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Abstract
Background: This paper summarizes the main results obtained on Trypanosoma cruzi genetic
diversity and population structure since this parasite became the theme of many genetic and
molecular studies in the early seventies.

Results: T. cruzi exibits a paradigmatic pattern of long-term, clonal evolution, which has structured
its natural populations into several discrete genetic subdivisions or "Discrete Typing Units" (DTU).
Rare hybridization events are nevertheless detectable in natural populations and have been recently
obtained in the laboratory.

Conclusions: The DTUs and natural clones of T. cruzi constitute relevant units for molecular
epidemiology and experimental evolution. Experimental mating opens the way to an in-depth
knowledge of this parasite's formal genetics.

Introduction
It is probable that Trypanosoma cruzi, the agent of Chagas
disease, is the pathogenic microorganism for which
intraspecific genetic diversity is the best known. Long-
standing interest in this diversity has led many teams cur-
rently working on this parasite to follow and even to
generate the recent technological progress in biochemical
typing, molecular epidemiology* (Terms quoted * are
explained in the glossary) and population genetics*. In
the early seventies, obtaining knowledge of the popula-
tion structure of pathogenic microorganisms was a major
challenge, since their formal genetics was entirely specula-
tive. The isoenzyme* era gave us the first insights to the
genetic diversity of T. cruzi and other parasites. Pioneering
studies by Miles et al. [1,2] showed clearly the existence of
three main isoenzyme types, which were called "principal
zymodemes*". Such zymodemes were taken as units of

analysis for epidemiological surveys [3] and hypotheses
on T. cruzi pathogenicity [4]. Numerical taxonomy
showed their overall clustering [5]. However the biologi-
cal nature and evolutionary origin of the zymodemes*
remained entirely unknown. The specific contribution of
our group has been to apply the concepts of population
genetics to the study of T. cruzi biochemical and genetic
polymorphism. The present paper describes the main
results reached in this field by our group and other teams.

Methodology
The key-point in understanding the population structure
of a pathogenic microorganism is its mating system. The
classical view, that microbes reproduce clonally, has been
upset by the population genetic era. Genetic exchange is
very frequent in many microbial species. Whatever its pre-
cise cytological mechanism, horizontal gene transfer
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affects pathogen population structure: it clouds phyloge-
netic individualization of lineages and renders individual
genotypes ephemeral [6]. There is a practical consequence
of this for molecular epidemiology: if pathogen multilo-
cus genotypes have a short lifetime, they cannot be con-
veniently used as epidemiological tracers. The "clonality/
sexuality debate" has been, therefore, the target of many
research groups in the last twenty years, and is still contro-
versial. The approach proposed by us for T. cruzi [7] and
by others for bacteria [8] has been to look for the expected
consequences of random allelic segregation and unilocus
genotype recombination in the natural populations sur-
veyed. If these consequences are not observed, this is
taken as circumstantial evidence that gene flow is inhib-
ited. Allelic segregation is surveyed by the classical Hardy-
Weinberg equilibrium* statistics. It is a demanding
approach when microbial pathogens are considered. First
it requires that the ploidy of the organism is known. This
is sometimes difficult. As an example, T. cruzi, which was
supposed to be diploid [7], is now considered an aneu-
ploid organism according to experimental recombination
data [9]. Second, Hardy-Weinberg tests are not applicable
to haploid organisms, which is the case for bacteria and
human forms of Plasmodium parasites. For these reasons,
recombination tests are considered more reliable [10].
They are based on the null hypothesis of free genetic
exchange (panmixia) and rely on the analysis of linkage
disequilibrium*. The same basic principles are still used
in recent contributions to this field of research [6]. Physi-
cal obstacles to gene flow (isolation by either time or
space or both) can generate linkage disequilibrium* too
(Wahlund effect). Means to avoid such biases have been
detailed previously [11]. The statistical tests elaborated by

our group to detect linkage disequilibrium are communi-
cated in table 1 and will be made available on the internet
in a near future. Other tests relying on the same basic prin-
ciples are available [12]. Linkage disequilibrium* tests are
extremely powerful, since the probability of occurrence of
a given mutlilocus combination under the panmictic*
assumptions is very low if the number of loci is sufficient.
Observing repeated multilocus combinations is therefore
in itself a strong indication for linkage disequilibrium*,
which statistical level of significance is evaluated by the
tests (table 1). Apart from predominant clonal* evolu-
tion, linkage disequilibrium* can be generated by either
cryptic speciation or epidemic clonality (propagation of
ephemeral clones in a basically sexual species; [12]).
Means to distinguish between these two cases from "true"
clonal* evolution have been communicated [13].

The "clones*" observed by a given set of genetic markers
will prove to be genetically heterogeneous if a more dis-
criminative marker is used. We have forged the term
"clonet" to designate a set of stocks that appear genetically
identical with a given set of markers in a clonal* species
[11].

In complement with population genetics, classical phylo-
genetic analysis is useful to look for possible discrete
genetic subdivisions in the species under study. In the case
of microbial pathogens, many times, such subdivisions
are observed, however they do not fulfill the rigorous cri-
teria of phylogenetic analysis, since some level of horizon-
tal gene transfer renders these subdivisions incompletely
isolated from each other. The descriptive concept of "Dis-
crete Typing Unit" (DTU) designates a set of stocks that
are genetically more similar to each other than to any
other stock, and are identifiable by common genetic,
molecular, or immunological markers named "tags" [14].

Main results in Trypanosoma cruzi
T. cruzi still is a paradigmatic case of predominantly
clonal evolution. Evidence for lack of Mendelian segrega-
tion, an argument taken long ago on the basis of the
diploidy hypothesis [7], has been challenged by recent
mating experiments showing that T. cruzi is aneuploid [9].
However such results do not falsify the line of evidence
based on the analysis of linkage disequilibrium*, which
remains valid. As a matter of fact, an impressive congru-
ence of results corroborates the existence of strong linkage
disequilibrium* in the agent of Chagas disease [15], even
in sylvatic cycles and when each genetic subdivision is
analyzed separately. A striking illustration of this linkage
disequilibrium* is the existence of a highly significant cor-
relation between independent genetic markers, including
isoenzymes [16], Random Primed Amplified Polymor-
phic DNA* or RAPD [17] and microsatellites [18]. It
seems that long-term clonal evolution in T. cruzi has been

Table 1: Criteria and tests of clonality (after 10)

Criterion Description

Segregation 
(within locus)

a Fixed heterozygosity *
b Absence of segregation genotypes *
c Deviation from Hardy-Weinberg expectation

Recombination 
(beween loci)

d Overrepresented, identical genotypes widespread * 
(statistical tests d1 ** # and d2 ** §

e Absence of recombinant genotypes ** §/P>
f Linkage disequilibrium ** §/P>
g Correlation between two independent sets of 

genetic markers ** §P

* = used qualitatively, without statistical calculations; ** = used with 
statistical calculations. # Combinatorial analysis §Monte Carlo 
simulation with 104 iterations ¶Mantel nonparametric test of 
correlation between genetic distances obtained from different 
markers
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predominant enough to lead to the individualization of
several discrete genetic subdivisions or DTUs [14]. The
number of observable DTUs within T. cruzi is a matter of
debate. Most studies show the existence of two main sub-
divisions [13,19], referred to as T. cruzi I and II [20]. Mul-
tilocus markers reliably show a total of six DTUs, one
corresponding to T. cruzi I, the others corresponding to
subdivisions within T. cruzi II [16,17,21]. Classifications
based on gene sequencing either support the division into
6 DTUs [22] or indicate a lesser number [23–25]. This
illustrates the usefulness of the DTU concept. Two T. cruzi

DTUs (2d and 2e; see figure 1) correspond actually to
hybrid lineages stabilized by subsequent clonal propaga-
tion [9,25–27]. These lineages do not fulfill the strict cri-
teria of cladistic analysis and actually, they are not clades,
since they have two ancestors instead of one, which
explains the inconsistency of gene sequence phylogenies.
However, they correspond to reliable genetic subdivisions
and are identifiable by an impressive set of tags.

Neighbour joining dendrograms based on the analysis of 20 RAPD* primers (left) and 22 isoenzymatic* loci (right) showing the genetic relationships between 49 Trypanosoma cruzi stocks and T. cruzi marinkellei stock M1117Figure 1
Neighbour joining dendrograms based on the analysis of 20 RAPD* primers (left) and 22 isoenzymatic* loci (right) showing the 
genetic relationships between 49 Trypanosoma cruzi stocks and T. cruzi marinkellei stock M1117. The scale indicates the Jaccard 
distance [39] along the branches. Six genetic clusters, or Discrete Typing Units (DTUs [14]), were distinguished and their 
names are given in the central column between the dendrograms. DTU 1 corresponds to the 1rst major lineage of T. cruzi, 
while the second major lineage is subdivided into DTUs 2a to e. Diagnostic RAPD fragments and isoenzymatic patterns, which 
were specifically observed in the stocks of a given cluster of the dendrograms (tags [14]), are indicated at the corresponding 
nodes (after [17]).
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Molecular epidemiology
Currently, the 6 DTUs are the most reliable subdivisions
of T. cruzi. They appear as robust units of analysis for
molecular epidemiology studies. DTU 1 (= T. cruzi I; [20])
corresponds to all genotypes related to the formerly
described "principal zymodeme 1" [1,2]. It is a very broad
and heterogeneous group. Its epidemiological and geo-
graphical specificity is low. It is found on the entire range
of Chagas disease, from southern USA to Argentina. It can
be found in domestic cycles in Andean countries as well as
in Amazonian sylvatic cycles. It is very frequent in chronic
cases of Chagas disease. Identifying therefore an isolate as
DTU 1 has a very low predictive value on its expected
properties. The case is different for the 5 DTUs that subdi-
vide T. cruzi II [20]. Their epidemiological and geograph-
ical specificity is clearer, and identifying them is therefore
informative. DTU2a and DTU2b correspond to stocks of
"principal zymodemes III and II", respectively [1,2]. Inter-
estingly, DTU 2b (zymodeme III), which was until now
only known from Sylvatic cycles, has been recently
recorded in chronic cases of Chagas disease in Ecuador
[28]. This shows that our knowledge of the epidemiolog-
ical implications of T. cruzi genetic variability still is
incomplete. The epidemiological relevance of the 6 DTUs
has been analyzed in details by Barnabé et al. [16]. It is rel-
evant to identify also the clonets within each DTU for
finer epidemiological studies. It is desirable for this pur-
pose to perform a discriminative genetic characterization.
Our group routinely uses 22 isoenzyme loci and 20 RAPD
primers [16,17].

Experimental evolution
The successful recombination experiments recently
obtained by M. Miles' group [9] constitute a major step
toward elucidating T. cruzi formal genetics and the evolu-
tionary mechanisms that generated the observed genetic
subdivisions of this parasite. The 6 T. cruzi DTUs provide
us with a fine model for experimental evolution, making
it possible to evaluate the impact of predominant clonal
evolution on this parasite's relevant biomedical proper-
ties. Our laboratory has designed a standardized set of
about 30 stocks representative of the 6 DTUs. Each stock
has been laboratory-cloned with verification under the
microscope. Many experimental parameters have been
surveyed on this standardized sample by our group [29–
35], including growth in in vitro culture, infectivity to cell
cultures, pathogenicity in mice, transmissibility through
triatomine bugs, and in vitro and in vivo drug sensitivity.
All these parameters have been quantified and we have
looked for a correlation between the biological differences
on one hand, and genetic distances* among DTUs on the
other hand. For all parameters tested, the correlation has
been highly significant, suggesting that biological differ-
ences parallel phylogenetic divergence between T. cruzi
DTUs. However, within each DTU, results are quite heter-

ogeneous. For example, stocks pertaining to DTU 1 tend
to be more pathogenic for mice than stocks from DTU 2b
[32]. However, the values overlap, and the more patho-
genic DTU 2b stocks are more pathogenic than the less
pathogenic DTU 1 stocks. An interesting pattern has been
observed in several cases: mixtures of clones present a dif-
ferent behavior from what would be a simple resultant of
the behavior of each pure clone they are composed of. For
example, a mixture of a very pathogenic and of a poorly
pathogenic clone is more pathogenic than the more path-
ogenic pure clone [32]. The same has been observed for
transmissibility through the insect vector [30]. This sug-
gests a "clonal cooperation" or "clonal hitchhiking.,[36]
that acts probably through biochemical messengers. It is
possible that such mixtures of genotypes play an impor-
tant role in the pathogenicity of Chagas disease. Other
authors have noted that T. cruzi clonal genotypes seem to
exhibit different organ tropisms [37].

Work is in progress in our group to identify the genetic
mechanisms of biological differences between DTUs and
of clonal cooperation through the analysis of gene expres-
sion and proteomic data.

Glossary of specialized terms
Clone, clonal, clonality: "Clonal" propagation does not
amount to "mitotic" propagation: in population genetics,
this term is used in all cases where the individuals of the
progeny are genetically identical to one another and to the
reproducing individual. Apart mitotic reproduction, this
includes several cases of parthenogenesis as well as self-
fertilization in haploid organisms. A clonal population
structure can be therefore observed in animals exhibiting
apparent meiosis, and even, mating.

Genetic distance: Various statistical parameters inferred
from genetic data, estimating the genetic dissimilarities
among individuals or populations. The most widely used
are Nei's standard genetic distance [38] and Jaccard dis-
tance [39]. Although the statistics differ, many genetic dis-
tance indices start from an estimation of the percentage of
band mismatch on electrophoresis gels.

Hardy-Weinberg: see segregation*
Isoenzyme: a set of electrophoretic variants of a given
enzyme. Isoenzymes differ from each other only by their
electrophoretic mobility. This last property is a reflection
of the overall electric load of the protein, which itself is a
resultant of the individual electric load of its aminoacids.
The electrophoretic mobility of a given protein is there-
fore a reflection of its primary structure, and indirectly, of
the sequence of the gene that encodes for it.

Linkage disequilibrium: nonrandom reassortment of gen-
otypes occurring at different loci (see recombination*)
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Molecular epidemiology: the various biochemical and
molecular techniques used to type and subtype pathogens
[40]

Panmixia, panmictic: a situation in which gene exchanges
occur randomly in the population under survey.

Population genetics: A set of statistics based on the analy-
sis of genetic data aiming to give a snapshot of the popu-
lation structure of a given organism, and the impact, on
this population structure, of migration, genetic recombi-
nation and natural selection.

Random Amplification of Polymorhic DNA (RAPD): A
method simultaneously proposed by Williams et al. [41]
and Welsh & McClelland [42] to analyse genetic variabil-
ity (other name: Arbitrarily-Primed Polymerase Chain
Reaction = AP-PCR). While in the classical PCR method,
the primers used are identified DNA sequences, the RAPD
technique relies on primers which sequence is arbitrarily
determined (usually 10-mer primers are used). Under
low-stringency conditions, the PCR reaction generates
fragments which polymorphism can be analyzed on
either ethidium bromide-stained agarose gels [41], or
polyacrylamide sequence gels with radiolabeling of the
fragments [42].

Recombination, linkage disequilibrium: Free recombina-
tion makes that the expected probability of a given multi-
locus genotype is the product of the observed
probabilities of the single genotypes it is composed of. For
example, in a panmictic human population, if the
observed frequency of the AB blood group is 0.5, and the
observed frequency of the Rh (+) blood group is 0.5, the
expected frequency of the individuals who are AB and Rh
(+) is 0.5 × 0.5 = 0.25. Inhibition of recombination leads
to linkage disequilibrium*, or nonrandom association
among loci (the predictions of expected probabilities for
multilocus genotypes are not found). For example, if the
observed frequency of the individuals AB and Rh (+) was
statistically higher than 0.25, this would show that the
two loci are linked together (they are not transmitted
independently). For example, if this frequency was 0.5,
this would be the sign of a total linkage between AB and
Rh (the two characters are transmitted as only one).

Segregation, Hardy-Weinberg equilibrium: in a panmic-
tic* population of a diploid organism, let us consider a
gene at which there are two possible alleles, a and b. The
frequency of a is p, and the frequency of b is q = 1 - p. The
Hardy-Weinberg law predicts that the frequency of each of
the three possible genotypes, that is to say a/a, a/b and b/
b, will be p 2, 2 p q and q 2, respectively. If the observed fre-
quencies are statistically different from the expected ones,

this is evidence that gene flow is restricted in the popula-
tion under survey

Zymodeme: a set of stocks that share the same isoen-
zyme* profile.
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