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Introduction
Brain plasticity is the ability of the brain to change its activity and 
modify its connections throughout life in response to extrinsic or 
intrinsic stimuli. Indeed, synaptic plasticity supports learning and 
memory processes (Konorski, 1948) during which the strength and 
efficacy of the synaptic transmission change between neurons, 
accompanied by structural modifications of spines, dendrites and 
axons. We will describe the role of cytokines in plasticity such as 
long-term potentiation (LTP), a key process for memory formation 
involving N-methyl-d-aspartate receptors (NMDAR) and α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPAR; Bear, 1994), and synaptic scaling, an operation by 
which a neuron adjusts the postsynaptic strength of all its synapses 
in order to maintain normal neuronal network functions 
(Turrigiano, 2008). Neurons were, for a long time, thought to be 
the sole actors involved in plasticity but over the last decades, the 
roles of glial cells have switched from passive homeostatic ele-
ments to active modulators of synaptic plasticity and information 
processing. Among these glial cells are astrocytes that engulf syn-
apses and surround blood vessels. Their many functions involve, 
among others, uptake and clearance of neurotransmitters such as 
glutamate and gamma aminobutyric acid (GABA; Sattler and 
Rothstein, 2006; Schousboe and Waagepetersen, 2005) and regula-
tion of synaptic functions (Halassa and Haydon, 2010). Microglial 
cells also play a key role in modulating neuronal plasticity. They 
are a specialised population of tissue-resident macrophages 
broadly distributed in the brain parenchyma. Resting microglial 
cells are constantly scanning their environment by targeting 

synapses to monitor and regulate neuronal activity (Dissing-Olesen 
et al., 2014; Li et al., 2012). In response to infections, stress, degen-
erative diseases or any changes in the nervous system both acti-
vated astrocytes and microglia produce cytokines that modulate a 
large variety of physiological and pathological processes (Hanisch, 
2002; Hanisch and Kettenmann, 2007; Sofroniew, 2013).

Cytokines are small pleiotropic signalling proteins classically 
secreted in response to pathogens or injury by cells of the immune 
system, including monocytes, macrophages, lymphocytes and 
vascular endothelial cells. This group of proteins comprises inter-
leukins, chemokines, tumour necrosis factors, interferons, growth 
and cell stimulating factors and neurotrophins. In the brain, 
cytokines are constitutively expressed in various brain regions by 
activated glial and neuronal cells and are involved in several nor-
mal and pathological processes including sleep regulation 
(Krueger, 2008), neuronal development (Deverman and 
Patterson, 2009), alteration of the blood–brain barrier (Yarlagadda 
et  al., 2009), modulation of neurotransmitter metabolism and 
synaptic plasticity (Miller et al., 2009; Raison et al., 2006). There 
is an increased interest for the role of cytokines in the brain due 
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to the presence of inflammation in the brain in a wide range of 
diseases such as Alzheimer’s disease (AD), major disorder 
depression, epilepsy, stroke, amyotrophic lateral sclerosis and 
arthritis. In this review, we will discuss how cytokines modulate 
learning and memory and plasticity in the normal central nervous 
system (CNS) function and under pathological inflammatory 
conditions. Learning and memory experiments provide a signifi-
cant amount of data as they are an effective way of integrating 
molecular and cellular plasticity mechanisms with systems-level 
and behavioural changes. We will focus mainly on interleukin 1β 
(IL-1β), interleukin 6 (IL-6) and tumour necrosis factor α (TNF-
α) as they are the most studied cytokines in the brain so far.

The role of cytokines (IL-1β, IL-6, TNF-
α) on learning, memory and plasticity in 
physiological conditions

Cytokines and their receptors are expressed in the brain by neu-
rons, microglia and astrocytes and their involvement in struc-
tural changes at the synaptic level was reported over 20 years 
ago (for review, Boulanger et al., 2001; Tonelli and Postolache, 

2005). Periodic changes in synaptic transmission that underlie 
modification of behavioural states are often associated with 
adjustments in neurotransmitters at the synapse and those are 
influenced by cytokines (Miller et al., 2013). An overview of the 
effects of each cytokine on plasticity and learning and memory 
are summarised in Figure 1 and the mechanisms of action are 
presented in Figure 2.

IL-1β.  Under normal resting conditions, IL-1β levels are usually 
below the level of detection and a stimulus is necessary to aug-
ment IL-1β expression. Many reports support the role of IL-1β in 
spatial recognition and contextual learning. IL-1β messenger 
RNA (mRNA) expression was found to be induced following fear 
conditioning and during spatial memory tasks (Depino et  al., 
2004; Goshen et al., 2007; Labrousse et al., 2009). No impairment 
was detected in IL-1 receptor (IL-1r) knockout (KO) mice for 
auditory cued memory nor visual memory (Avital et al., 2003) and 
intrahippocampal injection of IL-1β after training impaired the 
consolidation of contextual but not auditory fear conditioning 
memory (Gonzalez et al., 2009). However, mice depleted of any 
endogenous IL-1 receptor displayed hippocampus-dependent 
learning deficits (Avital et  al., 2003), which highlight the 

Figure 1.  Summary of the effects of cytokines on learning, memory and plasticity.
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Figure 2.  Overview of the major mechanisms of action of cytokines on plasticity and learning and memory. Stimuli of different intensity and 
duration activate the production of cytokines IL-1β, TNF-α and IL-6 that in turn modulate several metabolic and molecular pathways, ultimately 
affecting neurocircuits that regulate learning and memory function. The strength and duration of the stimulus determine the concentration and 
production levels of cytokines, leading the cytokine response to generate either beneficial effects on learning and memory or detrimental effects 
that ultimately progress towards neuronal death and cognitive deficits. Cytokine production also activates other inflammatory systems like PGE2, 
nitric oxide and other chemokines that will impact on the inflammatory status of the brain and the learning, memory and plasticity responses.
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complexity of IL-1 function in the brain (Table 1) and point to a 
possible role of IL-1β and IL-1α in normal memory function. A 
few studies have also shown that IL-1β is induced during short- 
and long-term plasticity and is necessary for LTP maintenance 
(Avital et al., 2003; del Rey et al., 2013). It is important to stress 
that IL-1 effects on memory are dose- and age-dependent (see 
Table 1): at low concentrations, injections of IL-1β appeared to 
promote synaptic plasticity and improved performance in passive 
avoidance conditioning whereas injections of higher IL-1β doses 
following a learning task resulted in impaired memory (Brennan 
et  al., 2003; Goshen et  al., 2007; Yirmiya et  al., 2002). Most 
reports use ‘adult’ mice, usually between 2- and 4-month-old; 
however, an interesting study points out that the role of IL-1 might 
change when animals get older as only young (3 months) but not 
older mice (6 months) display deficits in spatial recognition 
(Takemiya et al., 2017). The authors suggest that synaptic sensi-
tivity to IL-1β and that IL-1β function might evolve with age and 
with the appearance of age-related brain inflammation and eleva-
tion of proinflammatory molecules.

Peripheral IL-1β injection stimulates the release of monoam-
ines in the brain (Song et al., 1999; Zalcman et al., 1994), which 
are known to modulate learning and memory (for review, Myhrer, 
2003); for example, passive avoidance and acquisition of the 
water maze task were impaired in rats treated with a norepineph-
rine agonist (Sirviö et al., 1992); spatial memory performance was 
impaired in rats treated with 5-HT receptor agonist (Carli et al., 
1992) and in rats having depleted dopamine (Whishaw and 
Dunnett, 1985). IL-1β can also modulate plasticity and memory 
by promoting the production of neurotrophic factors: nerve 
growth factor (NGF) stimulates acetylcholinesterase activity and 
facilitates LTP induction (Conner et al., 2009); brain-derived neu-
rotrophic factor (BDNF) activates multiple signalling pathways 
involved in synaptic plasticity and memory formation such as 

TrkB–ERK pathway that leads to glutamate and GABA release, 
potentiation of NMDAR and upregulation of membrane AMPAR 
(reviewed in the study by Cunha et al., 2010).

IL-6.  Rodent studies have shed light on the role of IL-6 in learn-
ing and memory (Figure 1) in different brain regions. IL-6 KO 
mice showed deficits in spatial learning tasks (Braida et  al., 
2004) and when IL-6 was blocked via the injection of anti-IL-6 
antibodies in orbitofrontal cortex (OFC), rats had deficits in a 
reversal learning task (Donegan et  al., 2014). IL-6 role in the 
striatum was investigated by Brennan et al; they showed that an 
intraperitoneal (IP) injection of IL-6 prior to an escape/avoidance 
task did not have any effect on the performance of the animal 
(Brennan et al., 2004). This task involves the dorsal striatal learn-
ing system and it is possible that IL-6 might not be required in 
that instance, or that the cytokine concentration was too low to 
have an effect. Several publications have also described a role of 
IL-6 in the hippocampus. Hippocampal-dependent avoidance 
learning performance was impaired when IL-6 was injected in 
the hippocampus (Ma and Zhu, 2000). Young and adult IL-6 KO 
mice perform better in a radial maze task compared to their wild-
type (WT) counterparts (Braida et al., 2004); this difference was 
particularly noticeable in young mice, which suggest that the 
chronic lack of IL-6 facilitates learning and memory processes at 
a juvenile stage. IL-6 mRNA levels were upregulated after LTP 
induction in vitro and in freely moving rats, and blocking IL-6 
led to prolonged LTP at the perforant path and improved memory 
in a Y-maze task (Balschun et al., 2004). Overall, these results 
suggest that IL-6 production and function in memory and plastic-
ity might vary with age and brain region (Table 2).

The mechanisms by which IL-6 modulates cognitive function 
are far from being elucidated (Figure 2). Decreased ERK1/2 acti-
vation after IL-6 application correlates with impairments of LTP 

Table 1.  Dose- and age-dependent effects of IL-1 on learning and memory.

References Brain region Animal model and com-
pound concentrations

Age Task Effects

Goshen (2007) Hippocampus IL-1ra overexpression; 
IL-1ra 100 μg/mouse IL-1β 
low 1 ng or high 10 ng/
mouse

Mice 2–4 months old Contextual fear 
conditioning; water 
maze

Deficit

Brennan (2003); Yirmiya 
(2002)

Low-dose IL-1β 1–3 μg/kg; 
IL-1β 10 ng/rat

Brennan: rats 2-month-
old Yirmiya: rats 
6–8 months old

Passive avoidance Improvement

Goshen (2007); Yirmiya 
(2002)

High-dose IL-1β 
6–1000 μg/kg; IL-1ra 
100 μg/rat

Yirmiya: rats 6–8 months 
old

Fear conditioning; 
passive avoidance

Deficit

Takemiya (2017) IL-1ra knockout; IL-1β 
knockout;

Mice 3 and 6 months old Water maze Deficit for 
young mice

Avital (2003); Matousek 
(2010); Moore (2009)

IL-1 receptor type 1 
knockout or IL-1β overex-
pression

Avita: mice 2–4 months 
old; others: adult mice

Contextual fear con-
ditioning; water maze 
(spatial version)

Deficit

Avita (2003); Goshen 
(2007); Gonzalez (2009)

Amygdala; non- 
hippocampal-
dependent tests

IL-1ra knockout; IL-1ra 
overexpression; IL-1ra 
100 μg/mouse IL-1β low 
1 ng or high 10 ng/mouse; 
IL-1β 5 ng/hippocampus

Mice 2–4 months old Auditory cued fear 
conditioning; water 
maze (visual version)

No effect

IL: interleukin.
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(Tancredi et al., 2000). A hypothesis is that the memory facilita-
tion observed in mice lacking IL-6 could be due to the absence of 
inhibition from the endogenous opioid system as µ-opioid recep-
tors were downregulated in IL-6 KO mice (Bianchi et al., 1999) 
and therefore unable to dampen learning and memory (Ukai 
et al., 2000; Ukai and Lin, 2002). IL-6 is also known to interact 
with the cholinergic system and peripheral injection of this 
cytokine reduced scopolamine-induced impairment of a passive 
avoidance task (Bertolucci et al., 1997). Moreover, intracellular 
calcium response to NMDA or glutamate was enhanced follow-
ing chronic treatment of cultured cerebellar-granule neurons with 
IL-6 (Holliday et al., 1995; Qiu et al., 1995) meaning that IL-6 
can also potentiate neurotransmitter responses and thus any 
dependent behaviour.

TNF-α.  Very few studies have investigated TNF-α role under 
physiological conditions. Mice lacking TNF-α performed poorly 
in a novel object recognition task and in the Barnes maze test that 
evaluates spatial memory and learning effectiveness (Baune 
et al., 2008). A positive effect of TNF-α on learning and memory 
was also described in an escape/avoidance task where rats 
injected with TNF-α (6 μg/kg, intraperitoneal) made more avoid-
ance responses and fewer escape responses compared to controls 
(Brennan et al., 2004).

TNF-α role in synaptic activity has been more extensively 
studied. TNF-α regulates synaptic scaling by promoting the 
insertion of AMPAR lacking GluR2 subunit at the plasma mem-
brane of synapses, hereby promoting excitatory signalling over 
inhibitory signalling. TNF-α also modulates gliotransmission by 

elevating astrocytic calcium levels which in turn increase by two-
fold the number of glutamatergic exocytic vesicles. Released glu-
tamate activates neuronal NMDAR at granule cells synapses of 
the dentate gyrus, hereby increasing excitatory synaptic activity 
and potentiation of GC synapses (Santello et al., 2011).

Beattie et al. showed, using neuronal cultures and acute hip-
pocampal slices, that TNF-α was required for preservation of syn-
aptic strength and increasing the number of AMPAR at the 
membrane, the number of synapses and the frequency of minia-
ture excitatory post-synaptic currents (Beattie et  al., 2002). 
Concomitant to these changes, TNF-α was found responsible for 
an increase in spine size of dendritic branches with recent spine 
loss, which constitute another synaptic scaling feature (Barnes 
et al., 2017). Other studies have confirmed that constitutive TNF-
α is necessary for maintaining AMPAR at the synapse, and 
described how TNF-α also triggered GABAA receptors internali-
sation, highlighting the unique ability of this cytokine to modulate 
both excitatory and inhibitory plasticity (Stellwagen et al., 2005; 
Stück et al., 2012). Even though TNF-α can be produced by neu-
rons, the above effects were generated by glial TNF-α in response 
to extracellular glutamate (Stellwagen and Malenka, 2006).

The role of TNF-α in other forms of plasticity is unclear. 
Some studies reported that LTP induction or maintenance did not 
require TNF-α as TNF-α KO mice displayed normal LTP in the 
CA1 pyramidal layer (Albensi and Mattson, 2000; Stellwagen 
and Malenka, 2006). However, a recent report highlighted a sig-
nificant TNF-α-dependent inhibition of LTP in the stratum radia-
tum but not the stratum oriens of rats after either high-frequency 
priming stimulation or treatment with TNF-α (1.8 nM) via the 

Table 2.  Effects of IL-6 on learning and memory.

References Brain region Mouse model Task Effects

Braida (2004) Hippocampus IL-6 knockout Radial maze Facilitatory effect
Heyser (1997) IL-6 overexpressed 

(GFAP-IL-6 transgene)
Discriminated avoidance task Deficit (increases 

with age)
Ma and Zhu (2000) IL-6 infusion Passive avoidance task Deficit
Wu and Lin (2008) IL-6 infusion Forced swim task Increased immobility

IL-6 inhibitor Forced swim task Reduced immobility
Amygdala IL-6 infusion Forced swim task Increased immobility

IL-6 inhibitor Forced swim task Reduced immobility
Donegan (2014) Orbitofrontal 

cortex
Anti-IL-6 antibodies Reversal learning (attentional set shifting 

test) after chronic intermittent cold (CIC) 
stress

Deficit

Donegan (2014) IL-6 overexpression 
(AAV vector)

Reversal learning (attentional set shifting 
test) after chronic intermittent cold (CIC) 
stress

Deficit attenuated

Wu and Lin (2008) Frontal cortex IL-6 infusion or IL- 6 
inhibitor

Forced swim task No effect

Brennan (2004) Dorsal striatum IP injection of IL-6 Leverpress escape/avoidance task No effect
Donegan (2014) Anti-IL-6 antibodies Reversal learning (attentional set shifting 

test) after chronic intermittent cold (CIC) 
stress

No effect

Roberts (2019) Limbic and  
hypothalamic 
regions

IL-6 overexpression 
(GFAP-IL-6 transgene)

Open field, light/dark transfer, digging 
tests

Deficit

Tail suspension test No effect
Forced swim task Deficit

IL: interleukin; GFAP: glial fibrillary acidic protein; AAV: adeno-associated virus; IP: intraperitoneal.
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phosphorylation of p38-MAPK, ERK and JNK (Singh et  al., 
2019), pointing to a differential regulation of LTP in the CA1 
basal and apical dendrites. Findings regarding TNF-α and LTD 
are also conflicted. Although Albensi et al. showed that TNF-α is 
a key factor for the induction of hippocampal LTD via nuclear 
factor kappa B (NFκB) activation (Albensi and Mattson, 2000), 
that was not the case in other laboratories (Stellwagen and 
Malenka, 2006). Overall, these varying results could be explained 
by different experimental conditions such as theta burst or high-
frequency stimulation, the area in which the stimulation and 
recordings are made, the use of different TNF-α concentration, 
time of incubation, cell culture or brain slices.

The role of cytokines in plasticity, learning 
and memory under inflammatory conditions

Central and peripheral inflammation in response to pathogens, 
injury or disease is a defence mechanism by which microglia and 
astrocytes become activated and potentially produce chemoat-
tractant proteins that promote extravasation of monocytes from 
the periphery into the brain (Ransohoff et al., 2003). Therefore, in 
the inflamed brain, cytokines are produced by microglia, astro-
cytes, neurons, peripheral inflammatory cells, endothelial cells, 
pericytes and choroid plexus; and cytokine receptors are present 
on neurons, astrocytes, microglia and vascular endothelial and 
perivascular cells (Kennedy and Silver, 2016; Konsman et  al., 
2006; Verma et al., 2006). TNF-α, IL-1β and IL-6 have the abil-
ity to stimulate each other’s production and can act synergisti-
cally (Donzis and Tronson, 2014) to modulate neuronal responses, 
plasticity and learning and memory (Figure 2), often translated 
by an elevated excitability of the brain and learning and memory 
changes that we describe below.

IL-1β.  A detrimental role of IL-1β on learning and memory was 
described in an inflammatory environment (Figure 1) created by 
generating chronic elevated IL-1 levels in the brain. Spatial 
memory deficits were reported after chronic injection of IL-1β 
into the lateral ventricles of rats in an eight-arm radial maze 
(Taepavarapruk and Song, 2010). Mouse models of inflammation 
using chronic hippocampal overexpression of IL-1β for 2 weeks 
led to the appearance of inflammatory markers such as activated 
glia, elevated prostaglandin E2 (PGE2), increased hippocampal 
proinflammatory cytokine and chemokine mRNAs and lower 

levels of the plasticity-related gene Arc (Hein et al., 2010; Moore 
et al., 2009). These transgenic mice displayed delayed acquisi-
tion and decreased retention in the spatial water maze task, and 
impaired long-term contextual fear memory, while hippocampal-
independent and short-term memory remained intact (Hein et al., 
2010; Moore et al., 2009).

Models of peripheral infections have also been used to study 
cytokines in the brain. Peripheral infection can cause significant 
impairment of cognitive functions in individuals already suffering 
from neurodegenerative disease (Table 3; Perry et al., 2003) and 
to a lesser extent in healthy individuals (Dantzer et  al., 2008). 
When injected intraperitoneally with Escherichia coli, IL-1β is 
upregulated in the aged rat hippocampus (Barrientos et al., 2009). 
The involvement of IL-1β in learning and memory was also stud-
ied in mice injected with Legionella pneumophila before subject-
ing them to the Morris water maze (MWM). Sick mice displayed 
impaired learning; their task performance was, however, restored 
to control levels if they were treated with an anti-IL-1β antibody 
(Gibertini et  al., 1995). It is worth noticing that the effects of 
IL-1β depend (1) on the intensity of the protocol, as a high fre-
quency of training sessions were more likely to highlight an 
IL-1β–related memory impairment in rodents than when spaced 
protocols were used (Gibertini, 1998) and (2) on the concentration 
of IL-1β that is injected in the animal, with low dose (100 ng/
mouse) leading to learning impairment and high dose of IL-1β 
(1000 ng/mouse) facilitating spatial navigation learning (Gibertini, 
1998). Lipopolysaccharide (LPS) is another compound regularly 
used to study the effects of cytokines during an infection and it 
classically generates sickness behaviour-related symptoms 
(Dantzer, 2001; Goshen et al., 2008; Kent et al., 1992; Larson and 
Dunn, 2001; Maier and Watkins, 1998). Following LPS injection 
in mice lacking caspase-1, the enzyme that cleaves the inactive 
pro-IL-1 into its active form, mice displayed reduced sickness 
behaviours and decreased levels of proinflammatory markers 
such as PGE2 (Mastronardi et  al., 2007). IP injection of LPS 
increased IL-1β protein levels in the cortex, hippocampus and 
hypothalamus of rat (Nguyen et al., 1998) and impaired contex-
tual but not auditory fear conditioning (Nguyen et al., 1998; Pugh 
et al., 1998), an effect that was abolished by subcutaneous injec-
tion of the endogenous antagonist IL-1ra (Pugh et al., 1998). A 
mouse model of septic encephalopathy with blood–brain barrier 
disruption was characterised by astrogliosis and upregulation of 
hippocampal IL-1β and its receptor IL-1R1, and altered LTP was 
recovered when hippocampal slices were pre-incubated with an 

Table 3.  Effects of cytokines on patient’s cognition in different conditions.

References Condition Cytokine Effects

Perry et al., (2003) Peripheral infection added to 
neurodegenerative disease

IL-1β Cognitive impairment

Dantzer (2008) Peripheral infection in healthy 
individuals

IL-1β Cognitive impairment

Weaver (2002), Economos (2013), Elderkin-Thompson 
et al. (2012), Foster (2002), Palotás (2002)

Chronic inflammatory diseases; 
ageing

IL-6 Sickness and depressive behaviours; 
Cognitive decline

Cohen (2003) LPS injection IL-6 Declarative and working memory 
impairments

Mao (2016), Mutso (2012) Chronic pain TNF-α Memory deficits, reduced hippocampal 
volume

IL: interleukin; LPS: lipopolysaccharide; TNF: tumour necrosis factor.
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IL-1R1 antagonist (Imamura et al., 2011). IL-1β impairment of 
LTP was recorded in the Schaffer collateral–CA1 synapses and in 
the associational/commissural fibre–CA3 synapses; LTP deficit 
was found to be dependent on the activation of mitogen-activated 
protein kinases (MAPKs) and the presence of NMDAR (Hoshino 
et al., 2017; Kaminska et al., 2009). Interestingly, LTP was not 
impaired at mossy fibre–CA3 synapses, possibly because these 
synapses are NMDAR-independent (Nicoll and Schmitz, 2005).

Stressors like inescapable shocks also trigger an increase of 
IL-1β protein levels in the brain, although this increase can be 
difficult to highlight as it is likely to be masked by an inhibitory 
action of glucocorticoids (Nguyen et  al., 1998). Chronic mild 
stress triggered an increase of hippocampal IL-1β protein levels 
and depression-like symptoms in rodents, but mice lacking the 
IL-1 receptor or with an astrocytic overexpression of an IL-1 
antagonist did not display stress-induced behavioural nor neu-
roendocrine changes (Goshen et al., 2008). Social isolation also 
elevated Il-1β protein levels in the hippocampus and the cerebral 
cortex and consequently led to contextual fear-conditioning 
impairment (Pugh et al., 1999). Similar to isolation studies, rats 
infused with IL-1β in the hippocampus displayed contextual but 
not auditory deficits after fear conditioning, and this effect was 
prevented by intracerebral injection of IL-1ra (Pugh et al., 1999). 
IL-1 was also found to impair working memory using a three-
panel runway task (Matsumoto et al., 2001, 2004). In a rodent 
model of seizure where the mouse cecum is ligated then punc-
tured, IL-1β mRNA expression in the hippocampus was upregu-
lated, escape latency in the MWM was impaired and LTP 
decreased; the use of an IL-1 antagonist rescued LTP and learn-
ing and memory abilities (Han et al., 2016). High hippocampal 
IL-1β levels found in aged or stressed rats was also associated 
with impaired LTP (Murray and Lynch, 1998). Under stress con-
ditions, it is likely that microglial IL-1β production increase is 
linked to the activation of the purinergic receptor P2R×7 
(Aricioglu et al., 2019), which is a key protein that supports stress 
and depression mechanisms (Ribeiro et al., 2019).

In a model of Parkinson’s disease, elevated IL-1β production 
in the brain worsened neurodegeneration course by supporting 
neuronal death, either directly or via nitric oxide production (Pott 
Godoy et  al., 2008). IL-1β levels are elevated in AD brain as 
IL-1β was produced in response to Aβ exposure in cell culture 
(Meda et  al., 1999) and was shown to contribute to cognitive 
deficits, tau phosphorylation and Aβ pathology in aged 3× 
Tg-AD mice (Kitazawa et  al., 2011). Aβ-induced astrocytic 
IL-1β is also suspected of supporting the overexpression and 
activity of acetylcholinesterase hence exacerbating the choliner-
gic dysfunction linked to cognitive impairment observed in AD 
(Li et al., 2000).

Some mechanisms by which IL-1β modulates memory func-
tion have been described. It has been reported that the synaptic 
sensitivity to IL-1β increases with age due to a ratio change of the 
IL-1-receptor type 1 subunits AcP (proinflammatory) and AcPb 
(prosurvival) that facilitates memory impairment (Prieto et  al., 
2015). There is evidence also for the arachidonic cascade and the 
glutamatergic system to be influenced by IL-1β. Bilateral injec-
tion of IL-1β in the hippocampus of rats increased cyclooxyge-
nase-2 (COX2) protein levels and activated the arachidonic 
cascade and the release of PGE2 in the hippocampus (Matsumoto 
et al., 2004; Molina-Holgado et al., 2000). Hippocampal PGE2 
injection led to more working memory errors than in control 

group (Matsumoto et al., 2004). Similarly, selective and competi-
tive NMDAR antagonists caused deficits in working memory 
performance in the three-panel runway task (Ohno et al., 1992). 
An NMDAR agonist concurrently administered with IL-1β into 
the hippocampus reversed the working memory impairment 
induced by the cytokine. IL-1β also modulates calcium influx 
through NMDARs (Viviani et  al., 2003). Moreover, elevated 
IL-1β protein levels in the brain could inhibit LTP by interfering 
with BDNF signal transduction and dendritic spine morphology 
(Tong et al., 2012).

IL-6.  In illnesses such as depression, arthritis and others where 
chronic inflammation is settled, patients report sickness and 
depressive behaviours and cognitive decline, often accompanied 
by elevated levels of IL-6 (Weaver et  al., 2002). Individuals 
given a dose of LPS did not report feeling sick but performed 
poorly during declarative memory tests and better in working 
memory tasks (Cohen et al., 2003). A lot of rodent studies have 
confirmed these detrimental effects of IL-6 on cognition and 
behaviour. Mice lacking IL-6 displayed reduced sickness behav-
iour and depressive-like social behaviour induced by systemic 
and central injections of IL-1β and LPS was lower in IL-6−/− 
mice than in their WT counterparts (Bluthé et al., 2000). Simi-
larly, turpentine-induced abscess or influenza infection did not 
cause any behavioural deficits in IL-6−/− mice (Kozak et al., 
1997). Sparkman et al. evaluated the ability of these animals to 
integrate new information after the acquisition period of an 
MWM task by injecting LPS. Contrary to WT mice, IL-6 KO 
animals failed to display any working memory impairment and 
lacked the expected LPS-induced increase in TNF-α and IL-1β 
mRNA in hippocampal neurons but not in the periphery (Spark-
man et al., 2006). However, LPS injection still activated a marker 
of neuronal activity c-Fos in neurons of the nucleus tractus soli-
tarius that receive peripheral information via the vagal nerve 
(Sparkman et al., 2006; Vallières and Rivest, 1999). These data 
support the fact that IL-6 is not fundamental for periphery-to-
brain communication but is required for LPS-induced production 
of TNF-α and IL-1β in the brain and for the expression of some 
behavioural impairments. Mice lacking or expressing IL-6 have 
also been used to highlight the role of IL-6 in the limbic system 
in relation to anxiety-like and depressive-like behaviours. IL-6 
KO mice showed alterations in such behaviours (Chourbaji et al., 
2006; Wu and Lin, 2008). Decreased exploratory behaviour in a 
light–dark transfer test and digging behaviours were reported in 
mice overexpressing IL-6 together with a longer time spent 
immobile in a forced-swim test (Roberts et al., 2019; Table 2) as 
a readout of the ability of the animal to adapt upon exposure to an 
inescapable stressor (Molendijk and de Kloet, 2019).

IL-6 plays a key role in activating astrocytes and microglia dur-
ing inflammatory conditions. IL-6 KO mice displayed reduced 
reactive astrogliosis and microgliosis after IP injection of the toxic 
glutamate receptor agonist kainic acid (model of seizure; Penkowa 
et  al., 2001) or subcutaneous injection of the neurotoxicant 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (model of selective 
dopaminergic cell injury, which occurs in Parkinson’s disease; 
Cardenas and Bolin, 2003). Indeed, IL-6 KO mice had a reduced 
astrocytic population and a decreased ability to activate microglia 
(Klein et al., 1997); and in a murine model of experimental autoim-
mune encephalomyelitis, IL-6 blocked the astrocytic response to 
interferon-γ and the release of microglial inhibitory molecules such 
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as galectin-1 and HO-1 (Savarin et al., 2015). This glial cell activa-
tion by IL-6 is likely to happen in ageing and neurodegenerative 
diseases. Studies have described the elevation of IL-6 in the plasma 
of elderly individuals and its correlation with cognitive decline, 
with females being more sensitive to higher IL-6 levels (Table 3; 
Economos et  al., 2013; Elderkin-Thompson et  al., 2012; Weaver 
et al., 2002). These results were confirmed in a mouse model of 
accelerated ageing in which IL-6 protein levels were increased by 
50% and 30% in the hippocampus and cortex of aged mice, respec-
tively, compared to controls (Tha et al., 2000). Similarly, IL-6 gene 
and protein expression in glial cells were found to be upregulated in 
the cerebellum, cortex and hippocampus of mice as they age natu-
rally (Ye and Johnson, 1999). IL-6 detrimental effects on cognition 
could be linked to neurodegeneration and calcium homeostasis 
which is perturbed in the brain of Alzheimer’s patients and aged 
individuals (Foster and Kumar, 2002; Palotás et al., 2002), with the 
expression of a key calcium-binding and buffering protein cal-
bindin being reduced in rodent models of dementia (Heyser et al., 
1997; Palop et  al., 2003; Figure 2). Mice chronically expressing 
astrocytic IL-6 were found to express a progressive age-related 
decline in avoidance learning performance that correlated with pre-
synaptic loss, typically associated with behavioural deficits 
(Cunningham et al., 2003) and a decrease in cortical and hippocam-
pal neuronal calbindin that plays a protective role in AD (Kook 
et al., 2014). However, in the early phase of AD, IL-6 participates in 
a reduction in Aβ deposition as IL-6 overexpression in a mouse 
model of AD led to enhanced microglia activation and phagocytosis 
activity (Chakrabarty et al., 2010).

TNF-α.  The role of TNF-α in learning and memory under 
inflammatory conditions is likely to be age dependent. Indeed, 
studies using 30-day-old mice overexpressing TNF-α did not 
find any learning and memory impairment in the water maze 
test (Aloe et al., 1999; Fiore et al., 1996), whereas older mice 
showed impaired memory in a passive avoidance task (Fiore 
et al., 1996), in the water maze (Bjugstad et al., 1998) and in a 
three-panel runway task (Matsumoto et  al., 2002). Adult rats 
chronically overexpressing five times the normal levels of 
murine neuronal TNF-α also display spatial memory impair-
ments in a water maze paradigm (Pettigrew et al., 2008, 2016). 
In these animals, hippocampal synaptic plasticity measured by 
LTP and paired-pulse facilitation are comparable to those mea-
sured in the immature hippocampus of neonates, which support 
a role of TNF-α in maturation of the synaptic network (Petti-
grew et al., 2008, 2016). Another report points to a beneficial 
role of TNF-α in memory recovery as mice lacking TNF-α that 
have recovered from pneumococcal meningitis displayed 
impaired water maze performance compared to WT controls 
(Gerber et al., 2004).

Chronic pain is often accompanied by memory deficits and a 
reduced hippocampal volume (Table 3; Mao et al., 2016; Mutso 
et al., 2012). In a model of chronic pain, a pared sciatic nerve 
leads to microglia activation, increases TNF-α levels and impairs 
LTP in the hippocampus, reduces the density of presynaptic bou-
tons, as well as the functional synaptic connectivity and BDNF 
expression in CA1 neurons (Liu et al., 2017; Ren et al., 2011). 
These synaptic changes are TNF-α-dependent as similar results 
were obtained when TNF-α was injected in the brain, but not 
when the experiment was repeated with mice lacking the TNF-α 
receptor TNFR1 (Liu et al., 2017; Ren et al., 2011).

Astrocytic and microglial TNF-α release under inflammatory 
conditions is a feature of neurodegenerative diseases (Chung and 
Benveniste, 1990; Rojo et al., 2008; Yin et al., 2017) and is associ-
ated with increased levels of Aβ, tau and neuronal cell death 
(Janelsins et al., 2008; McAlpine et al., 2009). CSF levels of TNF-
α, produced by brain cells, are increased in some AD patients 
(Tarkowski et al., 1999); TNF-α mediates LTP inhibition as well 
as memory deficits caused by Aβ (Rowan et al., 2007; Tobinick, 
2009; Wang et al., 2005). In aged APP/PS1 mice, a model of AD 
in which TNF-α levels are twofold higher than in their WT coun-
terparts, there is a marked TNF-α-dependent inhibition of LTP 
possibly due to elevated TNF-α production by Aβ-dependent glial 
cell activation (Singh et  al., 2019). Several other studies have 
reported that in mice and hippocampal slices, TNF-α abolished 
LTP and had deleterious effects on working memory (Cunningham 
et al., 1996; Curran and O’Connor, 2003; Pickering and O’Connor, 
2007; Ren et al., 2011; Tancredi et al., 1992; Wall et al., 2015), 
while cognitive deficit is reduced by pharmacological inhibition 
of TNF-α in mice (Shin et al., 2014). Interestingly, earlier in vitro 
studies have reported a protective role of TNF-α in AD, with 
human TNF-α levels inversely correlated with levels of a marker 
of neuronal degradation tau and in vitro data linking TNF-α incu-
bation of neuronal cells to an increase in bcl-2, which can down-
regulate apoptosis (Tarkowski et al., 1999). TNF-α has also been 
shown to protect against glutamate, free radical and Aβ toxicity in 
enriched cultures of primary neurons (Barger et al., 1995).

In an inflammatory context, TNF-α levels can rise from 
picomolar to millimolar levels; phosphorylation of MAPKs 
(Figure 2) have been described during TNF-α inhibition of LTP 
in the molecular layer of the dentate gyrus and hippocampal 
apical dendrites (Butler et al., 2004; Singh et al., 2019). Elevated 
TNF-α concentration can also activate NFκB and potentiate 
NMDAR and AMPAR via TNFR1 activation, blocking gluta-
mate transporter activity and promoting glutamate neurotoxic-
ity (Bernardino et  al., 2005; Zou and Crews, 2005), leading 
eventually to neuronal and oligodendrocyte cell death 
(Akassoglou et  al., 1998; Li et  al., 2004). Moreover, TNF-α 
favours synaptic transfer of calcium-permeable AMPAR lack-
ing GluR2 subunit, hence potentially increasing the risk of neu-
ronal toxicity (Stellwagen et al., 2005).

Surprisingly, the effects described above do not occur in the 
dorsolateral striatum of rodents. In this region rich in inhibitory 
GABAergic neurons, TNF-α promotes the internalisation of 
AMPAR permeable to calcium thereby reducing synaptic 
strength, which could be an adaptative mechanism of the brain to 
delay motor symptoms in diseases characterised by movement 
disorders and elevated TNF-α levels (Lewitus et  al., 2014). 
Overall TNF-α roles on plasticity depend on the anatomical loca-
tion of TNF-α action and on the level of expression of TNF-α 
(Butler et  al., 2004; Cunningham et  al., 1996; Tancredi et  al., 
1992; Wall et al., 2015).

Conclusion
Cytokines are much more than basic signalling inflammatory 
molecules as they have key roles in modulating cognitive func-
tions in physiological conditions. We propose that the length, 
strength and location in a particular area of the brain of cytokine 
activity will dictate the activation of specific signalling pathways 
together with the stimulation of other inflammatory systems that 
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will contribute to the complexity of the response. This renders the 
distinction between mechanisms that would be solely engaged 
either in physiological or in inflammatory conditions very diffi-
cult. We suggest that the homeostasis equilibrium shifts when 
pathological, chronic expression of cytokines sustains in time; 
then the cytokine actions often become detrimental and lead to 
neuronal death and learning and memory impairments. In that 
view, a better understanding of the interaction between the whole 
immune system and synaptic plasticity would certainly be key to 
develop treatments for neuronal, cognitive and mood disorders 
that present deficits in these mechanisms.
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