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Background: Autism spectrum disorder (ASD) and childhood onset schizophrenia (COS)
are pediatric neurodevelopmental disorders associated with significant morbidity. Both
conditions are thought to share an underlying genetic architecture. A comparison of neu-
roimaging findings across ASD and COS with a focus on altered neurodevelopmental
trajectories can shed light on potential clinical biomarkers and may highlight an underlying
etiopathogenesis.

Methods: A comprehensive review of the medical literature was conducted to summa-
rize neuroimaging data with respect to both conditions in terms of structural imaging
(including volumetric analysis, cortical thickness and morphology, and region of interest
studies), white matter analysis (include volumetric analysis and diffusion tensor imaging)
and functional connectivity.

Results: In ASD, a pattern of early brain overgrowth in the first few years of life is followed
by dysmaturation in adolescence. Functional analyses have suggested impaired long-range
connectivity as well as increased local and/or subcortical connectivity in this condition. In
COS, deficits in cerebral volume, cortical thickness, and white matter maturation seem
most pronounced in childhood and adolescence, and may level off in adulthood. Deficits in
local connectivity, with increased long-range connectivity have been proposed, in keeping
with exaggerated cortical thinning.

Conclusion: The neuroimaging literature supports a neurodevelopmental origin of both
ASD and COS and provides evidence for dynamic changes in both conditions that vary
across space and time in the developing brain. Looking forward, imaging studies which
capture the early post natal period, which are longitudinal and prospective, and which max-
imize the signal to noise ratio across heterogeneous conditions will be required to translate
research findings into a clinical environment.

Keywords: autism spectrum disorder, childhood onset schizophrenia, neuroimaging, magnetic resonance imaging,
child development, review

INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental disor-
der of increasing prevalence in the modern era. Presently, this
condition is reported to affect 1 in 88 individuals (1). Mani-
fested by social communication deficits and restricted or repetitive
interests and behaviors, children with ASD present along a wide
spectrum of clinical severity, from mild social difficulties to severe
functional impairment. This condition typically presents in the
first 3 years of life, manifested by a failure to gain, or a loss of,
social communication milestones.

Childhood onset schizophrenia (COS), on the other hand, is a
relatively rare disorder, affecting 1 in 10,000–30,000 children (2).
The diagnostic criteria are the same as in adult onset schizophre-
nia, including the presence of positive and/or negative symptoms
(3), but with onset occurring prior to the 13th birthday (4).

Despite clinical heterogeneity, COS typically presents with psy-
chotic symptoms after age seven, and is associated with a more
severe course and poorer outcomes as compared to adult onset
schizophrenia (2).

Although presently considered to separate clinical entities, prior
to the twentieth century, catatonia, social withdrawal, bizarre
behavior, and/or psychosis in children were considered undif-
ferentiated conditions, labeled as “hereditary insanity,” “dementia
praecox,” or “developmental idiocy” (5). With the onset of con-
temporary nosology, “autistic behavior and social withdrawal”
were initially specified as features of “childhood schizophrenia”
in the first and second editions of the Diagnostic and Statistical
Manual of Mental Disorder (DSM-I and -II). Although formally
defined as separate entities in DSM-III (6), at present the DSM-
5 permits concurrent diagnosis of both conditions, should an
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individual with ASD subsequently develop prominent delusions
or hallucinations (3).

In the current review, a comparison between ASD and COS
was chosen for several reasons. Firstly, children with co-occurring
and overlapping symptoms complicate a diagnosis (2, 4). At
times, a period of medication washout and inpatient observa-
tion is required to achieve a diagnostic consensus (7), further
supporting a need for brain based biomarkers of disease state
and treatment response. Indeed, over one quarter of patients
diagnosed with COS display prodromal neurodevelopmental dis-
turbances, meeting criteria for pervasive developmental disorder,
or ASD (8, 9). Children diagnosed with ASD are more likely
to report psychotic symptoms in adolescence and adulthood
(10, 11), although the exact incidence of a subsequent diag-
nosis of schizophrenia varies by study, ranging from 0 to 7%
(12–14). From a neuroimaging perspective, analysis of atypi-
cal brain “growth curves” may afford an opportunity for early
identification and risk stratification; consistent with the present
goal of moving toward biologically based diagnostic categories in
neuropsychiatric disease.

Secondly, a growing body of literature supports a neurode-
velopmental origin of both schizophrenia and autism, with a
shared genetic architecture contributing to, or precipitating, the
development of both conditions (15, 16). Some have hypoth-
esized that ASD and schizophrenia are diametrically opposed
with respect to underlying pathology (17). While adult onset
schizophrenia and ASD have been compared in previous reviews
[see Ref. (18)], a focus on COS specifically permits a more in-
depth analysis of aberrant neurodevelopmental trajectories across
comparable age ranges, which may provide insight into disease
pathogenesis.

This review intends to translate several decades of neuroimag-
ing research for a clinical audience, to highlight our current under-
standing of similarities and differences in the clinicopathogenesis
of ASD and COS from a neuroimaging perspective. To our knowl-
edge, this is the first focused review of neuroimaging findings in
ASD and COS.

STRUCTURAL MRI STUDIES (VOLUMETRIC ANALYSIS,
CORTICAL THICKNESS AND MORPHOLOGY, AND REGION OF
INTEREST STUDIES)
VOLUMETRIC ANALYSIS
Structural magnetic resonance imaging (MRI) analysis for neu-
ropsychiatric diseases began to emerge in the 1990s. Early trials
employed manual delineation of gray and white matter to inves-
tigate specific regions of interest. With advancement in high
resolution MRI technology and automated analysis, voxel-based
morphometry (VBM) made it possible to quantify the specific
gray matter content of each voxel (a volumetric pixel) in an image,
allowing large data sets to be processed more efficiently (19).
For statistical comparisons between case and control populations,
images are “warped” onto a common template, and the degree of
transposition of each voxel can be quantified. Inferences must be
heeded with the consideration that the relative volumetric differ-
ences by region can vary by age, gender, whole brain volume, and
by IQ, thus the degree to which these factors have been controlled
for must be kept in mind.

Volumetric analysis in COS
Initial trials conducted by the National Institute of Mental Health
(NIMH) on a cohort of children with COS, identified a pattern
of reduced cerebral volumes and larger ventricles, consistent with
findings in the adult onset schizophrenia population (20). With
expansion and longitudinal analysis of this patient sample, inves-
tigators were able to localize and describe patterns of change in
brain structure and volume over time. While typically develop-
ing children were found to have a small decrease in cortical gray
matter (~2%) in the frontal and parietal regions throughout ado-
lescence, children with COS displayed exaggerated gray matter
losses (~8%), involving the frontal, parietal, and temporal lobes.
Of note, baseline IQ varied significantly between case and control
groups in this data set (70 vs. 124) (21).

Subsequent analysis on the same NIMH sample (n = 60
patients), suggested that this pattern took on a “back to front” tra-
jectory, with losses originating in the parietal lobes and spreading
anteriorly over time (22). This pattern persisted after controlling
for IQ and medication administration (23). Despite significant
differences at an early age, the rate of gray matter loss was shown
to level off in early adulthood, implicating adolescent neurodevel-
opment as a key window in disease pathogenesis (22, 24). This data
is consistent with hypotheses pertaining to exaggerated synaptic
pruning as a feature of schizophrenia (25).

Later work by the same group demonstrated that the above-
described pattern was specific for COS. Using VBM, 23 COS
patients were compared to 38 age and gender matched healthy
control subjects and 19 patients with other psychotic symptoms
but not meeting criteria for COS, defined as “multidimension-
ally impaired” (MDI). MRI scans were conducted at study intake,
and at 2.5 years follow up. The MDI group had equal exposure
to neuroleptics at study intake, and had a similar degree of cog-
nitive impairment. Total gray matter loss between the two time
points demonstrated 5.1% loss for COS patients, 0.5% loss for
MDI patients, and 1.5% loss for healthy control subjects. Thus,
exaggerated gray matter loss during adolescence was considered
to be a potential biomarker of COS (26).

There is very little literature looking at infants or toddlers who
subsequently develop schizophrenia, given the methodological
complexities of such a study. That being said, offspring of mothers
with schizophrenia were found on average to have larger intracra-
nial volumes, greater volumes of CSF, and greater gray matter
volume on structural MRI in male neonates, compared to con-
trols, although controlling for total intracranial volume resulted
in all differences being non-significant (27).

Volumetric analysis in ASD
In ASD, earlier studies suggested a pattern of increased total brain
volume, as well as increased ventricle size (28–30). Analyses across
age ranges helped to further elucidate the chronology of this brain
overgrowth picture. Indeed, exaggerated gray and white matter
volumes seemed most pronounced in younger children, while
older children with ASD had more typically appearing brains,
when compared to their peers (31, 32) (see Figure 1). The hypoth-
esis of brain overgrowth correlated with the measureable increase
in rate of growth of head circumference during the first few years
of life as well in this population (33, 34).
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FIGURE 1 | Brain volume (milliliters) by age (years) in children with
ASD and controls. Reproduced with permission from Courchesne et al.
(37), adapted from Courchesne et al. (32).

In 2005, a meta-analysis of published data on brain volume,
head circumference, and post-mortem brain weight in ASD, fur-
ther described the effect of age, with most marked differences
occurring in the first few years of life. In adulthood, however, brain
sizes did not vary from controls (35). Subsequent longitudinal and
cross-sectional data from hundreds of children and adults with
ASD documented volume enlargement during preschool years,
most prominently in the anterior regions, followed by possible
growth arrest or exaggerated losses later in childhood (36–38).
Using cross-sectional age-adjusted data, Schumann et al. (36), for
example, showed that children with ASD had 10% greater white
matter volume, 6% greater frontal gray matter volume, and 9%
greater temporal gray matter volume at 2 years of age. Longitudinal
data showed altered growth trajectories at follow up scans (36).

Volumetric differences did not hold true in all ASD studies
however, for example, when structural MRI from children with
ASD were compared to children with other developmental delays
(39, 40). Similarly, a recent systematic review of published data on
head circumference overgrowth in children with ASD suggests dif-
ferences may be much more subtle than previously thought. The
authors attribute exaggerated differences to biased normative data
in the CDC head circumference growth curves, to the selection of
control groups from non-local communities, as well as to a failure
to control for head circumference confounders such as weight and
ethnicity (41).

Recently, a small study looked at whether volumetric MRI
might be predictive of a subsequent diagnosis of ASD, prior to
the development of clinical symptoms. A group of 55 infants (33
of which were considered high risk given that they had a sibling
with ASD) were scanned prospectively at three time points prior to
24 months of age. At 24 and 36 months, they underwent detailed
developmental assessments, at which point 10 infants were iden-
tified as having a diagnosis of ASD, and 11 were noted to have
other developmental delays. The authors found increased extra-
axial fluid volume in infants who developed ASD, and quantified
the difference through manual delineation of CSF compartments.
They were able to show that a ratio of fluid:brain volume of

FIGURE 2 | Shen et al. (42) showed how an elevated ratio of fluid:brain
volume (above 0.14) at 12–15 months of age was predictive of a
subsequent diagnosis of ASD, with 78% sensitivity and 79% specificity
in their sample. Reproduced with permission from Shen et al. (42).

>0.14 yielded 79% specificity and 78% sensitivity in 12–15 month
old infants regarding a subsequent diagnosis of ASD (42) (see
Figure 2). The finding remains to be replicated.

Summary and comparison. In summary, volumetric analyses in
ASD describe early brain overgrowth in the first few years of life,
a finding that is difficult to contrast to COS, given the method-
ological complexity of acquiring neuroimaging data in very young
children or neonates who subsequently develop this condition.
During childhood and adolescence, volumetric data suggests that
individuals with ASD may have attenuated brain growth or exag-
gerated volume loss, since adults with ASD have comparable brain
volumes to their typically developing peers. Some similarities
emerge with the COS population, given findings of exaggerated
gray matter loss during adolescent years.

CORTICAL THICKNESS AND MORPHOLOGY
With advancements in computational statistics, it became possi-
ble extract a more detailed analysis of the cortical gray matter
with respect to surface morphology. Specifically, the transposi-
tion of cortical imaging data onto a common surface template
allowed cortical gray matter volume to be further quantified in
terms of cortical thickness, surface area, and gyrification. More
recently, complex statistical approaches employing mathemati-
cal algorithms and machine-learning models have manipulated

www.frontiersin.org December 2013 | Volume 4 | Article 175 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baribeau and Anagnostou Neuroimaging in ASD and COS

neuroimaging data collected from both volumetric and corti-
cal thickness measurements, in efforts to generate diagnostic
classifiers of ASD/COS.

Cortical measurements are of interest for neurodevelopmental
disorders as they are thought to represent distinct embryological
processes under tight regulatory control (43). Cortical surface area,
for example, reflects to the process of neural stem cell proliferation
and migration early in embryologic development (44). Cortical
thickness, on the other hand, reflects axon and dendrite remod-
eling, myelination, and synaptic pruning, in a dynamic process
lasting from birth into adulthood (45).

Cortical thickness and morphology in COS
In the NIMH-COS sample (46), a combination of cross-sectional
and longitudinal data from 70 patients compared to controls
revealed diffuse decreases in mean cortical thickness in childhood
(~7.5% smaller), which became localized specifically to the frontal
and temporal lobes with increasing age. Statistical significance
survived correction for covariates such as sex, socioeconomic sta-
tus, and IQ. Accordingly, while individuals with COS displayed
global gray matter and cortical thickness losses in childhood,
with age these losses became similar to those observed in adult
onset schizophrenia, with deficits localizing more anteriorly (see
Figure 3).

Interestingly, in two separate samples, non-affected siblings of
COS probands also demonstrated a pattern of decreased corti-
cal thickness in the frontal, temporal and parietal lobes during
childhood and adolescence, which then normalized in early adult-
hood, implicating some sort of compensatory mechanism despite
underlying genetic risk (47, 48).

With hospitalization and medication management, symptom
remission correlated with localized increases in cortical thickness
measurable in specific subregions of the cortex (49), irrespective
of choice of antipsychotic (50). Children who had other psy-
chiatric conditions with comorbid psychotic symptoms but not
meeting full criteria for COS demonstrated cortical deficits in
prefrontal/temporal pattern as well, but deficits were smaller and
less striking than in COS patients (51).

As mentioned in the introduction to this section, complex
algorithms and mathematical protocols have been designed to
identify and combine measurements that may be predictive of
disease state. A multivariate machine-learning algorithm applied
to cortical thickness data from the NIMH cohort was able to cor-
rectly classify 73.7% of patients with COS and controls. Through
this method, 74 “important” regions were identified. Areas with
the most predictive power clustered in frontal regions (primarily
the superior and middle frontal gyris), and the left temporopari-
etal region (52). Given the rarity of COS in the general population,
and the case-control study design, these results were not validated
in a separate study population, precluding any calculation of pos-
itive or negative predictive value, and thus limiting any inferences
regarding clinical utility.

Cortical thickness and morphology in ASD
There is significant heterogeneity in the literature with respect to
cortical thickness and morphology in ASD, with at times seem-
ingly contradictory results depending on the age, IQ, and clinical
severity of the study population.

In a very young group of patients with ASD, cortical volume,
and surface area (but not thickness) were found to be increased
compared to controls at the age of 2 years. The rate of cortical
growth between ages 2 and 5 years did not differ between groups,
further implicating the prenatal and early postnatal periods as
central to disease pathogenesis (53).

In slightly older age groups, many authors have observed evi-
dence of exaggerated cortical thinning in ASD. For example,
Hardan et al. (54) demonstrated that children with ASD ages
8–13 years had increased cortical thickness, particularly in the
temporal lobe, as compared to aged matched controls. The small
sample size (n = 17 cases), however, precluded co-variation for IQ,
or analysis of age-related interactions (54). Longitudinal imaging
2-years later on seemingly the same cohort, showed that those
with a diagnosis of ASD underwent exaggerated cortical thinning
compared to controls, and that the degree of thinning corre-
lated with the severity of symptoms. Differences, however, were
mostly non-significant after controlling for multiple comparisons

FIGURE 3 | Progressive loss of cortical thickness in a “front to back” pattern observed through longitudinal imaging of 70 children with COS
compared to 72 control participants. Reproduced with permission from Gogtay (160), adapted from Greenstein et al. (46).
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and variation in IQ (55). In a comparable age group (6–15 years).
Mak-Fan et al. (56) showed a similar pattern of increased cortical
thickness, surface area, and gray matter volume in children with
ASD at earlier ages (6–10 years), that then underwent exaggerated
losses compared to controls, such that by 12–13 years of age, con-
trols surpassed patients on all three measures (56). Wallace et al.
(57), on the other hand, found baseline deficits in cortical thickness
for adolescents with ASD, but also observed exaggerated rates of
cortical thinning during adolescence and early adulthood (57). In
the same study population, no differences in overall surface area
were noted, but more overall gyrification in the ASD group, par-
ticularly in the occipital and parietal regions was observed. Both
groups showed a decline in gyrification overtime (58).

On the other hand, several authors have noted deficits in cor-
tical thinning in ASD. Looking over a wide age range, Raznahan
et al. (59) used cross-sectional MRI data from 76 patients with
ASD (primarily Asperger’s syndrome) and 51 controls from ages
10 to 60 years to study the effects of age on cortical thickness and
surface area. While surface area was relatively stable and compara-
ble between both groups, they found significant differences with
respect to cortical thickness. Typically developing individuals had
greater cortical thickness in adolescence, which thinned steadily
overtime. Individuals with ASD had reduced cortical thickness
early in life, which underwent relatively little cortical thinning
overtime, such that by middle age, they had surpassed their typ-
ically developing peers (59). ASD associated deficits in expected
age-related cortical thinning during adolescence and adulthood
has been shown in several other studies as well, both diffusely and
in specific subregions (60, 61).

Recently, Ecker et al. (62) sought to tease apart the relative
contributions of cortical thickness and cortical surface area to
overall differences in cortical volume in a group of adult males
(mean age of 26 years) with ASD compared to controls. While
total brain volume and mean cortical thickness measurements
were not significantly different between the two groups, several
regional clusters emerged with both increased and decreased cor-
tical volumes. The authors found that these relative differences
were accounted for by variability primarily in cortical surface area,
and less so from cortical thickness. As well, differences in corti-
cal thickness/surface area were largely non-overlapping, and were
deemed to be spatially independent from each other (62).

As in COS, several groups have aimed to combine the predic-
tive power of multiple measurements by applying mathematical
algorithms to neuroimaging data. Ecker et al. (63), for example,
included five parameters (cortical convexity, curvature, folding,
thickness and surface area) in their support vector machine ana-
lytic approach. These combined measurements were able to cor-
rectly classify patients with ASD (n = 20) and controls (n = 20)
with 80–90% specificity and sensitivity, with cortical thickness
being the most predictive measurement. This approach also
demonstrated proof of principle in separating patients with ASD
from patients with ADHD, despite the small sample size, and
lack of reproduction in a separate group of patients with ASD
from which the algorithm was generated (63). Similarly, Jiao et al.
(64) incorporated cortical thickness and volume data from chil-
dren with ASD and controls (ages 7–13) into a machine-learning
model with the aims of predicting presence or absence of ASD. One

algorithm was able to predict diagnostic stratification with 87%
accuracy based on cortical thickness measurements. The most pre-
dictive regions included both areas of decreased cortical thickness
(in the left pars triangularis, orbital frontal gyrus, parahippocam-
palgyrus,and left frontal pole) and increased cortical thickness (left
anterior cingulate and left precuneus) (64). Again, the case con-
trol design was not representative of true population prevalence,
precluding calculation of positive predictive values.

Summary and comparison. In ASD, a small number of stud-
ies support a pattern of very early overgrowth in cortical surface
area and volume (<2 years of age), which is immediately followed
by cortical dysmaturation throughout childhood and adolescence,
with evidence suggesting both exaggerated and impaired cortical
thinning, depending on the study. Changes in cortical thickness
and surface area seem to occur in non-overlapping regions. In
COS on the other hand, cortical thickness is reduced diffusely
in childhood, although data from very young patients (<8 years)
are lacking. During adolescence, reductions in cortical thickness
become more localized to frontal regions, although less has been
written about the specific rates of cortical thinning in this patient
group.

REGIONS OF INTEREST
Studies seeking out and investigating specific regions of interest in
both COS and ASD have employed several different approaches.
On the one hand, a general approach simultaneously comparing
dozens of regions of interest or thousands of specific points in the
absence of an a priori defined hypothesis has been used to survey
for areas associated with the greatest differences between patient
and control samples, and can help guide future areas of research.
On the other hand, a predefined hypothesis regarding volumetric
differences in a particular region allows optimization of statistical
power, to more precisely elucidate candidate regions.

Regions of interest in COS
A meta-analysis of studies conducted in adult onset schizophre-
nia patients describes global deficits in volume, most consistently
in the left superior temporal gyrus and the left medial temporal
lobe (65). Looking specifically at COS, in the NIMH cohort, an
automated and longitudinal analysis of over 40,000 points across
the cortical surface found that the superior and middle frontal
gyris showed the greatest overall reduction in cortical thickness
compared to controls (46). In a different sample COS population
from UCLA, specific analysis of the right posterior superior tem-
poral gyrus (Wernicke’s area, involved in verbal comprehension),
found volume to be increased in this region (66). Investigations
conducted by the same group on the anterior cingulate gyrus, a
central and highly connected structure in the prefrontal cortex
involved in many functions including error monitoring, yielded
volume reductions (67).

Hypothesis driven approaches in the NIMH-COS cohort have
been able to identify specific regional volume deficits as well. The
insular cortex, for example, has been implicated in schizophre-
nia, given its role in distinguishing self from non-self, in visceral
somatosensory interpretation, in processing of emotional expe-
riences, and in salience. Patients with COS were found to have
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smaller insular volumes, whereas COS-siblings and controls were
not statistically different, suggesting reduced insular size as an indi-
cator of disease state. Additionally, level of functioning and severity
of symptoms correlated with insular volume (68).

The cerebellum, classically understood to be involved in motor
coordination and planning, has been implicated in schizophrenia
given its association with learning and cognition. In longitudinal
data from the NIMH cohort, smaller overall and regional cere-
bellar volumes were detected in affected individuals, with siblings
falling between patients and controls on various measures (69).

Regarding subcortical structures, enlargement of the caudate
(70) has been shown. In the limbic system, increased amygdala
volume (71), but volume loss in the hippocampus and fornix (72,
73) has also been found in COS.

Regions of interest in ASD
Brain regions proposed to play a role in social cognition, commu-
nication, and “theory of mind” have been a focus of investigation
in ASD. The region of the temporoparietal junction in particular,
is thought to be central to the integration of social information
and empathy, as well as selective attention to salient stimuli (74).
Thinning of several areas in the temporoparietal region, particu-
larly on the left side, has been shown in children, adolescents, and
adults with ASD (38, 57, 59, 61, 75).

The orbital frontal cortex, in the ventromedial prefrontal
region, is thought to play a role in sensory processing, goal
directed behavior, adaptive learning, and attachment formation
(76). Patients with autism, despite increased overall cortical thick-
ness in the frontal region, have been shown to have specific deficits
in cortical thickness (38), volume, and surface area (62) in the
orbital frontal cortex, which correlated with symptoms severity
(62). Other frontal lobe structures showing reduced cortical thick-
ness in ASD include the inferior and middle frontal gyri, and the
prefrontal cortex, depending on the study (38, 64, 77).

The anterior cingulate is a highly connected part of the social
brain network situated along the medial aspect of the frontal
cortex. Its role in self-perception, social processing, error monitor-
ing, and reward based learning has been described (78). Relative
increases (60, 64) and decreases (62, 75, 77) in volume and thick-
ness of the anterior cingulate have been shown in ASD. Given that
different regions may grow at different rates in individuals with
ASD vs. controls (60, 61), variation in the age and distribution of
study populations may account for some inconsistencies.

Volume deficits in the insular cortex have been demonstrated
in young adults with pervasive developmental disorders (79). In
adults with ASD, those who had a history of psychotic symptoms
also demonstrated reduced insular volumes, particularly on the
right side, as well as reduced cerebellar volumes (80).

Looking at subcortical structures, the caudate has been shown
to be enlarged in ASD, across whole brain volumetric meta-
analyses (81–83), and in targeted ROI analysis, even after con-
trolling for confounding medication administration (84). Vol-
ume loss in the putamen has been shown across whole brain
meta-analyses in adults with ASD (81, 83, 85), but enlargement
of the putamen has also been observed in younger popula-
tions (86). In the amygdala, volume losses emerge across whole
brain meta-analytic approaches (83, 85, 87), but volume gains are

noted in younger patient groups as well (88). From a functional
perspective, enlargement of the caudate may be associated with
repetitive or self-injurious behavior (89–92), while volume loss in
the amygdala may pertain to impaired emotional perception and
regulation (93).

Summary and comparison. Volume losses have been noted in
some overlapping prefrontal regions in both ASD and COS, par-
ticularly along the middle frontal gyrus. The anterior cingulate is
also implicated in both conditions, although bidirectional changes
in volume have been noted in ASD, depending on age of study
participants. The area of the temporal-parietal junction shows
volume loss in ASD, and was an area strongly predictive of diag-
nosis in group of individuals with COS (discussed in see Cortical
Thickness and Morphology in COS). The insula is implicated in
patients with COS, and in those with ASD who have comorbid
psychotic symptoms. Looking at deep structures, both condi-
tions are associated with volume gains in the caudate, which
may pertain to repetitive behaviors, or concomitant neuroleptic
treatment.

STRUCTURAL WHITE MATTER ANALYSIS (VOLUMETRIC
ANALYSIS AND DIFFUSION TENSOR IMAGING)
Magnetic resonance imaging analyses that incorporate diffusion
measurements allow for further sub-characterization of white
matter microstructure, above volumetric differences. The diffu-
sion of water molecules is measurable with MRI technology, and
the magnitude and direction of diffusion within each individual
voxel can be modeled mathematically with vector algebra. Axial
diffusivity (AD) is the measurement of diffusion occurring paral-
lel to white matter fibers; increased AD occurs in diseases involving
axonal degeneration, and is thought to reflect both the integrity
and density of axon structures. Radial diffusivity (RD) on the other
hand, is a measurement of diffusion occurring perpendicular to the
white matter fibers; it is used as a measure of myelination, and is
increased in demyelinating diseases. Mean diffusivity (MD) (also
known as the apparent diffusion coefficient, ADC) is a measure of
average diffusion in absence of a directional gradient (94).

A summary ellipsoid vector incorporating the overall spherical
nature of the combined vectors is termed “fractional anisotropy”
(FA). A perfectly “isotropic” solution (FA = 0), such as free water,
contains molecules that diffuse freely in all directions, whereas
an anisotropic solution (i.e., a white matter fiber bundle) would
restrict diffusion in one direction resulting in an elongated ellip-
soid and FA values closer to 1. In white matter tract analysis,
increased FA is thought to be a sensitive but not specific measure
of fiber myelination, the integrity of cell membranes as well as the
diameter of the fibers (95). Typically developing individuals show
age related increases in FA and decreases in MD throughout devel-
opment, in keeping with increasing white matter maturation (96).
As in gray matter analyses, DTI can be applied to the whole brain in
a voxel-based approach, or alternatively, specific regions of inter-
est can be investigated with this method. Along these lines, specific
anatomic white matter tracts can be reconstructed and analyzed
from DTI data, in a method known as tractography. DTI data can
also be transposed onto a common FA template, in tract-based
spatial statistics (TBSS) (97).
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Magnetic resonance imaging data collected in the absence of
diffusion measurements can still be utilized in studying white
matter integrity and growth. Similar to gray matter analysis, simple
volumetric studies on white matter structures have been employed.
Alternatively, 3D mapping of volumetric changes in white matter
tracts via tensor-based morphometry (TBM) has been validated
as a method of studying white matter development over time.
In brief, TBM applies initial and follow up scans to a standard-
ized brain template to ensure precise anatomical alignment. Next,
an elastic-deformation algorithm is used to calculate the spe-
cific degree of volume expansion in a set area, represented by an
expansion factor called the “Jacobian determinant.” Growth rates
are calculated by comparing the Jacobian determinant measures
across patient and control samples.

WHITE MATTER ANALYSIS IN COS
The corpus callosum is the largest white matter structure in the
human brain, and is central for connectivity and relay of informa-
tion between hemispheres. Deficits in the corpus callosum have
been inconsistently demonstrated in adult onset schizophrenia
populations (95). In a longitudinal analysis of children and young
adults with COS, differences in the midsagittal area of the sple-
nium of the corpus callosum emerged around age 22, with patients
having significantly smaller structures (98). Later analysis looking
at volumetric differences in subsections of the corpus callosum
revealed no differences between NIMH-COS patients, their sib-
lings and controls with respect to overall volume, and/or volume
change over time (99).

Comparison of whole brain TBM data between 12 patients with
COS and 12 age matched controls followed over a 5-year interval
revealed aberrant white matter development between ages 13 and
19 years. Specifically, at baseline MRI, patients had a 15% deficit
in white matter volume in the frontal regions. At follow up, con-
trol patients showed an average of 2.6% growth in white matter
per year, while COS patient had only 0.4% white matter growth

per year. The white matter deficits in the COS sample seemed
to progress in a front to back pattern, opposite to previous find-
ings regarding gray-matter deficits, but consistent with expected
growth patterns in healthy adolescent brains (100). Unaffected sib-
lings of children with COS showed delayed white matter growth
at younger ages (<14 years) but not at older ages (14–18 years) as
measured by TBM. Delayed white matter growth was most sig-
nificant in the parietal regions for siblings, but normalized by age
18 (101).

There are relatively few DTI studies in specific COS popula-
tions. Clark et al. (102) found no significant differences in FA
diffusely between 18 children and adolescents with COS, and 25
controls. Of note, five COS patients had a comorbid diagnosis of
ASD, of which four were tested as having a linguistic impairment.
Increased RD and AD was noted for patient vs. control groups
in several white matter tracts (see Table 1). Increases in RD and
AD in these regions were explained primarily by the presence of a
linguistic impairment, and not the diagnosis COS, however (102).

There is a growing body of literature, however, on diffusion
tensor imaging in adult onset schizophrenia and early-onset schiz-
ophrenia (EOS: defined as symptom onset prior to age 18 years).
Findings investigating these patient groups are summarized in sev-
eral reviews (103, 104). Given the paucity of literature applying
DTI in COS, some conclusions may be extrapolated from the early-
onset schizophrenia literature; therefore they will be discussed
briefly.

In general, while results have varied, the corpus callosum,
superior and inferior longitudinal fasciculus, cingulum, and the
uncinate fasciculus have been suggested as areas most affected
with respect to white matter integrity as measured by decreases
in FA (103, 104). Some studies have attempted to correlate DTI
findings with symptomatology. Ashtari et al. (105), for example,
found decreased FA in the left inferior longitudinal fasciculus was
more pronounced for EOS patients with a history of visual halluci-
nations (105). As in volumetric imaging, studies that incorporate

Table 1 | Summary of white matter findings in ASD and COS.

COS vs. controls ASD vs. controls

White matter

volume in COS

DTI in COS Meta-analysis on white

matter volume in ASD

Meta-analysis

on DTI in ASD

Study (160); (99); (98) (102) (109) (110)

Mean age of patient group (160) 14.1–18.7; (99) 17.3;

(98) 14.8

14.7 21.4 15.2

Whole brain white matter ↓ (160) ND FA ND –

Corpus callosum ↓ (98); ND (99) ND FA; ↑ RD/AD in LI ↓ ↓ FA; ↑ MD

Superior longitudinal fasciculus – ND FA; ↑ RD/AD in LI (L) – ↓ FA (L); ↑ MD

Arcuate fasciculus – ND FA ↑ –

Inferior longitudinal fasciulus – ND FA; ↑ RD/AD in LI (L) – ND FA

Inferior fronto-occipital fasciculus – ND FA; ↑ RD/AD in LI (L) ↑ ND FA

Cingulum ↓ (160) ND FA ↓ ND FA

Uncinate fasciulus – ND FA ↑ ↓ FA (L); ND MD

Note that for ASD, significant findings are reported from meta-analyses only. COS, childhood onset schizophrenia; ASD, autism spectrum disorder; DTI, diffusion

tensor imaging; ND, no difference; FA, fractional anisotropy; RD, radial diffusivity; MD, mean diffusivity; AD, axial diffusivity; L, left side; R, right side; LI, COS patients

with language impairment.
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analyses for age effects provide evidence of dynamic white mat-
ter abnormalities as well, in EOS. For example, FA in the anterior
cingulate region increased with age in the healthy control popula-
tion, but decreased with age in the early onset psychosis population
(106). Similarly, patients with EOS showed decreased FA in parietal
regions, while patients with adult onset schizophrenia had findings
localizing to the frontal, temporal, and cerebellar regions (107).

WHITE MATTER ANALYSIS IN ASD
Earlier volumetric analyses suggested a pattern of accelerated of
white matter volume and growth in younger children, particularly
in the frontal regions, but that adolescents with ASD had simi-
lar or reduced white matter volume compared to controls (108).
Meta-analysis of 13 VBM studies on white matter volume found
no differences globally in white matter volume, and no differences
between child/adolescent groups and adults groups, although no
studies included very young children (<6 years). Some regional
differences emerged, however (109) (see Table 1).

With respect to diffusion tensor imaging, a recent systematic
review and meta-analysis, combining DTI data from 14 studies,
including both children and adults with ASD, summarized some
areas of consensus and heterogeneity in the literature. In summary,
decreased FA was most consistently demonstrated in the corpus
callosum, left uncinate fasciculus, and left superior longitudinal
fasciculus of individuals with ASD. Mean diffusivity was increased
in the corpus callosum, and bilaterally in the superior longitudinal
fasciculus (110). This meta-analysis included data from ROI and
tractography studies only, however, excluding whole brain TBSS
and voxel-based analyses. A recent literature review on DTI in ASD
by Travers et al. (97), identified decreased FA, increased MD, and
RD as the most common finding across methods, with the corpus
callosum, cingulum, arcuate fasciculus, superior longitudinal, and
uncinate fasciculus showing the greatest differences (97).

Most imaging studies in autism to date, as well as those
included in the above-described meta-analyses, have been con-
ducted in older children,adolescents,or adults. In these age groups,
decreased FA and increased MD have been repeatedly documented
in many white matter regions. The specific rate of change in
white matter markers, as well as the effect of age on white matter
maturation seems to vary by study, however. For example, Mak-
Fan et al. (56) showed RD and MD measurements stayed stable
between the ages 6 and 14 years in subjects with ASD, while con-
trol subjects showed expected decreases with age (111). Ameis et al.
(112) found the between group differences in RD, AD, and MD,
but not FA, which were more pronounced in childhood than in
adolescence (112).

Few studies have been conducted in very young children, how-
ever, and less consistency emerges in the data from this age range.
Contrary to literature in older populations, Weinstein et al. (113),
reported that FA was greater for children ages 1.5–6 years with ASD
compared to controls in the areas of the corpus callosum, supe-
rior longitudinal fasciculus, and cingulum. Differences in FA were
attributable to decreased RD, while AD was the same between cases
and controls (113). Similarly, Ben Bashat et al. (114), found evi-
dence of accelerated white matter maturation marked by increased
FA and reduced displacement values in a small sample of children
with ASD ages 1.8–3.3 years, most prominently in frontal regions

(114). Abdel Razek and colleagues (115), found ADC scores to be
greater for preschool children with ASD in several regions, which
correlated with severity of autistic symptoms as measured by the
childhood autism rating scale (115). Walker et al. (116) on the
other hand, found that 39 children between ages 2 and 8 years with
ASD had decreased MD and FA compared to controls, accompa-
nied by an attenuated rate of increase in FA, as well an accelerated
rate of decreased MD compared to controls (116). Longitudinal
data looking at high risk infants found evidence of higher FA at
6 months in children who were subsequently diagnosed with ASD,
but that they had then had a slower rate of change such that by
24 months typically developing children had surpassed them in
this measure (117).

For most studies, although differences have been statistically
significant for certain regions, the magnitude of these differences
has been quite small, on the range of 1–2%, thus limiting the pre-
dictive ability of any individual measurement. Lange et al. (118)
generated a discriminant function that was able to distinguish
between individuals with and without ASD with 94% sensitivity,
90% specificity, and 92% accuracy, by combining the predictive
ability of DTI data points centered primarily around the superior
temporal gyrus and the temporal stem. The sensitivity and speci-
ficity was reproduced in a replicate sample as well, however the
case-control design was not reflective of true population preva-
lence, again precluding inferences regarding predictive ability in a
real life clinical setting (118).

Emerging efforts have tried to correlate neuroimaing findings to
functional and behavioral outcomes. For example, increased MD
in the superior longitudinal fasciculus correlated with degree of
language impairment in children and adolescents (119). Increase
FA and decreased RD in the arcuate fasciculus correlated with
greater language abilities in another group of children with ASD
(120). Similarly, lower FA in the dorsal lateral prefrontal region
was associated with increased social impairment in a group of
children with ASD in Japan (121). Attempts to identify structural
deficits in areas involved socio-emotional processing have yielded
mixed results as well. Further focus on understanding the func-
tional connectivity between distant regions is described in the next
section.

Summary and comparison. White matter development in COS
patients compared to controls appears marked by global deficits
in white matter volume and decreased rates of white matter
growth/integrity in adolescence, although the specific chronology,
most affected regions and the relation to symptoms continues to be
explored. In ASD, meta-analyses suggest no differences overall in
white matter volume in adults, although early white matter volu-
metric overgrowth may occur in younger patient samples. Looking
at specific white matter regions, volume losses have been noted in
both ASD and COS in the corpus callosum and cingulum. In both
conditions, decreased white matter integrity as measured though
DTI has been observed in the superior longitudinal fasciculus,
which may pertain to comorbid language impairments.

FUNCTIONAL CONNECTIVITY
While imaging of white matter tracts through techniques like
DTI permits the quantification of structural connectivity between
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regions, functional connectivity requires in vivo analysis of brain
activation. Functional magnetic resonance imaging (fMRI) mea-
sures regional changes in blood oxygen level dependent (BOLD)
signaling, given the subtle differences in magnetic field strength
between oxygenated and deoxygenated blood. Brain activation
patterns may be analyzed in subjects at rest (termed resting state)
or during a specific cognitive or behavioral task performed in
an MRI scanner. Data can be analyzed with respect to a specific
region of interest (seed technique), where connections to and from
an a priori defined region are studied. Alternatively, independent
component analysis (ICA), or similar techniques, look at overall
activation patterns across all regions, and can comment on pat-
terns in functional networks (i.e., default mode network, salience
network). Data from functional neuroimaging studies are often
analyzed using graph theory. In this approach, the relationship
between certain areas of central activation (termed “nodes”) and
the vectors of connectivity between nodes (termed “edges”) are
described using discrete mathematics (122). Short-range connec-
tivity (i.e., within a specific lobe, or to a neighboring lobe) and
long-range connectivity between remote regions can be quantified
in this manner.

FUNCTIONAL CONNECTIVITY IN COS
Two separate analyses in the NIMH cohort of COS have suggested
exaggerated long-range connectivity, and impaired short-range
connectivity, in keeping with a hypothesis of exaggerated synaptic
pruning. Resting state fMRI data was used to graph the connec-
tivity between 100 regional nodes for 13 patients and 19 controls.
Data showed that patients with COS had signals that were less
clustered with more disrupted modularity marked by fewer edges
between nodes of the same module. On the other hand, they
showed greater global connectedness and greater global efficiency
(123). Subsequent analyses with a slightly larger sample again
found reduced connectivity at short distances and increased con-
nectivity at long distances for patients with COS compared to
controls on resting state fMRI. Relative to healthy controls, patients
with COS had several regions in the frontal and parietal lobes that
were “nodes” of over-connectedness with respect to long-range
associations (124). White et al. (125) on the other hand, inter-
preted an opposite pattern from a study using a visual stimulus
to analyze connectivity in the occipital lobe of children and ado-
lescents with early onset schizophrenia (125). Similarly, structural
connectivity analysis in neonates at high risk for schizophrenia
found decreased global efficiency, increased local efficiency, and
fewer nodes and edges overall compared to control infants (126).

FUNCTIONAL CONNECTIVITY IN ASD
In ASD on the other hand, there is an abundance of recent litera-
ture on functional connectivity. An emerging hypothesis suggests
that frontoparietal under connectivity in ASD results in reduced
“bandwidth” in long-range circuits [reviewed by Just et al. (127)].
Some propose that this coincides with local increases in connec-
tivity within a specific lobe, resulting in a failure to integrate and
regulate multiple sources of information (128). This hypothesis is
consistent with structural white matter deficits in long-range asso-
ciation fibers, as well as structural patterns in gray matter showing
increased local, but deficits in global modularity (129).

With respect to functional analyses, impaired synchronization,
and under connectivity between large-scale networks has been
shown in fMRI studies incorporating various task-based assess-
ments, including those pertaining to language comprehension and
auditory stimuli (130–132), executive functioning (133), visual
spatial processing (134), and response to emotional cues (135,
136). Under connectivity has not been the only finding however,
with many functional MRI studies showing evidence of increased
connectivity or altered developmental trajectories with respect
to integrated neural networks (137–139). For example, a recent
meta-analysis of fMRI studies found greater activation in children
with ASD in response to a social task in certain specific regions
(i.e., in the left-precentral gyrus) but relative under activation
compared to controls in other areas (superior temporal gyrus,
parahippocampal gyrus, amygdala, and fusiform gyrus). In adults
with ASD, activation was greater in the superior temporal gyrus,
but less in the anterior cingulate during social processing (140).

The literature is also divided with respect to functional neu-
roimaging in resting state MRI, in the absence of any particular
stimulus or task. Some have proposed that methodological issues
may be contributing to observed inconsistencies (141). While
hypoconnectivity seems most prevalent in the literature, [Ref.
(142, 143); reviewed by Uddin et al. (144)], Uddin et al. (144)
observed long-range hyperconnectivity via ICA across remote
regions in 20 children ages 7–12 years with autism compared to
controls. Hyperconnectivity was noted to involve the default mode
network, frontotemporal, motor, visual, and salience networks.
Hyperconnectivity of the salience network (which involves the
anterior cingulate and insula) was most predictive of the diagnosis
of ASD and was able to discriminate between cases and controls
with 83% accuracy, a finding that was reproduced in a separate
image dataset (145). Other resting state fMRI studies have also
observed mixed patterns, which vary by region, network, and by
age of the sample (146, 147).

The literature in very young patients with ASD is relatively
sparse but seems to suggest altered developmental trajectories for
affected children beginning at very young ages. A recent pub-
lication observed increased functional connectivity at 3 months,
which disappeared by 12 months in high risk infants (148). Alter-
natively, Redcay and Courchesne (139) found increased connec-
tivity between hemispheres in 2–3 year old children with ASD
compared to chronological age matched controls, however the
opposite pattern emerged when they were compared to mental age
matched controls (139). Dinstein et al. (132) observed hypocon-
nectivity between hemispheres and in language regions in toddlers
with ASD in response to auditory stimuli (132).

A recent review article by Uddin et al. (144) summarizes the
literature to date with respect to resting state functional con-
nectivity analyses. While intrinsic connectivity and seed-based
analyses across 17 published studies suggest both hyper- and
hypo-connectivity, Uddin and colleagues propose that the devel-
opmental age of the sample may be one explanatory factor with
respect to variability in results. They describe a hypothesis in which
increased functional connectivity in prepubescent children with
ASD as compared to their peers is then met with altered matura-
tional trajectories such that adults with ASD seem to have reduced
connectivity compared to controls (144).
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A recent publication put forth by a data sharing initiative enti-
tled “autism brain imaging data exchange” (ABIDE) proposes to
remedy disagreement in the literature through a large-scale inter-
national collaboration combining 1112 resting state fMRI scans.
Analysis of 360 male subjects with ASD compared to controls
found hypo connectivity in cortical networks but hyper con-
nectivity in subcortical networks. They also identified localized
differences in connectivity in certain regions, including the insula,
cingulate, and thalamus. They did not perform specific analy-
ses looking for age-associated differences, however, given that the
majority of included participants were adolescents or adults (146).

Summary and comparison. There are only a handful of studies
looking at functional connectivity in COS, but data from fMRI
suggest a pattern of increased long-range connectivity, with dis-
rupted short-range connectivity, in keeping with pathology of
exaggerated synaptic pruning. In comparison, data from fMRI
in ASD suggest to some extent an opposite pattern, with increased
local but decreased global connectivity. fMRI data sharing between
research centers reveal hyperconnectivity in subcortical networks,
and hypoconnectivity in cortical networks in adult males with
ASD. Smaller studies in younger age groups suggest important age
effects regarding the connectivity hypothesis as well, with younger
children with ASD seemingly showing more “over-connectedness”
than adults.

DISCUSSION
This review compares and contrasts neuroimaging findings in ASD
and COS. Overall, across volumetric, structural, and functional
neuroimaging data, there arises evidence for a dynamic changes
in both conditions. In ASD, a pattern of early brain overgrowth
is seemingly met with dysmaturation in adolescence, although
the literature in this regard is far from certain. Functional analy-
ses have suggested impaired long-range connectivity as well as
increased local and/or subcortical connectivity, which may also
progress with age. In COS, global deficits in cerebral volume, corti-
cal thickness, and white matter maturation seem most pronounced
in childhood and adolescence, and may level off in early adulthood.
Deficits in local connectivity, with increased long-range connec-
tivity have been proposed, in keeping with exaggerated cortical
pruning; however the opposite has also been shown. Symptom
and neuroimaging overlap across conditions was illustrated via a
meta-analysis of fMRI data in both schizophrenia and ASD, which
identified shared deficits in regions involved in social cognition
(149).

The significance of these findings is tempered, however, by
heterogeneity in results across other pediatric onset neurodevel-
opmental disorders. In ADHD for example, longitudinal MRI
analyses in children suggest overall reduced cortical thickness prior
to the onset of puberty (158) with peak cortical thickness and onset
of cortical thinning occurring at later ages (159). In the future, clin-
ical neuroimaging must be able to identify not only the presence
of aberrant neurodevelopment, but also be able to discern across
overlapping conditions.

While there is heterogeneity in the literature in both condi-
tions, findings regarding COS at times appear more consistent.
It is important to note that, given the rarity of this condition,

these findings emerge from relatively few research samples, and
are derived primarily from data collected from the same popu-
lation of individuals. In ASD on the other hand, there has been
an international explosion of investigation at numerous institu-
tions, across ages, IQ ranges, and diagnostic severity, which has
resulted in at times seemingly contradictory results. A call for
collaboration (150) has been met with a first international compi-
lation of neuroimaging datasets, which has helped to clarify some
discrepancies in the literature with respect to fMRI (146). Going
forward,ongoing collaboration to facilitate large scale,prospective,
longitudinal neuroimaging studies, will be necessary to separate
signals from noise in these complex and heterogeneous diseases.
A focus on genetic subtypes may help to unite synapse pathology
with neuroimaging findings and network dysfunction, to permit
some degree of hypothesis generation with respect to molecular
pathogenesis.

In ASD, for example, a loss of inhibitory control leading to
exaggerated growth, premature cortical thinning, and then early
stabilization of cortical structures has led some to suggest that
overall the developmental curve has been “shifted to the left”
along the time axis in this condition, with respect to brain matu-
ration (75, 151). Current genetic investigations suggest alterations
in structural scaffolding at the excitatory synapse could be con-
tributory in ASD (152). Single gene disorders associated with
autism may shed light on underlying final common pathways
(153). Fragile X syndrome (FXS), for example, is a genetic con-
dition comorbid with ASD in 20–30% of cases (154). Individuals
afflicted with this condition have dysfunction or absence of the
fragile X mental retardation protein (FMRP). FMRP is now under-
stood to play a critical role in regulation of protein synthesis
at the excitatory synapse, and without it, exaggerated receptor
cycling and dysfunctional neuroplasticity can results (153). A sim-
ilar mechanism in idiopathic ASD would hypothetically results in
a loss of inhibitory control on expected maturational changes,
uncoupling the structural and temporal timeline of synaptic
neurodevelopment.

In schizophrenia, exaggerated synaptic pruning has been a long
held hypothesis with respect to an etiology (25), which is consis-
tent with aspects of the neuroimaging literature in COS. On the
other hand, a small study in high risk infants suggests enlarged
cerebral volumes may exist early in life, implying that some type
of early dysregulated growth may be at play in this condition as
well, similar to the process occurring in ASD (27). Investigations
in 22q11.2 deletion syndrome (DS), a genetic disorder associated
with schizophrenia in 20–25% of cases (155), permits longitudinal
and prospective analysis of children at high risk for schizophrenia.
Interestingly, MRI data collected in children as young as 6 years
old with 22q11.2 DS found early increases in cortical thickness
and deficits in cortical thinning in preadolescence, which are then
met with exaggerated cortical thinning during adolescent years.
Patients who subsequently developed schizophrenia indeed had
more exaggerated deficits in cortical thickness (156).

In studies recruiting adolescents, it is difficult to tease out the
possible influence of confounders such as substance abuse on both
clinical and radiologic findings. While comorbid substance abuse
is common in adult onset schizophrenia populations (occurring in
50–80% cases), the rate of substance abuse in COS,while presumed
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lower, has not been described (157). Ongoing study of clinical,
environmental, and cultural confounding factors in both ASD and
COS is needed.

Many investigators have sought to use neuroimaging protocols
as predictors of diagnosis in case-control studies. The accuracy,
sensitivity, and specificity of these analyses have on average ranged
between 60 and 90%, and some groups have been able to reproduce
high levels of diagnostic accuracy in separate patient samples. The
clinical utility of these algorithms, however, remains uncertain in
the absence of their application to populations reflecting realistic
disease prevalence (i.e., positive predictive values are low or not
reported). The development of clinically useful, cost-effective wide
scale diagnostic tests for neurodevelopment conditions remains a
common goal, and several groups have initiated prospective trials
on high risk patient populations which may perhaps yield some
hopeful results in the next decade.
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