ˇ

“ | f p0, 1´ xq|.

Note that k1 “ 0 violates Property I since for any q P J and Q2 “ pq, 1´ qq ‰ V2, we have

DpV2, Q2q “ max
"
ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
q

˙
ˇ

ˇ

ˇ

ˇ

,
ˇ

ˇ

ˇ

ˇ

k1 log
ˆ

1
1´ q

˙
ˇ

ˇ

ˇ

ˇ

*

“ 0.

Finally, if AS1 is violated then there does not exist p1, q1 P J such that | f p1, p1q1q| is a
strict maximum in Equation (A11). Hence, for all p, q P J, there exists x1 P tpp1´ qq, qp1´
pq, p1´ pqp1´ qqu such that

| f p0, x1q| “ maxt| f p1, pq|, | f p0, 1´ pq|u `maxt| f p1, qq|, | f p0, 1´ qq|u.

If | f p0, x1q| is a strict maximum, then by Lemma A2 there exists δ ą 0 such that

| f p0, xq| “ maxt| f p1, pq|, | f p0, 1´ pq|u `maxt| f p1, qq|, | f p0, 1´ qq|u, (A21)

for all x P Iδpx1q. If there does not exist x1 P tpp1´ qq, qp1´ pq, p1´ pqp1´ qqu such that
| f p0, x1q| is a strict maximum, then there must exist x P tpp1´ qq, qp1´ pq, p1´ pqp1´ qqu
such that Equation (A21) holds for all x P J. In both cases, by Lemma A3 there exists c, d P R
such that

f p0, xq “ c logpxq ` d, for all x P J.

However, this implies that f is discontinuous since

lim
xÑ0

f p0, xq “ lim
xÑ0

c logpxq ` d “ ˘8,

even though f p0, 0q “ 0 by Lemma A4.

Appendix C. Comparison between ID and EMD

Since the different information measures satisfy different properties, the distinctions
that exist in a given system may be different depending on the information measure used
to compute integrated information. Here, using the same system used in Figure 5, we
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provide an example where the cause purview with maximum integrated information is
larger when using the EMD measure (Figure A1a) when compared to the same mechanism
when using the ID measure (Figure A1b).

Figure A1. Comparison between earth mover’s distance (EMD) and ID. Using the same system
S used in Figure 4a, we find the cause purview with maximum integrated information for the
mechanism M “ tA, Bu in state m “ tÒ, Òu, which is larger when using the EMD measure (a) when
compared to the ID measure (b). The integrated information when using the EMD measure is also
larger than the ID measure.
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