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While diarrhea mortality in children has declined over the last two decades, there has been a slower
decline in diarrheal episodes. Repeated diarrheal episodes are associated with childhood stunting, which
leads to increased mortality risk from infectious diseases. Vaccine candidates are under development for
enterotoxigenic Escherichia coli [ETEC] and Shigella, important enteric pathogens in children in low
income countries. These future vaccines could significantly reduce diarrheal burden, prevent ETEC-
and Shigella-induced stunting, and stunting-associated mortality.
We developed a cost-effectiveness model for two putative standalone ETEC and Shigella vaccine candi-

dates to evaluate vaccine impact on mortality, morbidity, stunting, and stunting-associated deaths from
other infectious diseases. We modeled impact over the first ten years after vaccine introduction in chil-
dren under five years old living in 79 low and low-middle income countries.
ETEC and Shigella diarrhea would cause an estimated 239,300 [95% UL: 179,700–309,800] and 340,300

[256,500–440,800] child deaths, respectively, from years 2025 to 2034. Most of these deaths would occur
in AFRO countries. ETEC and Shigella moderate-to-severe diarrheal episodes would result in over 13.7
[8.4–19.0] and 21.4 [13.1–29.8] million stunted children, respectively. Introducing ETEC or Shigella vac-
cine each with 60% efficacy could prevent 92,000 [61,000–129,000] ETEC and 126,600 [84,000–179,000]
Shigella direct deaths and 21,400 [11,300–34,800] ETEC- and 34,200 [18,000–56,000] Shigella-induced
stunting deaths. ETEC ICERs ranged from $2172/DALY [1457–4369] in AFRO to $19,172/DALY [12,665–
39,503] in EURO. Shigella ICERs ranged from $952/DALY [632–2001] in EMRO to $640,316/DALY
[434,311–1,297,192] in EURO.
Limitations of this analysis include uncertainty of vaccine efficacy, duration of protection, and vaccine

price. Inclusion of other infectious disease mortality due to stunting provides a more accurate assessment
of total ETEC and Shigella disease burden and increased the projected impact and cost-effectiveness of
vaccination. Introducing vaccines only in high burden countries and regions could substantially reduce
cost without substantially reducing impact.
� 2019 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Globally, diarrhea remains the second leading cause of mortal-
ity, accounting for approximately 500,000 deaths annually in chil-
dren under five years old [1]. However, diarrheal mortality in
children has declined by 34.3%, with similar declines in Shigellosis
(33.8%) and enterotoxigenic E. coli (ETEC) infection (38.1%) from
2005 to 2015 [2]. While diarrheal mortality has declined, morbid-
ity and mortality continue to plague many low- and lower middle-
income countries (LMICs).

In addition to rotavirus, other pathogens have a substantial role
in diarrheal burden. The Global Enteric Multicenter Study (GEMS)
found that of 22 diarrheal pathogens, four—rotavirus, Shigella,
ETEC, and Cryptosporidium—were associated with moderate-to-
severe diarrhea (MSD), accounting for 70% of cases in 0–4 year olds
[3]. This study also documented an increased mortality risk for
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MSD ETEC cases and increased stunting risk in cases associated
with both ETEC and Shigella [4]. ETEC and Shigella have been among
the top four causes of diarrhea associated with years lost to disabil-
ity (YLDs) worldwide [5]. A recent study evaluating global ETEC
and Shigella burden found that these pathogens have a sizeable glo-
bal burden, especially in the World Health Organization (WHO)
designated African and the Eastern Mediterranean regions [6].

As diarrheal mortality has declined, there is increased focus on
diarrhea morbidity in pediatric populations. Repeated, non-fatal
episodes of diarrhea from infection by certain pathogens are
thought responsible for reduced linear growth and childhood
stunting [7–9], increasing mortality risk from other infectious dis-
eases [10]. Results from GEMS showed that MSD episodes shifted
the height-for-age z-scores downward [3,11], increasing a child’s
risk of stunting. In countries where stunting is highly prevalent,
ETEC- and Shigella-induced stunting impacts even more children
[12].

The burden from these pathogens necessitates new prevention
strategies. A potential and highly beneficial prevention strategy
would be the use of vaccines to prevent ETEC and Shigella infection,
which are currently under development with Phase 1 and Phase 2
data available shortly in non-infant populations. In addition to
reducing burden worldwide, the successful rollout of rotavirus vac-
cines has shown that enteric vaccines are deployable to endemic
countries. Studies describing rotavirus burden, vaccine impact,
and cost-effectiveness have contributed to global and country deci-
sions to accelerate rotavirus vaccine introduction [13,14]. There-
fore, investigating how ETEC and Shigella vaccination could
impact high burden countries or populations is not only important
in guiding vaccination programs, but may in turn spur action by
policymakers.

In this study, we conducted a vaccine impact and cost-
effectiveness analysis for ETEC and Shigella vaccines to identify
high-need areas and to capture the full potential value of these
vaccines. We evaluated the impact of vaccination on the mortality,
morbidity, number of stunted children, and stunting-associated
deaths from other infectious diseases, to understand the expanded
impact of these vaccines.
2. Materials and methods

2.1. Population and time frame

We included seventy-nine countries from a previous analysis of
ETEC and Shigella burden with a full description of country inclu-
sion and exclusion criteria [6] (Table 1). We aggregated national
estimates by WHO regions to identify trends (‘AFRO’: African
region, ‘AMRO’: Region of the Americas, ‘EMRO’: Eastern Mediter-
ranean Region, ‘SEARO’: Southeast Asian Region, ‘WPRO’: Western
Pacific Region). We assumed all countries would introduce the vac-
cines in 2025. We examined 10 annual birth cohorts of children
over the first five years of life. Population estimates of under five
children were based on UN Population Division country estimates
and projections from 2025 to 2034 [15].
2.2. Burden of diarrhea mortality and morbidity

2.2.1. Etiological fraction
ETEC and Shigella burden is dependent upon the fraction of epi-

sodes and deaths attributable to each [3,16]. As previously
described [6], we used culture-based etiological estimates [3] and
adjusted them for under-detection using estimates derived from
molecular methods based on Liu et al. [17,18]. We applied an
adjustment of 1.5 times for ETEC and 2.0 times for Shigella to the
culture results [20].
2.2.2. Diarrhea mortality and morbidity estimates
Similar to our burden study, we used the mid-point of 2015

diarrheal mortality estimates from two sources: the Global Burden
of Disease study (GBD) at the Institute for Health Metrics and Eval-
uation (IHME) [19] and the WHO Maternal Child Epidemiology
Estimation (MCEE) project [20]. We then used the etiological frac-
tion for ETEC and Shigella to calculate pathogen-attributable deaths
and adjusted diarrheal mortality to account for countries that
introduced rotavirus vaccine before 2014 [6]. We projected mortal-
ity and morbidity estimates from 2015 to 2034. Because diarrheal
mortality rates have declined over time, we estimated annual rates
of decline for non-rotavirus under-five diarrheal mortality in each
country using data from Child Health Epidemiology Reference
Group from 2000 to 2013 [21]. We calculated diarrhea morbidity
estimates using WHO region-specific estimates of diarrhea epi-
sodes and the etiological fractions for ETEC and Shigella [22]. We
assumed morbidity declined at a rate of 0.45% per year. This
decline percentage was calculated from YLDs from diarrheal dis-
ease from 1990 to 2010 from the GBD [23].

2.2.3. Effects of ETEC- and Shigella-induced stunting
We applied the methods from Anderson et al. [6] to determine

the effects of ETEC and Shigell-induced stunting. First, we calcu-
lated the shift in child height-for-age z-scores from ETEC and Shi-
gella episodes using GEMS results (Table 1). In the absence of
reliable community-level estimates for diarrhea treatment in
countries included in this study, we assumed 22% of diarrheal epi-
sodes where care was sought at a health facility were considered
MSD. The proportion of child diarrheal episodes where caretakers
sought care were taken from the most recent Demographic and
Health Surveys (DHS), available for 70 countries [24]. In countries
without a country-level estimate, we substituted the correspond-
ing WHO regional average. Based on the mean of estimates for
the countries included in this analysis, we calculated that 47% of
caretakers would visit a health facility after the child experienced
an episode of diarrhea (Table 1). Thus, we assume that 10%
(22% � 47%) of child diarrheal episodes were moderate-to-severe
in each region. We used the same the approach as in Anderson
et al. [6] to estimate the number of child deaths from infections
for which stunting is a risk factor (pneumonia, malaria, measles,
and diarrhea [25]). We did not project rate of change of pneumo-
nia, malaria and measles burden over time.

2.3. Outcomes measures

Outcome measures included: diarrheal episodes; direct deaths;
children stunted; stunted children dying from other infectious dis-
eases; and Disability-adjusted Life Years (DALYs). Stunting is a risk
factor for other infectious disease deaths and not directly included
in DALY calculations. All mortality outcomes, including other infec-
tious disease deaths due to induced stunting, were translated to
DALYs using standard techniques [26,27]. We calculated DALYs
using non-uniform age-weighting and a 3% annual discount rate.
We calculated all outcomes annually and cumulatively from time
of introduction.

2.4. Vaccines

We evaluated the impact of potential ETEC and a Shigella stan-
dalone vaccine candidates when introduced nationally in 79 coun-
tries. We assume each vaccine is 60% efficacious in preventing
deaths and MSD episode. Our other assumptions were that protec-
tion was conferred after the third dose and that there was no pro-
tection for partially vaccinated children. We assumed that vaccine
effectiveness does not wane, but we also assumed that there was
no effectiveness after five years of age or herd protection. For



Table 1
The 79 Countries included in study by WHO region. AFRO: African region, AMRO: Region of the Americas, EMRO: Eastern Mediterranean Region, SEARO: Southeast Asian Region, WPRO:
Western Pacific Region.

AFRO AMRO EMRO EURO SEARO WPRO Excluded

Angola Liberia Bolivia Afghanistan Armenia Bangladesh Cambodia Cabo Verde
Benin Madagascar El Salvador Djibouti Georgia Bhutan Kiribati Kosovo
Burkina Faso Malawi Guatemala Egypt Kyrgyz Republic DPR Korea Lao PDR Micronesia
Burundi Mali Haiti Jordan Moldova India Mongolia Moldova
Cameroon Mauritania Honduras Morocco Tajikistan Indonesia Papua New Guinea Vanuatu
Central African Republic Mozambique Nicaragua Pakistan Ukraine Myanmar Philippines
Chad Niger Somalia Uzbekistan Nepal Solomon Islands
Comoros Nigeria Sudan Sri Lanka Viet Nam
Congo Rwanda Syria Timor-Leste
Congo DR São Tomé & Principe Tunisia
Côte d’Ivoire Senegal Yemen
Eritrea Sierra Leone
Ethiopia South Sudan
The Gambia Swaziland
Ghana Tanzania
Guinea Togo
Guinea-Bissau Uganda
Kenya Zambia
Lesotho Zimbabwe
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coverage, we used country specific 2015 DPT3 coverage estimates
[28] and only included estimates for children estimated to receive
a full course (all three doses).

As vaccine price is uncertain, we used the Gavi Rotarix price of
approximately $2.00 per dose [29] as our basis. For our study, we
assumed study vaccines would cost $3.30 per dose, and we varied
this price in the sensitivity analysis to assess price impact on cost-
effectiveness.

2.5. Costs

As there are no published medical costs for ETEC and Shigella
diarrhea for the 79 study countries, we used country specific esti-
mates of direct medical costs of illness associated with inpatient
and outpatient care for MSD episodes. We assumed 1 of 8 outpa-
tients with MSD were referred for inpatient care [13,30].

Direct medical costs were based onWHO-CHOICE Service Deliv-
ery Unit Cost estimates and commodity costs. For outpatient med-
ical costs, we used country specific cost per outpatient visit at a
primary hospital. We used country specific daily costs at hospitals
and a four-day stay to calculate inpatient cost. We assumed that
outpatients receive six oral rehydration solution packets per day
for two days, and inpatients receive six packets per day and two
IVs during a four day hospital stay [31]. On average, the illness cost
per episode was $10.05 for outpatients and $82.25 for inpatients.
These estimates were triangulated against country specific esti-
mates, when available in the literature [32–47]. In most cases,
modelled estimates were aligned with empirical estimates.

Using data available from Portnoy et al. [48], we generated vac-
cine administration costs. All costs were in 2016 US dollars and
discounted (3%). Our cost-effectiveness estimates were from the
health system perspective.

2.6. Cost-effectiveness

We calculated vaccination cost (V) cumulated over the first
10 years (t) after introduction starting in 2025 for each country
(c) based on vaccine administration cost, vaccine price, and quan-
tity (birth cohort times coverage rate with 10% vaccine wastage).
We calculated averted costs (A) based on population, vaccine cov-
erage, efficacy, and access to care and medical costs in each coun-
try (c). We calculated net costs (N) for each region (r) as:

Nr ¼
Xr

t¼10

ðVc � AcÞ
We calculated vaccine benefits (B) for each region (r) based on
the sum of population, coverage (C), efficacy (E), and DALY burden
(D) in each country (c) cumulated over the first 10 years (t) after
introduction. We calculated the number of children fully vacci-
nated each year by multiplying the annual birth cohort by the
assumed vaccine coverage. We projected benefits for the first five
years of life for children vaccinated in each annual birth cohort.

Br ¼
Xr

t¼10

ðCc � Ec � Dc

Our primary cost-effectiveness measure was the regional Incre-
mental Cost-Effectiveness Ratio (ICERr), which is the aggregated
country-level incremental costs associated with introducing each
vaccine divided by aggregated country-level health benefit.

ICERr ¼
Pr

t¼10NrPr
t¼10Br

Our comparator scenario was no vaccination. We calculated
ICERS with and without other infectious disease burden due to
stunting for each country and region annually and cumulatively.

We presented results using two thresholds for cost-
effectiveness as compared to GDP [49]. We presented results for
countries where ICERS are less than 3 times their GDP, which are
considered cost effective and results for countries where ICERS
are less than GDP, which has historically been used to determine
if an intervention is ‘highly’ cost-effective.
2.7. Sensitivity analysis

In order to assess the impact of uncertainty and changes in key
input variables, we conducted two types of sensitivity analysis
using SimVoi [50]. First, we used one-way sensitivity analysis to
demonstrate the impact of individual input parameters on vaccina-
tion cost-effectiveness. These results are shown in tornado dia-
grams, with each horizontal band showing the effect of varying
each parameter between high and low values. Second, we con-
ducted a probabilistic sensitivity analysis (PSA) to show the overall
impact of input parameter uncertainty (Table 2) on our estimates
of key outcomes. Monte Carlo analysis using 10,000 iterations
was conducted and we included estimated upper and lower 95%
uncertainty limits (2.5% and 97.5%) for key outputs in brackets
after our estimates. We reported results of the sensitivity analyses
as a range of the difference between high and low ICER estimates.



Table 2
Model parameters for base case scenario and ranges used in uncertainty and sensitivity analyses.

Model input Values Range Reference

Burden
Population estimates Varies by country – [17]
Diarrheal mortality for children under 5 years of age Varies by country ±10%; Triangular [1,22,25]
Change in non-rotavirus under-5 diarrheal mortality rate Varies by country; mean = 12.8% decline ±25%; Triangular [23]
Diarrheal episodes in children under 5 years of age Varies by region; 2.2–3.3 episodes/child annually – [6,56]
Etiological fraction attributed to ETEC by WHO region Varies by WHO region; 0.075–0.123 ±25%; Triangular [20,24]
Etiological fraction attributed to Shigella by WHO region Varies by WHO region; 0.002–0.238 ±25%; Triangular [20,24]
Stunting induced by ETEC episodes 0.068 shift in HAZ ±50%; Triangular [3,6]
Stunting induced by Shigella episodes 0.082 shift in HAZ ±50%; Triangular [3,6]
Fraction of diarrhoeal episodes that are moderate to severe 22% of children who sought care at a healthcare facility 0.12–0.32; Triangular [3,6]
Percentage of caretakers that sought care at a health facility

after a child’s diarrheal episode
47% 44–58%, Not varied in

uncertainty analysis
[24]

Vaccination and Medical Costs
ETEC vaccine efficacy 60% ±20%; Triangular Assumption
Shigella vaccine efficacy 60% ±20%; Triangular Assumption
Dose price $3.30 $2.50–$7.00; Triangular Assumption
Administration cost LI = $1.93, LMI = $1.64 ±40%; Triangular [48]
Cost of ETEC or Shigella illness Varies by country; outpatient mean = $6.09/episode;

inpatient mean = $51.07/episode
±40%; Triangular [32–47]

Inpatient visit rate 12.5% of outpatient visits ±50%; Triangular [30]
Outpatient visit rate (cases taken to healthcare facility) Varies by country; Mean of 47% ETEC or Shigella cases

sought treatment annually
44–58%, Not varied in
uncertainty analysis

[24]
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3. Results

3.1. Expected outcomes over time

Over 10-years in 79 LMICs, ETEC and Shigella would cause an
estimated 239,300 [95% CI: 180,100; 310,000] and 340,300
[256,700; 440,800] deaths, respectively, in children under five
without vaccination (Tables 3 and 4). Most deaths would occur
in AFRO for ETEC (68%) and Shigella (54%). In addition, MSD epi-
sodes of ETEC and Shigella would result in 13.7 [8.3; 19.1] and
21.4 [13.2; 29.8] million stunted children, respectively. These cases
of stunting result in an additional 45,400 [28,700; 59,800] and
72,900 [47,600; 91,900] deaths due to other infectious diseases
indirectly attributable to ETEC and Shigella, respectively. The global
burden of ETEC and Shigella in LMICs is estimated at 5.3 [4.0; 6.8]
and 7.5 [5.6; 9.7] deaths/100,000 children, respectively, with the
highest rates in EMRO (Shigella) and AFRO (ETEC) regions. Globally,
ETEC would cause 93 [90; 96] million MSD episodes while Shigella
would cause 118 [115; 121] million MSD episodes (Tables 2 and 3).
AFRO accounts for 49% and 43% of global ETEC and Shigella epi-
sodes, respectively, followed by SEARO at 28% (ETEC) and EMRO
at 32% (Shigella).

Introducing ETEC or Shigella vaccines would prevent 92,000
[61,200; 129,900] ETEC and 126,600 [84,300; 179,600] Shigella
direct deaths and 21,800 [11.29; 34.75] ETEC- and 34,200
[18,000; 56,000] Shigella-induced stunting deaths from other infec-
tious diseases over the first 10 years (Tables 3 and 4). ETEC and Shi-
gella vaccination would prevent 17.7 [10.0; 27.0] million cases of
moderate or severe stunting. ETEC vaccination would prevent 2.9
[1.9; 4.1] deaths/100,000 vaccinated children, globally, with the
greatest benefit in AFRO at 4.7 [3.1; 6.7] deaths averted/100,000
vaccinated children. Shigella vaccination would prevent 4.0 [2.7;
5.9] deaths/100,000 vaccinated children, globally, with the highest
reduction in EMRO at 9.8 [6.5; 13.9] deaths averted/100,000 vacci-
nated children. Vaccination would prevent 51% and 52% of the glo-
bal ETEC and Shigella diarrheal episodes, respectively.

We also analyzed results for Gavi-eligible countries only. These
48 countries account for over 60% of the total ETEC and Shigella
burden (Tables 3 and 4). ETEC and Shigella vaccines in these coun-
tries can prevent over 66,700 [44,100; 94,700] ETEC and 108,000
[72,200; 156,000] Shigella deaths. The vaccines are projected to
avert 61.4 [44.6; 77.4] million cases of MSD and approximately
10 [6; 15] million cases of moderate-to-severe stunting over the
first 5 years of life in GAVI-eligible LMICs.

3.2. Cost-effectiveness of ETEC and Shigella vaccination

Globally, the ICER for ETEC vaccination is estimated at $3508
[2357; 7037]/DALY averted and $2513 [1708; 5088]/DALY for Shi-
gella vaccination from 2025 to 2034 (Tables 3 and 4). Regional ETEC
ICERs range from $2177 [1469; 4334]/DALY in AFRO to $19,434
[12,789; 39,598]/DALY in EURO. Regional Shigella ICERs range from
$955 [631; 1999]/DALY in EMRO to $649,033 [441,268; 1,314,833]/
DALY in EURO.

ETEC and Shigella vaccines met the ‘cost-effective’ threshold
(ICER < 3XGDP) in 27 [10; 34] and 29 [14; 37] countries, respec-
tively (Table 5), and ‘very cost-effective’ threshold (ICER < GDP)
in 6 [1; 8] and 11 [3; 14] countries, respectively (Table 6). The
majority of these countries are in AFRO (Fig. 1). When only coun-
tries with ‘cost-effective’ ICERs are considered, the global ETEC
ICER is $1632 [1449; 2530]/DALY and Shigella is $1117 [1045;
1687]/DALY, lower than the global ICERs when all countries are
considered. In countries meeting the ‘very cost-effective’ threshold,
global ICERs are most favorable at $1061 [828; 1941]/DALY and
$810 [540; 1413]/DALY for ETEC and Shigella vaccination, respec-
tively. Implementing in the ‘cost-effective’ countries would
achieve 53% and 66% of the potential benefit ETEC and Shigella vac-
cination, respectively, in all countries, at 25% and 30% of the net
costs.

ICERs for ETEC and Shigella vaccines were more favorable at
$2909 [1964; 5788]/DALY and $1803 [1229; 3621]/DALY when
only considering the 48 GAVI-eligible countries (Tables 3 and 4).
In GAVI-eligible countries where vaccines were considered ‘cost-
effective’ (ICER < 3XGDP, ETEC: 19 [6; 24], Shigella; 22 [10; 27]
countries), ICERs were $1856 [1206; 2762]/DALY and $981 [713;
1366]/DALY for ETEC and Shigella vaccines, respectively (Table 5).
ICERs improved further to $660 [not defined; 845]/DALY (ETEC)
and $677 [433; 1187]/DALY (Shigella) when including only ‘very
cost-effective’ (ICER < GDP, ETEC: four countries, Shigella; nine
countries) GAVI-eligible countries (Table 6).



Table 3
Estimated disease burden associated with ETEC infection and ETEC vaccination impact in children under 5 years of age in 79 countries, by region. Model estimates are projected
from 2025 (year of introduction) to 2034. Results from uncertainty analysis are listed below model estimates. Upper and Lower represent 95% uncertainty intervals for each
estimate.

AFRO AMRO EMRO EURO SEARO WPRO GAVI-
eligible

Global

Number of countries 38 6 11 7 9 8 48 79
ETEC disease burden
MSD episodes (millions) 45.81 2.25 15.00 1.15 25.64 3.00 49.59 92.84

[44.57;
47.05]

[2.19;
2.31]

[14.31;
15.68]

[1.13;
1.16]

[24.90;
26.38]

[2.95;
3.04]

[48.00;
51.19]

[90.05;
95.64]

ETEC-induced stunting cases (millions) 6.53 0.28 2.01 0.15 4.33 0.38 7.08 13.68
[3.99;
9.08]

[0.17;
0.40]

[1.22;
2.80]

[0.09;
0.21]

[2.64;
6.02]

[0.23;
0.53]

[4.32;
9.85]

[8.35;
19.02]

Total deaths* (1000 s) 161.92 2.37 34.98 0.48 36.85 2.65 135.62 239.25
[121.88;
209.32]

[1.76;
3.09]

[26.51;
44.78]

[0.35;
0.64]

[26.96;
48.88]

[2.00;
3.41]

[102.26;
175.17]

[179.73;
309.81]

Total deaths*/100,000 children** 8.56 3.68 5.54 0.70 2.20 1.18 6.34 5.25
[6.44;
11.07]

[2.74;
4.80]

[4.20;
7.09]

[0.51;
0.93]

[1.61;
2.92]

[0.888;
1.510]

[4.78;
8.19]

[3.94;
6.80]

Other Infectious disease deaths from ETEC-induced
stunting as a percentage of total ETEC deaths

20 13 19 14 16 14 19 19
[13; 26] [8; 17] [12; 24] [9; 18] [10; 21] [9; 18] [13; 25] [12; 25]

Total DALYs* (1000 s) 5613.1 85.3 1220.9 18.6 1302.7 97.5 4720.2 8338.1
[4226.8;
7252.5]

[63.4;
111.3]

[925.3;
1562.5]

[13.6;
24.8]

[953.0;
1728.4]

[73.7;
125.4]

[3559.8;
6093.1]

[6267.0;
10,798.9]

Total DALYS* /100,000 children** 296.7 132.6 193.4 27.2 77.8 43.2 220.7 183.0
[223.4;
383.4]

[98.6;
173.1]

[146.6;
247.5]

[19.8;
36.1]

[56.9;
103.2]

[32.7;
55.6]

[166.4;
284.9]

[137.6;
237.0]

Outpatient treatment costs (millions US$) 190.8 12.5 77.1 7.7 174.8 17.4 215.2 480.1
[131.7;
250.7]

[8.6; 16.4] [53.2;
101.3]

[5.3; 10.1] [120.7;
229.6]

[12.0;
22.8]

[148.6;
282.7]

[331.5;
630.9]

Inpatient treatment costs (millions US$) 160.8 15.1 76.6 10.6 207.6 20.0 161.7 490.6
[87.6;
252.8]

[8.2; 23.7] [41.7;
120.3]

[5.8; 16.7] [113.0;
326.2]

[10.9;
31.5]

[88.1;
254.2]

[267.2;
771.2]

ETEC vaccination IMPACT
MSD episodes averted (millions) 22.61 1.21 7.10 0.57 13.77 1.72 25.45 46.97

[16.76;
28.46]

[0.89;
1.52]

[5.26;
8.94]

[0.43;
0.72]

[10.21;
17.34]

[1.27;
2.16]

[18.86;
32.04]

[34.82;
59.14]

ETEC-induced stunting cases averted (millions) 3.17 0.15 0.92 0.07 2.32 0.22 3.57 6.85
[1.81;
4.79]

[0.09;
0.23]

[0.53;
1.39]

[0.04;
0.10]

[1.3; 3.5] [0.12;
0.33]

[2.03;
5.38]

[3.91;
10.34]

Direct diarrheal deaths averted (1000 s) 59.31 1.01 13.44 0.24 16.73 1.24 53.72 91.97
[39.86;
83.85]

[0.67;
1.45]

[9.06;
18.89]

[0.16;
0.35]

[11.00;
24.17]

[0.83;
1.75]

[36.11;
75.97]

[61.55;
130.39]

Direct diarrheal deaths averted/100,000 FVC*** 3.80 1.75 2.47 0.44 1.10 0.60 2.85 2.33
[2.55;
5.37]

[1.16;
2.50]

[1.66;
3.47]

[0.29;
0.64]

[0.72;
1.59]

[0.40;
0.85]

[1.92;
4.04]

[1.56;
3.31]

Infectious disease deaths due to induced stunting
averted (1000 s)

14.68 0.15 3.09 0.04 3.21 0.20 12.99 21.36
[7.89;
23.90]

[0.08;
0.25]

[1.66;
5.00]

[0.02;
0.06]

[1.70;
5.29]

[0.11;
0.32]

[6.98;
21.15]

[11.47;
34.81]

Infectious disease deaths due to induced stunting/
100,000 FVC

0.94 0.26 0.57 0.07 0.21 0.10 0.69 0.54
[0.50;
1.53]

[0.14;
0.43]

[0.31;
0.92]

[0.04;
0.11]

[0.11;
0.35]

[0.05;
0.15]

[0.37;
1.12]

[0.29;
0.88]

Total deaths* averted (1000 s) 73.99 1.16 16.53 0.28 19.94 1.43 66.72 113.33
[49.43;
105.71]

[0.77;
1.67]

[11.08;
23.48]

[0.18;
0.41]

[13.07;
29.10]

[0.96;
2.04]

[44.59;
95.28]

[75.49;
162.29]

Total deaths* averted /100,000 FVC*** 4.74 2.01 3.04 0.51 1.31 0.69 3.54 2.87
[3.16;
6.77]

[1.33;
2.89]

[2.04;
4.31]

[0.33;
0.75]

[0.86;
1.92]

[0.463;
0.984]

[2.37;
5.06]

[1.91;
4.11]

Total DALYs* averted (1000 s) 2532 40 563 9 683 49 2281 3876
[1690;
3617]

[26; 57] [378; 800] [6; 14] [448; 997] [33; 69] [1524;
3259]

[2580;
5549]

Total DALYS* averted/100,000 FVC*** 162 69 104 17 45 24 121 98
[108; 232] [46; 99] [69; 147] [11; 26] [29; 66] [16; 34] [81; 173] [65; 141]

Vaccination costs (millions US$) 5685 206 1928 191 5365 730 6835 14,104
[4501;
9204]

[163; 336] [1523;
3150]

[151; 313] [4237;
8774]

[576;
1194]

[5412;
11,075]

[11,149;
22,976]

Vaccination costs/100,000 FVC*** 363,978 355,339 354,231 352,802 353,201 352,645 363,155 357,608
[288,159;
589,232]

[280,801;
579,870]

[279,885;
578,803]

[278,605;
577,225]

[278,989;
577,647]

[278,455;
577,074]

[287,524;
588,425]

[282,681;
582,536]

Administration costs/100,000 FVC*** 105,908 98,125 97,127 95,840 96,199 95,698 105,166 100,169
[72,792;
138,495]

[67,442;
128,317]

[66,756;
127,012]

[65,872;
125,329]

[66,118;
125,799]

[65,774;
125,144]

[72,282;
137,525]

[68,847;
130,991]

Medical costs averted (millions US$) 173.8 15.3 80.5 7.5 207.7 20.5 199.8 505.3
[104.8;
263.3]

[9.0; 23.5] [48.1;
122.7]

[4.4; 11.6] [122.8;
319.3]

[12.2;
31.5]

[120.9;
301.7]

[301.7;
771.6]

(continued on next page)
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Table 3 (continued)

AFRO AMRO EMRO EURO SEARO WPRO GAVI-
eligible

Global

Net costs (millions US$) 5511 191 1847 184 5157 709 6635 13,599
[4328;
9028]

[147; 321] [1441;
3067]

[143; 305] [4024;
8558]

[556;
1173]

[5213;
10,871]

[10,641;
22,453]

ICER without stunting burden (2016 US$ / DALY) 2726 5496 4027 22,266 9019 16,719 3621 4334
[1839;
5367]

[3616;
11,202]

[2712;
8012]

[14,678;
45,193]

[5972;
18,218]

[11,274;
33,246]

[2446;
7130]

[2912;
8625]

ICER with stunting burden (2016 US$ / DALY) 2177 4777 3279 19,434 7549 14,540 2909 3508
[1469;
4334]

[3140;
9797]

[2214;
6591]

[12,789;
39,598]

[4983;
15,387]

[9,811;
29,020]

[1964;
5788]

[2357;
7037]

NOTE: Though vaccinations occur annually from 2025 to 2034, impacts are projected over the first five years of the vaccinated child’s life. Thus, the last year included in
impact estimates is 2039.

* Total deaths and DALYS are the sum of ETEC burden attributed to diarrhea from ETEC infection (direct) and ETEC-induced deaths from other infectious diseases.
** Children: children under 5 years of age.
*** Fully vaccinated children (FVC): Number of eligible children who received all three doses of the vaccine.

Table 4
Estimated disease burden associated with Shigella infection and Shigella vaccination impact in children under 5 years of age in 79 countries, by region. Model estimates are
projected from 2025 (year of introduction) to 2034. Results from uncertainty analysis are listed below model estimates. Upper and Lower represent 95% uncertainty intervals for
each estimate.

AFRO AMRO EMRO EURO SEARO WPRO GAVI-
eligible

Global

Number of countries 38 6 11 7 9 8 48 79
Shigella disease burden
MSD episodes (millions) 50.61 2.31 37.21 0.09 27.59 0.36 68.82 118.16

[49.38;
51.85]

[2.24;
2.37]

[36.53;
37.90]

[0.08; 0.11] [26.85;
28.33]

[0.31;
0.40]

[67.25;
70.42]

[115.39;
120.96]

Shigella-induced stunting cases (millions) 9.02 0.35 6.38 0.01 5.60 0.05 12.58 21.41
[5.53;
12.54]

[0.21;
0.49]

[3.91;
8.86]

[0.01; 0.02] [3.44;
7.78]

[0.03;
0.08]

[7.71;
17.50]

[13.12;
29.77]

Total Shigella deaths* (1000 s) 183.79 2.49 112.59 0.02 41.26 0.17 224.34 340.32
[138.51;
238.18]

[1.87;
3.26]

[85.71;
144.32]

[0.01; 0.02] [30.44;
54.88]

[0.13;
0.22]

[169.92;
289.29]

[256.54;
440.83]

Total Shigella deaths*/100,000 children** 9.72 3.88 17.83 0.02 2.46 0.08 10.49 7.47
[7.32;
12.59]

[2.90;
5.06]

[13.58;
22.86]

[0.02; 0.03] [1.82;
3.28]

[0.057;
0.097]

[7.94;
13.53]

[5.63;
9.68]

Other Infectious disease deaths from Shigella-induced
stunting as a percentage of total Shigella deaths

23 15 20 16 19 16 22 21
[15; 29] [10; 20] [13; 26] [10; 21] [12; 24] [11; 21] [14; 28] [14; 27]

Total DALYs* (1000 s) 6,366.9 89.6 3,925.1 0.6 1,456.7 6.2 7,797.4 11,845.1
[4,800.8;
8,251.8]

[67.2;
117.1]

[2,986.6;
5,032.0]

[0.4; 0.8] [1,075.0;
1,937.5]

[4.7; 8.0] [5,906.3;
10,049.4]

[8,928.9;
15,346.9]

Total DALYS* /100,000 children** 336.6 139.3 621.7 0.9 87.0 2.8 364.6 260.0
[253.8;
436.2]

[104.5;
182.1]

[473.1;
797.0]

[0.6; 1.2] [64.2;
115.7]

[2.1; 3.6] [276.2;
469.9]

[196.0;
336.9]

Outpatient treatment costs (millions US$) 212.9 12.8 220.2 0.2 189.7 1.1 324.3 636.9
[147.4;
279.8]

[8.9; 16.8] [152.4;
289.3]

[0.2; 0.3] [131.3;
249.3]

[0.7; 1.4] [224.6;
426.2]

[441.0;
837.0]

Inpatient treatment costs (millions US$) 178.6 15.5 215.8 0.3 225.3 1.2 250.4 636.7
[97.8;
277.7]

[8.5; 24.1] [118.2;
335.6]

[0.2; 0.5] [123.4;
350.3]

[0.7; 1.9] [137.2;
389.4]

[348.7;
990.1]

SHIGELLA vaccination IMPACT
MSD episodes averted (millions) 24.97 1.24 19.62 0.02 14.95 0.11 35.85 60.90

[18.57;
31.45]

[0.92;
1.56]

[14.59;
24.71]

[0.01; 0.02] [11.11;
18.82]

[0.08;
0.13]

[26.65;
45.15]

[45.28;
76.71]

Shigella-induced stunting cases averted (millions) 4.30 0.19 3.32 0.002 3.03 0.02 6.39 10.86
[2.46;
6.56]

[0.11;
0.29]

[1.90;
5.06]

[0.001;
0.004]

[1.7; 4.6] [0.01;
0.02]

[3.65;
9.75]

[6.20;
16.56]

Direct diarrheal deaths averted (1000 s) 64.84 1.04 42.44 0.007 18.16 0.08 85.37 126.57
[43.27;
90.95]

[0.69;
1.48]

[28.40;
59.25]

[0.005;
0.011]

[11.93;
26.12]

[0.05;
0.11]

[57.03;
119.57]

[84.41;
177.84]

Direct diarrheal deaths averted/100,000 FVC 4.15 1.79 7.80 0.01 1.20 0.04 4.54 3.21
[2.77;
5.82]

[1.19;
2.55]

[5.22;
10.89]

[0.01; 0.02] [0.79;
1.72]

[0.02;
0.05]

[3.03;
6.35]

[2.14;
4.51]

Infectious disease deaths due to induced stunting averted
(1000 s)

19.15 0.18 10.72 0.001 4.16 0.01 23.48 34.23
[10.25;
31.07]

[0.10;
0.30]

[5.75;
17.31]

[0.001;
0.002]

[2.19;
6.87]

[0.01;
0.02]

[12.59;
38.01]

[18.31;
55.54]

Infectious disease deaths due to induced stunting/
100,000 FVC

1.23 0.32 1.97 0.003 0.27 0.007 1.25 0.87
[0.66;
1.99]

[0.17;
0.52]

[1.06;
3.18]

[0.001;
0.004]

[0.14;
0.45]

[0.004;
0.012]

[0.67;
2.02]

[0.46;
1.41]
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Table 4 (continued)

AFRO AMRO EMRO EURO SEARO WPRO GAVI-
eligible

Global

Total deaths averted* (1000 s) 83.99 1.22 53.16 0.009 22.32 0.09 108.85 160.80
[55.51;
119.06]

[0.81;
1.75]

[35.32;
74.90]

[0.006;
0.013]

[14.59;
32.28]

[0.06;
0.13]

[72.19;
154.03]

[106.38;
228.16]

Total deaths averted*/100,000 FVC*** 5.38 2.11 9.77 0.02 1.47 0.04 5.78 4.08
[3.55;
7.62]

[1.39;
3.02]

[6.49;
13.76]

[0.01; 0.02] [0.96;
2.13]

[0.029;
0.062]

[3.84;
8.18]

[2.70;
5.78]

Total DALYs* averted (1000 s) 2,779.5 41.1 1,782.4 0.3 744.4 3.0 3,625.1 5,350.7
[1,843.0;
3,933.7]

[27.1;
58.7]

[1,186.1;
2,510.8]

[0.2; 0.4] [487.1;
1,073.3]

[2.0; 4.3] [2,408.5;
5,117.7]

[3,554.8;
7,580.2]

Total DALYs* averted/100,000 FVC*** 177.9 70.9 327.5 0.5 49.0 1.5 192.6 135.7
[118.0;
251.8]

[46.8;
101.3]

[218.0;
461.4]

[0.4; 0.8] [32.1;
70.7]

[1.0; 2.1] [128.0;
271.9]

[90.1;
192.2]

Vaccination costs (millions US$) 5,685 206 1,928 191 5,365 730 6,835 14,104
[4,509;
9,190]

[163; 335] [1,523;
3,144]

[151; 313] [4,239;
8,760]

[576;
1,192]

[5,421;
11,057]

[11,165;
22,933]

Vaccination costs/100,000 FVC*** 363,978 355,339 354,231 352,802 353,201 352,645 363,155 357,608
[288,677;
588,335]

[280,891;
578,924]

[279,949;
577,793]

[278,730;
576,355]

[279,075;
576,739]

[278,583;
576,204]

[288,028;
587,469]

[283,072;
581,456]

Administration costs/100,000 FVC*** 105,908 98,125 97,127 95,840 96,199 95,698 105,166 100,169
[73,377;
138,875]

[67,984;
128,669]

[67,293;
127,360]

[66,401;
125,672]

[66,650;
126,144]

[66,303;
125,487]

[72,863;
137,902]

[69,401;
131,350]

Medical costs averted (millions US$) 191.8 15.7 226.2 0.2 225.4 1.3 297.6 660.6
[115.0;
288.0]

[9.2; 23.9] [134.4;
341.4]

[0.1; 0.4] [132.5;
342.1]

[0.7; 1.9] [179.3;
446.3]

[392.2;
997.1]

Net costs (millions US$) 5,493 190 1,701 191 5,139 728 6,537 13,444
[4,323;
9,000]

[147; 320] [1,286;
2,922]

[151; 312] [4,007;
8,535]

[575;
1,191]

[5,124;
10,759]

[10,496;
22,277]

ICER without stunting burden (2016 US$ / DALY) 2,485 5,339 1,175 746,611 8,282 276,909 2,245 3,114
[1,700;
4,949]

[3,562;
11,042]

[779;
2,450]

[504,555;
1,505,798]

[5,561;
16,963]

[190,741;
549,697]

[1,532;
4,492]

[2,117;
6,276]

ICER with stunting burden (2016 US$ / DALY) 1,976 4,627 955 649,033 6,904 239,964 1,803 2,513
[1,350;
3,950]

[3,093;
9,584]

[631;
1,999]

[441,268;
1,314,833]

[4,647;
14,221]

[165,492;
477,401]

[1,229;
3,621]

[1,708;
5,088]

Note: Though vaccinations occur annually from 2025 to 2034, impacts are projected over the first five years of the vaccinated child’s life. Thus, the last year included in impact
estimates is 2039.

* Total deaths and DALYS are the sum of Shigella burden attributed to diarrhea from Shigella infection (direct) and Shigella-induced deaths from other infectious diseases.
** Children: children under 5 years of age.
*** Fully vaccinated children (FVC): Number of eligible children who received all three doses of the vaccine.

Table 5
Cost-effectiveness of standalone vaccines for ETEC and Shigella, when limited to settings with an ICER less than three times the GDP threshold, by region, 2025–2034. Results from
uncertainty analysis are listed below model estimates. Upper and Lower represent 95% uncertainty intervals for each estimate.

AFRO AMRO EMRO SEARO WPRO** GAVI-eligible Global

ETEC vaccination
Number of countries

ICER < 3 X GDP
17 3 4 – 3 19 27
[7; 21] [1; 4] [2; 5] – [ND; 3] [6; 24] [10; 34]

Total deaths* averted (1000 s) 45.6 1.0 13.6 – 0.4 35.0 60.7
[23.6; 71.3] [0.2; 1.5] [2.7; 19.4] – [ND; 0.6] [10.0; 59.3] [26.8; 116.1]

Total deaths* averted/100,000
FVC***

7.2 2.5 4.6 – 2.2 5.4 6.1
[5.5; 9.9] [1.2; 3.7] [2.8; 6.2] – [ND; 3.0] [4.1; 7.6] [3.9; 8.0]

Total DALYs* averted (1000 s) 1,561 35 464 – 13 1,194 2,073
[807; 2,440] [8; 51] [93; 659] – [ND; 19] [341; 2,026] [915; 3,970]

Total DALYs* averted/100,000
FVC***

246 86 155 – 76 185 209
[190; 340] [40; 128] [94; 211] – [ND; 100] [140; 260] [133; 273]

Vaccination costs (millions US$) 2,259 146 1,055 – 60 2,295 3,520
[1,550; 2,944] [69; 183] [332; 1,631] – [ND; 95] [821; 3,026] [2,333; 7,928]

Vaccination costs/100,000 FVC*** 355,702 356,373 353,238 – 352,397 356,570 354,931
[274,110;
561,392]

[265,267;
557,867]

[253,764;
557,408]

– [ND;
546,333]

[274,842;
563,324]

[272,039;
561,229]

Administration costs/100,000
FVC***

98,453 99,057 96,233 – 95,475 99,234 97,757
[65,886; 125,759] [63,968; 126,238] [60,760; 123,783] – [ND;

122,304]
[66,462; 127,364] [65,076; 124,893]

Medical costs averted (millions
US$)

82 10 43 – 2 80 137
[34; 127] [3; 17] [7; 62] – [ND; 4] [13; 125] [49; 374]

ICER (2016 US$/DALY) 1,395 3,871 2,181 – 4,474 1,856 1,632
[982; 2,154] [2,479; 9,664] [1,203; 3,681] – [ND; 6,655] [1,206; 2,762] [1,449; 2,530]

(continued on next page)
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Table 6
Cost-effectiveness of standalone vaccines for ETEC and Shigella, when limited to settings with an ICER less than GDP threshold, by region, 2025–2034. Results from uncertainty
analysis are listed below model estimates. Upper and Lower represent 95% uncertainty intervals for each estimate.

AFRO AMRO EMRO SEARO WPRO GAVI-eligible** Global

ETEC vaccination
Number of countries ICER < GDP 6 – – – – 3 6

[1; 7] – – – – [ND; 4] [1; 8]
Total deaths* averted (1000 s) 32 – – – – 8 32

[3; 46] – – – – [ND; 14] [3; 48]
Total deaths* averted/100,000 FVC** 9 – – – – 16 5

[6; 12] – – – – [ND; 22] [1; 7]
Total DALYs* averted (1000 s) 1108.1 – – – – 259.4 1108.1

[119; 1590] – – – – [ND; 477] [119; 1645]
Total DALYs* averted/100,000 FVC** 320 – – – – 548 320

[196; 416] – – – – [ND; 756] [196; 407]
Vaccination costs (millions US$) 1226 – – – – 175 1226

[229; 1690] – – – – [ND; 387] [229; 1732]
Vaccination costs/100,000 FVC*** 354,236 – – – – 369,582 354,236

[272,778; 559,003] – – – – [ND; 500,700] [272,788; 559,003]
Administration costs/100,000 FVC*** 97,132 – – – – 110,957 97,132

[64,858; 122,847] – – – – [ND; 136,183] [64,853; 122,847]
Medical costs averted (millions US$) 50 – – – – 4 50

[14; 75] – – – – [ND; 13] [14; 81]
ICER (2016 US$/DALY) 1,061 – – – – 660 1,061

[746; 1,941] – – – – [ND; 845] [828; 1,941]

Shigella vaccination
Number of countries ICER < GDP 7 – 4 – – 8 11

[1; 8] – [2; 5] – – [2; 10] [3; 14]
Total deaths* averted (1000 s) 40 – 44 – – 55 84

[4; 55] – [11; 65] – – [11; 82] [15; 120]
Total deaths* averted/100,000 FVC** 10 – 15 – – 14 12

[6; 14] – [10; 20] – – [10; 19] [8; 16]
Total DALYs* averted (1000 s) 1312 – 1476 – – 1856 2787

[138; 1806] – [365; 2181] – – [365; 2,727] [510; 3,996]
Total DALYs* averted/100,000 FVC** 338 – 494 – – 478 406

[213; 453] – [320; 666] – – [323; 647] [267; 542]
Vaccination costs (millions US$) 1,375 – 1,055 – – 1,379 2,430

[256; 1,759] – [442; 1,644] – – [442; 1,778] [713; 3,353]
Vaccination costs/100,000 FVC*** 354,016 – 353,238 – – 355,120 353,678

[271,616; 556,691] – [264,699; 556,090] – – [266,212; 556,324] [271,471; 557,353]
Administration costs/100,000 FVC*** 96,933 – 96,233 – – 97,928 96,629

[64,380; 123,469] – [63,434; 123,544] – – [64,354; 125,143] [64,302; 123,565]

Table 5 (continued)

AFRO AMRO EMRO SEARO WPRO** GAVI-eligible Global

Shigella vaccination
Number of countries

ICER < 3 X GDP
18 3 8 – – 22 29
[8; 23] [1; 4] [5; 8] – – [10; 27] [14; 37]

Total deaths* averted (1000 s) 52.7 1.1 53.0 – – 76.5 106.8
[27.1; 91.0] [0.2; 1.6] [31.9; 71.9] – – [41.1; 121.4] [59.4; 188.3]

Total deaths* averted/100,000
FVC***

7.9 2.6 10.7 – – 10.1 8.8
[6.1; 10.9] [1.2; 3.9] [8.1; 15.2] – – [8.2; 14.2] [5.3; 11.9]

Total DALYs* averted (1000 s) 1,746 36 1,777 – – 2,556 3,559
[901; 3,010] [8; 53] [1,070; 2,412] – – [1,377; 4,041] [1,983; 6,255]

Total DALYs* averted/100,000
FVC***

260 89 357 – – 339 294
[202; 361] [41; 130] [270; 508] – – [273; 476] [176; 395]

Vaccination costs (millions US$) 2,386 146 1,763 – – 2,693 4,296
[1,650; 3,237] [71; 187] [1,250; 2,426] – – [1,811; 3,597] [3,030; 9,202]

Vaccination costs/100,000 FVC*** 355,503 356,373 354,360 – – 356,897 355,062
[275,835;
560,639]

[268,790;
558,302]

[272,641;
560,870]

– – [276,720;
562,627]

[273,263;
560,780]

Administration costs/100,000
FVC***

98,273 99,057 97,243 – – 99,529 97,876
[66,166; 125,794] [64,733; 125,497] [65,110; 124,785] – – [67,012; 127,662] [65,318; 124,896]

Medical costs averted (millions
US$)

98 10 213 – – 184 321
[38; 151] [3; 17] [74; 302] – – [81; 269] [116; 652]

ICER (2016 US$/DALY) 1,311 3,750 872 – – 981 1,117
[899; 1,960] [2,465; 9,416] [539; 1,260] – – [713; 1,366] [1,045; 1,687]

* Total deaths and DALYS are the sum of burden attributed to diarrhea from ETEC or Shigella infection and ETEC- or Shigella-induced deaths from other infectious diseases.
** ‘‘ND” indicates ‘not defined’ as there were no WPRO countries that met the threshold under the predicted lower bounds (2.5%) of the 95% uncertainty intervals.
*** Fully vaccinated children (FVC): Number of eligible children who received all three doses of the vaccine.
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Table 6 (continued)

AFRO AMRO EMRO SEARO WPRO GAVI-eligible** Global

Medical costs averted (millions US$) 60 – 113 – – 123 173
[16; 85] – [13; 168] – – [13; 178] [31; 256]

ICER (2016 US$/DALY) 1,002 – 638 – – 677 810
[674; 1,865] – [402; 1,187] – – [433; 1,187] [540; 1,413]

* Total deaths and DALYS are the sum of burden attributed to diarrhea from ETEC or Shigella infection and ETEC- or Shigella-induced deaths from other infectious diseases.
** ‘‘ND” indicates ‘not defined’ as there were no GAVI-eligible countries that met the threshold under the predicted lower bounds (2.5%) of the 95% uncertainty intervals.
*** Fully vaccinated children (FVC): Number of eligible children who received all three doses of the vaccine

Fig. 1. Incremental cost-effectiveness of ETEC and Shigella standalone vaccines by national Gross Domestic Product (2025–2034). The solid line represents a threshold of
ICERs relative to values of three times the GDP, while the dashed line represents ICERS relative to GDP. Countries following below either line would be considered cost-
effective based on each criterion.
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3.3. Sensitivity and uncertainty

Globally, the most influential variables on ICER estimates were
vaccine price per dose (range; $3765/DALY [ETEC] and $2727/
DALY [Shigella]) and efficacy (range; $2729/DALY [ETEC] and
$1977/DALY [Shigella]), followed by the etiological fraction attrib-
uted to each pathogen (range; $1871/DALY [ETEC] and $1340/
DALY [Shigella]) (Fig. 2A and B). Variation in projected mortality
change (range; $1326/DALY [ETEC] and $923/DALY [Shigella]) was
also influential on ICERs.
4. Discussion

Our analysis is the first evaluating the impact and cost-
effectiveness of potential ETEC and Shigella vaccine candidates in
children in low and lower-middle income countries. The impact
of vaccination on stunting and deaths from other infectious dis-
eases makes ETEC and Shigella vaccination more compelling and
cost-effective. These vaccines could avert over 274,000 ETEC and
Shigella attributable deaths in the first decade, a 47% reduction in
mortality. Including benefits of stunting averted results in much
lower ICERs and increases the number of countries where vaccina-
tion is cost-effective.
Our results suggest that there is heterogeneity in vaccine
impact and cost-effectiveness across regions and by Gavi eligibil-
ity. While the majority of the averted burden for both ETEC and
Shigella vaccines is in AFRO, substantial burden is also averted in
EMRO. Introducing vaccines only in high burden countries
and/regions could reduce cost without substantial reductions in
health impact. This is clearest when calculating impact for those
countries where vaccines are cost-effective. The number of deaths
averted per 100,000 fully vaccinated children for an ETEC vaccine
increases, while still averting the majority of preventable total
ETEC deaths. Gavi-eligible countries may also benefit greatly as
these countries experience a large share of projected disease
burden. Vaccine introduction in these countries alone could have
a substantial impact on burden. It will be important for country
policy makers to understand disease heterogeneity when evaluat-
ing whether or not to introduce these vaccines.

There is evidence that childhood stunting may be associated
with chronic diseases such as heightened prevalence of high blood
pressure, impaired fasting glucose, and increased body mass index
[9]. If ETEC and Shigella infections increase chronic disease through
induced stunting, vaccination could be even more impactful and
cost-effective than initially realized. In addition to chronic disease
risk, early childhood stunting has been shown to be associated
with decreased earnings and fewer completed years of school



Fig. 2. Tornado diagram showing results of one-way PSA exploring the affect key input variables have on cost-effectiveness of ETEC and Shigella standalone vaccines, in 79
LMICs from 2025 to 2034. Ranges of variables (listed in Table 2) are displayed at the end of the corresponding bar. Price per dose is varied by $US ranging from a low estimate
of $2/dose to a high estimate of $7/dose. ‘Etiological fraction’ is variation in the fraction of overall diarrheal mortality attributed to ETEC and Shigella diarrhea. ‘Mortality
change’ is variation in the rates diarrheal mortality projected in years 2025–2034. ‘Induced stunting’ refers to the number of other infectious disease deaths caused by ETEC or
Shigella induced stunting. ‘Hospitalized fraction’ is variation in the fraction of children hospitalized (1 in 8 referred to inpatient facility).
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[51]. If ETEC and Shigella vaccination could reduce stunting and
these long-term health and development consequences, then vac-
cination is more economically viable than indicated in the results
from this study.

The model incorporates projections based on population fore-
casts and past diarrheal mortality trends that could contribute to
underestimation of vaccine impacts. First, while the past two
decades have seen consistent declines in diarrheal mortality
[52], additional factors may alter this trend. Global urbanization
rates are increasing in low- and lower-middle income countries,
placing larger populations at risk as growth overwhelms infras-
tructure, forcing many into living in underserved informal settle-
ments. Risk for infectious diseases increase in these
environments due to overcrowding with lack of safe sanitation
and clean water [53]. While moving to urban areas could
increase access to health care and therefore reduce mortality,
this is highly dependent on individual household economic sta-
tus and their community’s urban infrastructure which is highly
variable within and between cities. There is some evidence that
a move to urban areas reduces access to health care [54]. Sec-
ond, increasing antibiotic resistance and climate change may
reverse gains made over the past few years by increasing risk
of exposure, severe disease, and death. Third, vaccination impact
could be underestimated if these vaccines induce herd protec-
tion. Fourth, dmLT adjuvant is in current formulation which
has potential to improve protection. Evidence of mucosal
immune responses induced by ETVAX vaccine may provide some
protection against ETEC colonization factor antigens not included
in the vaccine [55].

There are several limitations to this analysis. First, there are no
vaccine trial-derived measures of vaccine efficacy and duration. As
these vaccine candidates are under development, we do not know
their price, thus our cost-effectiveness estimates may be higher or
lower than projected. Furthermore, our cost-effectiveness esti-
mates are dependent on assuming that these two vaccines would
have the same price, efficacy and coverage.
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No treatment-seeking or hospitalization rates exist for children
experiencing ETEC and Shigella episodes in most of our study coun-
tries. We used DHS data on treatment seeking for diarrhea and
assumed a proportion of those children are hospitalized. We also
adjusted our fraction of MSD episodes based on GEMS methodol-
ogy. Thus, we have assumed that all MSD cases access treatment
which may underestimate the true number of child MSD. We mod-
elled cost of illness based on available estimates—this approach
may over- or under-estimate the medical cost averted due to vac-
cination in many countries. For most input parameters, we have
limited information on the true degree of uncertainty and thus
we rely on simple distribution types and measures of dispersion.
We did not estimate waning in our model or the impact of partial
protection from receiving less than three doses.

A final limitation is the rate of decline for diarrheal mortality.
We assumed mortality decline mirrors the decline seen during
2000–2013. However, studies are actively evaluating whether the
rate of decline is decreasing. Incorporating these findings may alter
our estimates of vaccine impact by increasing the number of
deaths averted.

This analysis considered the potential impact and cost-
effectiveness of vaccines that are in development. It shows the
importance of including the expanded impact of vaccination to
prevent stunting and resulting deaths due to other infectious dis-
ease. To capture the true value of these vaccines, it is important
to quantify the expanded effects of enteric pathogens. Burden
was concentrated in a few regions, indicating that introduction in
these countries could potentially avert the majority of disease bur-
den globally. As these vaccines undergo further clinical develop-
ment, it will be important to reassess the potential vaccine
impact as data on efficacy, duration of protection, and diarrheal
impact on stunting becomes available.
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