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1. Abstract 
Neurophysiological studies suggest that intrinsic brain oscillations influence sensory processing, 
especially of rhythmic stimuli like speech. Prior work suggests that brain rhythms may mediate 
perceptual grouping and selective attention to speech amidst competing sound, as well as more 
linguistic aspects of speech processing like predictive coding. However, we know of no prior 
studies that have directly tested, at the single-trial level, whether brain oscillations relate to 
speech-in-noise outcomes. Here, we combined electroencephalography while simultaneously 
measuring intelligibility of spoken sentences amidst two different interfering sounds: multi-talker 
babble or speech-shaped noise. We find that induced parieto-occipital alpha (7–15 Hz; thought 
to modulate attentional focus) and frontal beta (13–30 Hz; associated with speech-motor 
predictive coding) oscillations covary with trial-wise percent-correct scores; importantly, alpha and 
beta power provide significant independent contributions to predicting single-trial behavioral 
outcomes. Moreover, we observed large individual differences in the across-trial distribution of 
alpha and beta power as well as in the alpha-to-beta power ratio. This raises the possibility that 
listeners employed different task strategies: some may have relied heavily on focusing attention, 
while others on predictive coding. These results can inform models of speech processing and 
guide noninvasive measures to index different neural processes that together support complex 
listening. 
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2. Introduction 
Understanding speech in the presence of interfering sounds—e.g., competing talkers or other 
sources of background noise—is a difficult perceptual task that our brains solve everyday (Cherry, 
1953). However, the neural mechanisms facilitating “cocktail-party” listening remain poorly 
understood. Neurophysiological studies in humans [using electro- (EEG) and magneto-
encephalography (MEG) as well as invasive intracranial recordings] and other animal species 
suggest that brain rhythms (Buzsáki and Draguhn, 2004) in different frequency bands may 
mediate sensory processing (Schroeder and Lakatos, 2009). This, in turn, may facilitate speech 
understanding in competition. For instance, in a mixture of competing sources, brain oscillations 
in the low-frequency delta (1–3 Hz) and theta (3–7 Hz) bands preferentially phase-lock to the slow 
temporal fluctuations (i.e., envelopes) in attended speech (Ding and Simon, 2012; O’sullivan et 
al., 2015), while power fluctuations in the low-gamma (30–70 Hz; Viswanathan et al., 2019) and 
high-gamma (70–120 Hz; Mesgarani and Chang, 2012; Golumbic et al., 2013) bands selectively 
synchronize to attended versus ignored speech envelopes. This target-speech envelope phase-
locking in the brain may aid listeners in selectively processing a target speech source in an 
acoustic mixture, thereby influencing speech intelligibility across different everyday listening 
conditions (Viswanathan et al., 2021).  
 
In addition to phase-locked (or evoked) neuronal oscillations, induced brain rhythms have also 
been implicated in cocktail-party listening. For instance, focused auditory attention leads to 
increase in the power of the alpha (7–15 Hz) rhythm in parieto-occipital areas, which is specifically 
thought to be a hallmark of neuronal mechanisms related to suppression of sensory distractors 
(Foxe and Snyder, 2011; Strauß et al., 2014) like visual input (Adrian, 1944). During auditory 
spatial selective attention, parieto-occipital alpha power becomes lateralized: alpha power 
increases contralateral to the hemifield of distracting sounds (i.e., ipsilateral to the hemifield of 
focus; Banerjee et al., 2011; Deng et al., 2019; Deng et al., 2020). This alpha lateralization has 
been reported to predict individual differences in spoken-digit identification when listeners hear a 
mixture of spatially separated sources (Love et al., 2020). Moreover, even for tasks that involve 
spatially co-localized speech and distractor sources, prior studies report positive correlation 
between the overall magnitude (versus lateralization) of alpha power in centro-parietal EEG 
channels and speech comprehension across signal-to-noise ratios (SNRs; for spoken sentences; 
Hall et al., 2019) and across individuals (for spoken digits; Alhanbali et al., 2022).  
 
In contrast to induced alpha, which has been implicated in auditory attention, the beta (13–30 Hz) 
rhythm is thought to support maintenance of the current sensorimotor state (Engel and Fries, 
2010) and speech-motor predictive coding (Arnal and Giraud, 2012; Lewis and Bastiaansen, 
2015). More generally, motor-theory accounts of speech recognition posit that sensorimotor 
integration between fronto-motor areas controlling articulation (e.g., inferior frontal gyrus and 
premotor cortex) and temporal-parietal cortical areas implicated in phonetic category 
representation mediates top-down sensory prediction to modulate and stabilize speech 
representation (Hickok et al., 2011; Skipper et al., 2017; Pulvermüller, 2018), especially in 
adverse listening conditions such as in background noise (Adank et al., 2012; Du et al., 2014). In 
line with this notion, frontal beta power correlates with sensory prediction precision in vocoded 
word identification (Cope et al., 2017), with auditory cortical entrainment to continuous speech 
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(Park et al., 2015; Keitel et al., 2017), and with comprehension for time-compressed speech 
sentences (Pefkou et al., 2017). Moreover, across individuals, beta-band synchrony between 
premotor and temporal-parietal cortical regions correlates positively with syllable identification in 
noise  (Alho et al., 2014).  
 
Despite the prior literature linking alpha and beta rhythms to speech processing, we know of no 
prior studies that tested whether trial-to-trial variations in the overall magnitude of induced parieto-
occipital alpha power and frontal beta power relate to trial-wise speech intelligibility when 
competing sounds are present. The present study explored this question using human EEG and 
simultaneous speech intelligibility measurements of spoken sentences under masking. Because 
different competing sounds could drive different degrees of demand on selective attention versus 
contextual prediction (e.g., attentional demand—and hence alpha power—may be greater when 
the masker is a competing speech stream or multi-talker babble versus stationary noise; Shinn-
Cunningham, 2008), we used two different maskers in this study: multi-talker babble and speech-
shaped stationary noise. We examined the extent to which the overall magnitude of induced 
oscillatory power in different frequency bands relates to speech intelligibility in each masking 
condition on a trial-by-trial basis. Building on our previous work, where we related phase-locked 
neural responses to speech understanding in different listening conditions in the same dataset 
(Viswanathan et al., 2021), here we focused on induced brain activity. Specifically, we examined 
frequency bands in which the prior literature reports induced responses to speech. Because we 
sought to quantify induced activity on a single-trial level, we focused on alpha and beta rhythms 
here (rather than higher-frequency gamma band activity) due to the relatively greater SNR of 
alpha and beta in EEG measurements (Buzsáki et al., 2012; Viswanathan et al., 2019).  
 
 
3. Materials and Methods 
The stimuli, participants, experimental design, and hardware used in the current study are 
described in detail in the materials and methods in Viswanathan et al. (2021). Below, we describe 
each briefly. 
 
3.1. Stimulus generation 
Target speech that listeners were instructed to attend were Harvard/Institute of Electrical and 
Electronics Engineers (IEEE) sentences (Rothauser, 1969) spoken in a female voice and 
recorded as part of the PN/NC corpus (McCloy et al., 2013). Stimuli were created for two different 
speech-in-noise experimental conditions, as described below. 
 
1. Condition 1: Speech in babble (SiB).  Speech was added to spectrally matched four-talker 
babble at -2 dB SNR. The long-term spectra of the target speech sentences were adjusted to 
match the average (across instances) long-term spectrum of four-talker babble. In creating each 
SiB stimulus, a babble sample was randomly selected from a list comprising 72 different four-
talker babble maskers obtained from the QuickSIN corpus (Killion et al., 2004). 
 
2. Condition 2: Speech in speech-shaped stationary noise (SiSSN). Speech was added to 
spectrally matched stationary Gaussian noise, i.e., speech-shaped stationary noise, at -5 dB 
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SNR. The long-term spectra of the target speech sentences and that of stationary noise were 
adjusted to match the average (across instances) long-term spectrum of four-talker babble. A 
different realization of stationary noise was used for each SiSSN stimulus. 
 
The particular SNRs used for SiB and SiSSN yielded average speech intelligibility values close 
to 50% (Figure 1; also see Viswanathan et al., 2021), which helped avoid floor and ceiling effects 
when quantifying percent-correct scores on a trial-by-trial basis. Note that the speech and masker 
sources in each acoustic mixture were co-localized (presented diotically) for all stimuli. 
 

 

Figure 1. Percent words correct as a function of subject and experimental condition (SiB versus SiSSN). 
Data shown are pooled over trials.  

 
3.2. Participants 
Data from six human subjects (one male, five female) aged 19–31 years were analyzed for this 
study. All subjects were native speakers of North American English, had pure-tone hearing 
thresholds better than 20 dB hearing level in both ears at standard audiometric frequencies 
between 250 Hz and 8 kHz, and reported no history of neurological disorders. All subjects also 
had distortion-product and click-evoked otoacoustic emissions within the normal range (Gorga et 
al., 1993) as well as normal tympanograms. Subjects provided informed consent in accordance 
with protocols established at Purdue University. Data were collected from each subject over the 
course of one or two visits (with a total visit time of approximately 5 hours). 
 
3.3. Experimental design 
Each subject performed 175 trials of speech intelligibility testing for each of the two experimental 
conditions, with a distinct target sentence in every trial. In total, 1050 trials were collected for each 
experimental condition across the subject cohort. The different experimental conditions were 
intermingled across trials.  
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Thirty-two-channel EEG was measured as subjects performed the speech identification task. The 
target speech sentences were presented at a sound level of 72 dB sound pressure level (SPL), 
while the level of the background was set to obtain the desired SNR.  
 
Subjects were instructed that they would be listening for a woman’s voice speaking a sentence in 
each trial and that at the end of the trial they would have to verbally repeat the sentence back to 
the experimenter sitting beside them. They were told that it would be the same woman’s voice 
every time but that the type and level of background noise would vary across trials. They were 
also told that the noise would start first in each trial with the target woman’s voice starting 
approximately one second later. They were encouraged to guess as many words as they could if 
they heard a sentence only partially. 
 
At the beginning of each trial, subjects were presented with a visual cue that read “stay still and 
listen now” in red font. The audio stimulus started playing one second afterward. In every trial, the 
background noise started first, while the target speech started 1.25 seconds later to allow 
sufficient time to cue the subjects’ attention to the stimulus. The target was at least 2.5 seconds 
long. After the target sentence ended, the background noise continued for a short, variable 
amount of time. Two hundred ms after the noise ended, subjects were presented with a different 
visual cue that read “repeat now” in green font, cueing them to report the target sentence. This 
delayed response design avoided motor artifacts and speech-motor preparation signals from 
contributing to the EEG recorded during listening. For each trial, intelligibility was scored on five 
pre-determined keywords (which excluded articles and prepositions) in the target sentence and 
then converted to a percent-correct score (whose value in each trial was either 0, 20, 40, 60, 80, 
or 100). Before the actual EEG experiment, subjects performed a short training demo task, which 
used the same listening conditions and target speaker’s voice as the actual experiment but a 
different set of Harvard/IEEE target sentences from the main experiment. 
 
3.4. Hardware 
The entire experiment was conducted in a sound-treated booth. A personal desktop computer 
controlled all aspects of the experiment, including triggering sound delivery and storing data. 
Special-purpose sound-control hardware (System 3 real-time signal processing system, including 
digital- to-analog conversion and amplification; Tucker Davis Technologies, Alachua, FL) 
presented audio through insert earphones (ER-2; Etymotic, Elk Grove Village, IL) coupled to foam 
ear tips. The earphones were custom shielded by wrapping the transducers in layers of magnetic 
shielding tape made from an amorphous cobalt alloy (MCF5; YSHIELD GmbH & Co., Ruhstorf, 
Germany) and then placing them in 3-mm-thick aluminum enclosures to attenuate 
electromagnetic interference. The signal cables driving the transducers were shielded with 
braided metallic Techflex (Techflex, Sparta, NJ). All shielding layers were grounded to the chassis 
of the digital-to-analog (D/A) converter. The absence of measurable electromagnetic artifact was 
verified by running intense click stimuli through the transducers with the transducers positioned 
in the same location relative to the EEG cap as actual measurements but with foam tips left 
outside the ear. All audio signals were digitized at a sampling rate of 48.828 kHz. The EEG signals 
were recorded at a sampling rate of 4.096 kHz using a BioSemi (Amsterdam, The Netherlands) 
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ActiveTwo system. Recordings were done with 32 cephalic electrodes and two additional earlobe 
electrodes. 
 
3.5. EEG processing 
All six subjects were able to stay still during the presentation of the sentences and respond on 
cue. EEG signals were preprocessed by re-referencing channel data to the average of the two 
earlobe reference electrodes. Then, the signal space projection method was used to construct 
spatial filters to remove eye blink and saccade artifacts (Uusitalo and Ilmoniemi, 1997). Finally, 
the broadband EEG was bandpass filtered between 1 and 400 Hz and parceled into epochs, each 
of which corresponded to a distinct trial. Each epoch started 0.5 seconds before the “stay still and 
listen now” cue of the corresponding trial, and ended when the shortest target sentence ended; 
thus the total duration of each epoch was 5.25 seconds.  
 
For each subject and experimental condition, the EEG response spectrogram in each epoch was 
calculated using a Slepian-tapered complex exponential wavelet (Slepian, 1978; Thomson, 
1982). Five cycles were used to estimate each time-frequency bin with a time-full-bandwidth 
product of 2.  
 
Based on our observation of clear induced brain oscillations in the alpha (7–15 Hz) and beta (13–
30 Hz) bands (Figure 2), we derived scalp topomaps in each of these two bands for the pre-
stimulus (the one-second-long time period between the “stay still and listen now” cue and the 
stimulus presentation) and during-stimulus (the 3.75-seconds-long time period between the start 
of stimulus presentation and end of the target sentence) periods; this was done by averaging the 
response spectrogram over all band-specific frequencies, epochs, subjects, experimental 
conditions, and time samples in the corresponding period. 
 
To obtain overall measures of alpha power in each trial, the spectrogram in the corresponding 
epoch was averaged in the alpha band over parieto-occipital channels (A9, A10, A11, A12, A13, 
A14, A15, A16, A17, A18, A19, A20, A21, and A22; based on Figure 3A topomap). This was done 
separately over the pre-stimulus period and the during-stimulus period. An overall measure of 
trial-specific pre- and during-stimulus beta-band power was obtained using a similar approach, 
but by using frontal channels (A1, A2, A3, A4, A5, A6, A25, A26, A27, A28, A29, A30, and A31) 
instead (based on Figure 3B topomap). Since alpha power in the pre- and during-stimulus periods 
were strongly correlated (Figure 4A), we combined the pre- and during-stimulus power by 
averaging before performing further analysis. Similarly, since the beta power in the pre- and 
during-stimulus periods were correlated (Figure 4B), the average power across pre- and during-
stimulus periods was used for all further analysis. 
 
3.6. Statistical analysis 
We tested whether greater alpha power is associated with higher percent-correct score across 
different trials. A linear model was built with the different trials across subjects as observations. 
The log of alpha power was taken as the response variable (to ensure response data are normally 
distributed; Thomson and Chave, 1991) while percent-correct score and condition (SiB versus 
SiSSN) were predictors. Percent correct was treated as an ordered factor variable (with six levels: 
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0, 20, 40, 60, 80, and 100) and condition as a factor variable (with two levels). Statistical tests 
used ANOVA (Type II tests with the F statistic) along with post-hoc t-tests. The same approach 
was used to test whether greater beta power is associated with higher percent-correct score 
across trials.  
 
We performed several posthoc analyses to quantitatively assess the precise relationship between 
percent-correct score and alpha or beta power. First, we examined the individual terms in the 
omnibus model to assess the respective contributions of the linear, quadratic, cubic, and fourth 
order terms in the model. The linear term had the largest contribution to the overall main effect in 
both the alpha and beta models. To understand the linear term further, we performed pairwise t-
tests for percent-correct scores going from 0 to 20, 20 to 40, 40 to 60, etc. (i.e., successive 
difference contrast coding).   
 
To test whether alpha and beta power are correlated across trials, we used a linear mixed-effects 
model to account for any random effect of subject. Log beta power in different trials across 
subjects was the response, and log alpha power, condition (factor variable with two levels), and 
subject were predictors. Anova (Type II Wald F tests with Kenward-Roger degree of freedom; 
Kenward and Roger, 1997) was used for statistical testing.  
 
Behavioral outcomes across different trials may be influenced by both top-down selective 
attention and contextual prediction. To explore this possibility directly, we examined response 
error patterns, computing the histogram (across trials and subjects) of number of words correct 
per sentence separately for each experimental condition. If either selective attention or predictive 
coding—or a combination of the two—influence trial-wise behavioral outcome, performance 
across the different words should be correlated within a trial. We tested for this effect separately 
for each experimental condition by comparing the histogram of number of words correct per 
sentence against the distribution under the null hypothesis of independent outcomes across 
different words. Under the null hypothesis, the performance on any particular word in a sentence 
(i.e., whether or not the word was reported correctly) has a Bernouilli distribution with parameter 
p = average proportion correct score for the particular condition. Moreover, the probability of 
reporting correctly x words out of a total of 5 words per sentence is binomial with parameters n = 
5, and p = average proportion correct score for the condition. Assuming independent outcomes 
across different sentences, the probability that M sentences out of a total of 1050 sentences per 
condition (pooled over all six subjects; each subject performed 175 sentences per condition) had 
x words correct is also binomial, with parameters n = 1050 and p = probability that x words per 
sentence are correct. We compared this final probability distribution (modeling the null distribution 
of independent word outcomes in each condition) with the histogram of number of words correct 
per sentence. Specifically, we generated p-values describing, for each experimental condition, 
the likelihood of observing the actual correlation across words within each trial, assuming that 
performance on the words was truly independent.   
 
We used a multinomial linear regression model to test whether beta power contributes additionally 
to predicting percent-correct score over the contribution of alpha power alone, and vice-versa 
(i.e., whether alpha power contributes additional predictive power over that contributed by beta 
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power alone). The percent-correct score in different trials across subjects was the response 
(treated as an ordered factor variable with six levels: 0, 20, 40, 60, 80, and 100); the predictors 
were log alpha power, log beta power, and condition (factor variable with two levels). Likelihood-
ratio Type II tests were used for statistical testing by calculating the deviance (i.e., -2 times log 
likelihood-ratio) and comparing it to a chi-squared distribution (Wilks, 1938).  
 
3.7. Software accessibility 
Stimulus presentation was controlled using custom MATLAB (The MathWorks, Inc., Natick, MA) 
routines. EEG preprocessing was performed using the open-source software tools MNE-
PYTHON (Gramfort et al., 2014) and SNAPsoftware (Bharadwaj, 2018). All further data analyses 
were performed using custom software in PYTHON (Python Software Foundation, Wilmington, 
DE). Statistical analyses were performed using R (R Core Team; www.R-project.org). 
Visualizations used the colorblind-friendly Colorbrewer (Harrower and Brewer, 2003) and Color 
Universal Design (Ichihara et al., 2008) colormap palettes. Copies of all custom code can be 
obtained from the authors. 
 
 
4. Results 
We wished to quantify induced brain oscillations in different canonical frequency bands (Buzsáki 
and Draguhn, 2004) on a trial-by-trial basis and relate those to speech intelligibility, also measured 
on a trial-by-trial basis. For this, we first computed the EEG response spectrogram in each trial 
(see Materials and Methods: EEG processing) to examine induced (versus evoked) oscillatory 
activity in different frequency bands. Figure 2A shows the average EEG spectrogram over the 32 
EEG channels, and all trials, subjects, and experimental conditions. Figure 2B shows the average 
EEG spectrum obtained by computing the mean over time of the spectrogram shown in Figure 
2A. As seen in Figure 2, induced brain oscillations are clearly visible in the alpha (7–15 Hz) and 
beta (13–30 Hz) bands. Because we did not see any induced activity outside the alpha and beta 
frequency ranges, we restricted all further analyses in the current study to just the alpha and beta 
bands.  
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Figure 2. Average EEG response spectrogram (A) and spectrum (B). The spectrogram and spectrum 
shown are averaged over the 32 EEG channels, and all trials, subjects, and experimental conditions. 
Note that the time before T1 corresponds to baseline. At T1, the “stay still and listen now” visual cue was 
shown. At T2, the audio stimulus started playing. At T3, presentation of the target speech sentence 
started; target presentation lasted until at least 5.25 s (and was longer for the longer sentences). 

 
To better understand the neural sources of these alpha and beta induced oscillations, we 
computed their scalp topography (see Materials and Methods: EEG processing). Figures 3A and 
3B show average (over band-specific frequencies, trials, subjects, experimental conditions, and 
time samples) scalp topomaps for the alpha and beta bands, respectively; the topomaps are 
plotted separately for the pre- and during-stimulus periods so as to be able to visualize any 
differences in the contributions of preparatory rhythmic activity and stimulus-induced oscillatory 
activity (Foxe and Snyder, 2011). Results suggest that the strongest alpha power occurs in the 
parieto-occipital channels (Figure 3A) and the strongest beta power occurs in the frontal channels 
(Figure 3B).  
 

 

Figure 3. Average scalp topography maps for the induced oscillatory power in the alpha (A) and beta (B) 
bands, shown separately for the pre- and during-stimulus time periods. The topomaps are averaged over 
band-specific frequencies, trials, subjects, experimental conditions, and time samples.  
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Based on Figure 3 scalp topomaps, we used parieto-occipital EEG channels to derive an overall 
measure of alpha power for each trial from the EEG response spectrogram; we did this separately 
for the pre- and during-stimulus periods (see Materials and Methods: EEG processing). Similarly, 
we derived an overall measure of trial-specific pre- and during-stimulus beta power, but by using 
frontal EEG channels instead. Figures 4A and 4B plot the power in different trials across subjects 
and conditions in the pre-stimulus period against the corresponding values in the during-stimulus 
period for the alpha and beta bands, respectively. Across trials, pre- and during-stimulus induced 
oscillation power was significantly correlated for both alpha (R2 = 0.6292, p < 2e-16) and beta (R2 
= 0.9151, p < 2e-16). For beta, the during-stimulus power was roughly equal to the pre-stimulus 
power (in Figure 4B, data fall along the identity line); however, for alpha, the during-stimulus power 
was consistently higher than the pre-stimulus power (in Figure 4A, data fall above the diagonal), 
but the pre-stimulus value nonetheless predicted the during-stimulus alpha power value. We were 
interested in whether the difference in alpha (and beta) power across trials was related to 
behavioral performance and wished to quantify the level of alpha (and beta) in each trial relative 
to the other trials. Therefore, we averaged the pre- and during-stimulus periods together for all 
further analyses. 
 

 

Figure 4. Overall parieto-occipital alpha (A) and frontal beta (B) power in different trials (across subjects 
and conditions) in the pre-stimulus period against the corresponding values in the during-stimulus period. 

 
Across trials, we compared percent-correct score with the corresponding alpha and beta power. 
Figure 5A shows alpha power versus percent-correct score in different trials across subjects, 
separately for each condition. Alpha power covaried significantly with percent-correct score within 
condition (F = 4.7789, p = 0.0002397; see Materials and Methods: Statistical analysis for details). 
Figure 5B shows beta power versus percent-correct score in different trials across subjects, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522365doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522365
http://creativecommons.org/licenses/by-nc-nd/4.0/


separately for each condition. Beta power too covaried significantly with percent-correct score 
within condition (F = 6.4915, p = 5.346e-06). Posthoc analyses revealed that the largest 
contribution to the main effect of score on alpha and beta power came from the linear term, 
indicating that alpha and beta power increased with score (T = 4.216, p = 2.59e-05 for alpha; T = 
4.173, p = 3.13e-05 for beta). The quadratic term was also significant in predicting alpha power, 
but carried a negative coefficient (T = -2.521, p = 0.0118) in line with the plateauing of alpha power 
with increasing score seen in Figure 5A. In the model for beta power, the cubic term was also 
significant (T = 3.003, p = 0.00271), in line with the U-shaped trend seen over the 20–100% range 
of scores in Figure 5B. We conducted pairwise t-tests to compare the changes in alpha and beta 
power for each step increase in percent-correct score. These sequential-difference-contrast 
analyses showed that alpha and beta power increased when percent-correct score increased 
from 0 to 20 (T = 1.994, p = 0.0463 for alpha; T = 4.249, p = 2.24e-05 for beta); however, for the 
successive steps (20 to 40, 40 to 60, etc.), the increase in power was not significant for either 
alpha or beta. Figure 5A also suggests that for a given percent-correct score, alpha power is 
greater for speech in stationary noise than in babble; however, statistical testing did not reveal a 
significant effect of experimental condition (SiB versus SiSSN) on alpha power. 
 

 

Figure 5. Alpha (A) and beta (B) power [mean and standard error of the mean (STE)] versus percent-
correct score in different trials across subjects. Data are shown separately for each experimental 
condition (SiB versus SiSSN). 

 
Because alpha and beta power were both related to percent-correct score on a given trial, we 
directly compared alpha and beta power on a trial-by-trial basis. Figure 6A plots beta power versus 
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alpha power in different trials across subjects and conditions, with data from each subject shown 
in a different color. We found significant correlation between alpha and beta power across trials 
(F = 175.7166, p < 2e-16), even after accounting for the random effect of subject (i.e., we see 
significant correlation even within subject). Another interesting observation from Figure 6A is that 
there appear to be individual differences in the overall magnitude of alpha and beta power across 
trials, as well as in the distribution of the alpha-to-beta power ratio across trials. The latter 
individual differences are quantified in Figure 6B. While some subjects (e.g., subject 46) show an 
alpha-to-beta power ratio greater than 1 across all trials, others (e.g., subject 64) show an alpha-
to-beta power ratio less than 1 in most trials. This result raises the possibility that the listening 
strategy used may differ across individuals, with some listeners using focused attention to perform 
the task and others relying more on predictive coding.    
 

 

Figure 6. (A) Beta power versus alpha power in different trials (across subjects and conditions). The 
different colors in the plot correspond to different subjects. (B) The distribution of alpha-to-beta power 
ratio across trials for each subject is shown as a violin plot. The median (horizontal bar), 50% confidence 
limits (box), and 95% confidence limits (whiskers) of each distribution are also shown.   

 
To directly test whether the behavioral outcome across different trials may be influenced by 
selective attention or contextual prediction, we plotted behavioral response error patterns. Figure 
7 shows the histogram (across trials and subjects) of number of words correct per sentence, 
separately for each experimental condition. These data show that the probability with which 
subjects get 0, 1, 2, 3, 4, or 5 words correct per sentence is significantly different from the 
expected distribution under the null hypothesis of independent word outcomes (p-values shown 
in Figure 7; see Materials and Methods: Statistical analysis for details). Thus, there is a high 
correlation in performance across the different words in a trial in both experimental conditions 
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(SiB and SiSSN), which suggests that either top-down selective attention or predictive coding, or 
both, influence the behavioral outcome in each trial.  
 

 

Figure 7. Normalized histogram (across trials and subjects) of number of words correct per sentence for 
SiB and SiSSN conditions (blue unfilled bars). Shown also is the 95% confidence interval for the expected 
distribution under the null hypothesis of independent word outcomes (gray patch). P-values for the 
observed data under the null hypothesis are also indicated.   

 
Although alpha and beta power were correlated across trials (Figure 6A), beta power contributed 
significant additional predictive power to predict within-condition percent-correct score over the 
contribution of alpha power alone (deviance chi-square for the full model versus the same model 
without beta = 25.209, p = 0.000127), and vice-versa (deviance chi-square for the full model 
versus the same model without alpha = 15.475, p = 0.008515). Thus, not only do induced 
oscillations in both alpha and beta bands relate to speech intelligibility in noise on a trial-by-trial 
basis within condition, but crucially, alpha and beta power each make significant independent 
contributions to predicting trial outcome (i.e., trial-wise speech intelligibility). This result is 
quantified in Figure 8.  
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Figure 8. Likelihood ratio deviances (relative to a base model with condition as the only predictor) for 
three different multinomial models of percent-correct score: (1) model with condition and alpha power as 
predictors, (2) model with condition and beta power as predictors, and (3) model with condition, alpha 
power, and beta power as predictors. The deviance chi-square statistic and corresponding p-value are 
indicated for the comparison between models (1) and (3), and separately also for the comparison 
between models (2) and (3).   

 
 
5. Discussion 
Using human EEG with simultaneous speech intelligibility measurements in different masking 
conditions (speech in multi-talker babble, and speech in speech-shaped noise) in the present 
study, we found that induced brain oscillations in the alpha and beta bands relate to speech 
intelligibility in competition on a trial-by-trial basis. Specifically, we found that the overall 
magnitudes (averaged over the pre- and during-stimulus periods) of alpha power in parieto-
occipital EEG channels and beta power in frontal channels significantly covary with, and 
importantly independently contribute to, single-trial speech intelligibility in our speech-in-noise 
tasks. These results are consistent with the posited role of the parieto-occipital alpha rhythm in 
auditory selective attention (Foxe and Snyder, 2011; Strauß et al., 2014; Banerjee et al., 2011; 
Deng et al., 2019; Deng et al., 2020) and the frontal beta rhythm in speech-motor predictive coding 
(Engel and Fries, 2010; Arnal and Giraud, 2012; Lewis and Bastiaansen, 2015) that is thought to 
stabilize speech representation in adverse listening conditions (Hickok et al., 2011; Skipper et al., 
2017; Pulvermüller, 2018). The interpretation that some combination of top-down selective 
attention and predictive coding influences the behavioral outcome in each trial is also supported 
by behavioral response error patterns in our data (Figure 7).  
 
Our results are in line with prior reports of a positive correlation between alpha power in parietal 
EEG channels and speech intelligibility in noise (e.g., across SNRs as quantified in the during-
stimulus period by Hall et al., 2019, and across individuals as quantified in the pre-stimulus period 
by Alhanbali et al., 2022). However, at least at first glance, our results appear to be at odds with 
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other reports (e.g., by Obleser and Weisz, 2012 and Becker et al., 2013, who used noise-vocoded 
speech in quiet, and Dimitrijevic et al., 2017, who used digits in noise) that better comprehension 
is associated with alpha suppression (rather than a power increase) in the late during-stimulus 
period in temporal brain regions and central EEG channels. This discrepancy may be explained 
in part by the existence of multiple neural generators of task-related alpha (i.e., alpha power in 
the parieto-occipital and central EEG channels may reflect two different mechanisms of alpha; 
Deng et al., 2020). Moreover, some of these studies presented speech in quiet rather than with 
simultaneous competing sounds, which could evoke different mechanisms (Obleser and Weisz, 
2012 and Becker et al., 2013). 
 
Foxe and Snyder (2011) distinguish between parieto-occipital alpha seen in an unaroused state 
(e.g., when visual stimuli are ignored; Adrian, 1944) and that seen in selective attention across 
different stimuli (especially spatial selective attention, where alpha power is lateralized according 
to the hemifield of focus; Banerjee et al., 2011; Deng et al., 2019; Deng et al., 2020). In the present 
study, the target speech and masker sources were both presented diotically rather than spatially 
separated; thus, even though it required selective attention, our task did not involve any spatial 
focus of attention. It may be that the alpha in the current study, which covaries with trial-wise 
speech intelligibility, reflects an overall suppression of the visual scene and focus of auditory 
attention, rather than a mechanism specific to stimulus selection. Another possibility is that there 
may be a common mechanism in play across the parieto-occipital alpha seen in the two cases. 
Indeed, the frontoparietal attention network becomes active during spatial attention and working 
memory for auditory stimuli as well as for visual inputs, even though many earlier studies assume 
it is strictly a visuospatial processing network (Corbetta and Shulman, 2002; Michalka et al., 2015; 
Michalka et al., 2016; Noyce et al., 2017; Noyce et al., 2022). Thus, future studies should 
disambiguate between the different mechanisms by which the alpha rhythm may mediate 
suppression of sensory distractors (Foxe and Snyder, 2011; Strauß et al., 2014), especially for 
co-localized sources like those used in the current study.  
 
Our current results show that trial-by-trial variations in alpha and beta power are correlated, even 
within subject (Figure 6A; statistics given in Results). Prior studies have also reported that 
oscillatory activity within the alpha and beta bands are correlated (Carlqvist et al., 2005), even 
though they may represent distinct functions. Despite being correlated, alpha and beta power 
each provide significant independent contributions to predicting single-trial percent-correct score 
(Figure 8). Moreover, there are individual differences in the overall magnitude of alpha and beta 
power as well as in the alpha-to-beta power ratio across trials (Figure 6). It may be that those 
individuals with larger alpha-to-beta ratios relied more on focused attention to perform the task 
whereas those with smaller alpha-to-beta ratios relied more on predictive coding. In both cases, 
trial-wise performance improved as either alpha or beta power increased (Figure 5). Our 
behavioral measurements cannot disambiguate between the different listening strategies of using 
focused attention versus relying on predictive coding. However, measuring confusion patterns 
can inform which listening strategy an individual subject used (e.g., when a subject made an error, 
whether they reported a word from the competing stream or a new, contextually suitable word; 
Ruggles et al., 2011). Future experiments can directly test whether a higher alpha-to-beta power 
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ratio is associated with greater reliance on focused attention versus robust prediction, and 
whether a lower alpha-to-beta power ratio is associated with the opposite.   
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