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Abstract: Angiopoietin/tyrosine protein kinase receptor Tie-2 signaling in endothelial cells plays
an essential role in angiogenesis and wound healing. Angiopoietin-1 (Ang-1) is crucial for blood
vessel maturation while angiopoietin-2 (Ang-2), in collaboration with vascular endothelial growth
factor (VEGF), initiates angiogenesis by destabilizing existing blood vessels. In healthy people,
the Ang-1 level is sustained while Ang-2 expression is restricted. In cancer patients, Ang-2 level
is elevated, which correlates with poor prognosis. Ang-2 not only drives tumor angiogenesis but
also attracts infiltration of myeloid cells. The latter rapidly differentiate into tumor stromal cells that
foster tumor angiogenesis and progression, and weaken the host’s anti-tumor immunity. Moreover,
through integrin signaling, Ang-2 induces expression of matrix metallopeptidases (MMPs) to promote
tumor cell invasion and metastasis. Many oncogenic viruses induce expression of Ang-2 to promote
development of neoplasia associated with viral infection. Multiple Ang-2 inhibitors exhibit remarkable
anti-tumor activities, further highlighting the importance of Ang-2 in cancer development.

Keywords: angiopoietin-1 (Ang-1); angiopoietin-2 (Ang-2); angiogenesis; cancer; neoplasia;
oncogenic virus

1. Introduction

A hallmark breakthrough in vascular biology during the 1990s was the discovery of angiopoietins,
ligands of the tyrosine kinase receptor Tie-2 [1–5]. Angiopoietin-1 (Ang-1) and angiopoietin-4
(Ang-4) act as agonists of Tie-2 whereas angiopoietin-2 (Ang-2) and angiopoietin-3 (Ang-3) act as
antagonists [1–6]. Extensive studies have revealed their essential roles in angiogenesis and wound
healing through Tie-2 signaling, with most of the studies focusing on Ang-1 and Ang-2. The roles
of Ang-3 and Ang-4 are far less understood. Ang-1 was found to be essential for the maturation
and “sealing” of newly formed blood vessels [1,7,8]. Blood vessel pericytes strongly express Ang-1
and were found to be recruited to maturing micro-vessels during later stages of cutaneous wound
healing, leading to their sealing and maturation [8,9]. Ang-1 deficient mice died early of hemorrhage
as a result of generating “unsealed” and “leaking” blood vessels [4,10]. In contrast, Ang-2 displays
characteristic features of an antagonist of Tie-2. Mice over-expressing Ang-2 manifested hemorrhage [3],
most likely by antagonizing Ang-1. In collaboration with vascular endothelial growth factor (VEGF),
Ang-2 was found to play a crucial role in the initiation of angiogenesis by destabilizing existing blood
vessels for the generation of new blood vessels [1,11]. Besides Ang-2/Tie-2 signaling, a recent study
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demonstrated that Ang-2 destabilization of existing blood vessels also depended on Ang-2-mediated
activation of integrin-β1 [12]. Consistent with this role, Ang-2-deficient mice died early due to failure
of angiogenesis [3,13]. Up to now, a wealth of studies have firmly confirmed the opposing but
complementary effects of Ang-1 and Ang-2 on angiogenesis and wound healing. For a review of these
studies, please refer to a number of comprehensive review articles published elsewhere [14–16].

During the past two decades, the roles of angiopoietins have extended far beyond angiogenesis
and wound healing. It is now clear that these molecules contribute to multiple other aspects of
biology such as inflammation [17], cell survival [18], and cell migration and invasion [19]. Indeed,
dysregulation of these molecules has been associated with a number of diseases including infection and
septic shock [20,21], diabetes [22,23], and cancer [24,25]. In this article, we attempt to give an update
reviewing recent literature on how Ang-1 and Ang-2 contribute to development and progression of
cancer in general and neoplasia associated with viral infection.

2. Angiopoietins and Cancer

2.1. Dysregulation of Angiopoietins in Cancer

In healthy people, the level of Ang-1 in circulation is relatively high, which is likely necessary for
stable maintenance of the integrity of existing blood vessels [7,26]. In contrast, expression of Ang-2 is
limited, which is consistent with low levels of angiogenesis in healthy individuals [26,27]. In cancer
patients, however, this expressional pattern of Ang-1 and Ang-2 is perturbed. The serum levels of
Ang-2 in cancer patients increase and the ratio between Ang-1 and Ang-2 in circulation decreases
significantly [28–31]. This alteration in Ang-1 and Ang-2 expressional patterns in cancer patients seems
to be concordant with the well-defined functions of these two angiogenic factors described earlier.
Indeed, tumor blood vessels are considered abnormal when compared to blood vessels in normal
tissues. Tumor vessels are tortuous and leaky, their diameter is irregular and their walls are thin [32–34].
A relative deficiency of pericytes could be responsible for these morphological features in tumor
vasculature as a result of the altered expression pattern of Ang-1 and Ang-2 in cancer patients [32–34].
A number of clinical studies have demonstrated a strong inverse correlation between the serum levels
of Ang-1 and Ang-2 and prognosis of cancer [28,35–40], suggesting important roles of these molecules
in cancer development and progression.

The mechanisms of Ang-2 up-regulation in cancer patients have been investigated quite extensively.
Endothelial cells are the main source of Ang-2, expression of which is restricted to very low levels
in healthy people. The promoter of Ang-2 contains both positive and negative cis-elements for
transcriptional activation and repression [41]. The E26 transformation-specific (Ets) family transcription
factors Ets-1 and Elf-1 and other transcription factors such as the activating protein 1 (AP-1) and
forkhead box protein C2 (FOXC-2) act as positive regulators or trans-elements [42–44]. The Ang-2
gene promoter contains multiple Ets-1 and Elf-1 binding sites (cis-elements) for cytokine-dependent
transcriptional induction [45]. The negative regulatory trans-elements remain unknown. However,
the DNA of Ang-2 promoter is highly methylated, which inversely correlates with Ang-2 expression in
cancer cells [46], suggesting that Ang-2 promoter is subject to epigenetic repression.

Hypoxia and cytokines have been found to be the main triggers of Ang-2 up-regulation in cancer
patients. Hypoxia contributes a great deal to solid tumor progression and development of therapy
resistance [47], and cancer cells are known to produce various growth factors and cytokines [48].
Both hypoxia and cytokines were shown to be strong inducers of Ang-2 expression in cultured
endothelial cells [49–53] Hypoxia and cytokines are known to activate transcription factors such as Ets-1
involved in Ang-2 transcriptional induction [54,55]. Among various cytokines, tumor-derived VEGF
was found to be a potent inducer of Ang-2 expression in host endothelium, which destabilized host
vasculature and promoted angiogenesis in ovarian cancer [56]. The inflammatory mediator oncostatin
M (OSM) also induced Ang-2 expression in endothelial cells both in vitro and in vivo [57]. In addition,
the female hormone estrogen was suggested to increase Ang-2 expression in female rats [58]. Besides
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induction of Ang-2 expression, cytokines also stimulate release of Ang-2 that is pre-made and stored in
the Weibel–Palade bodies (WPB) of endothelial cells. For instance, upon stimulation by factors such as
thrombin, Ang-2 was rapidly released from endothelial cells [59–61].

2.2. Role of Angiopoietins in Tumor Angiogenesis and Tumor Growth

Angiogenesis is essential for growth of solid tumors and metastasis [62]. By using an immune
deficient mouse model with implanted human lung cancer cells, Holopainen et al. demonstrated
that mice treated with adenoviruses expressing Ang-1 did not give rise to tumors with significantly
increased vascular density [63]. Rather, this treatment enlarged blood vessels in both the tumor and
normal tissues, increased tumor cell dissemination into the blood circulation [64,65], and enhanced
the formation of metastatic foci in the lungs. Simultaneous treatment of the mice with soluble
Tie2 attenuated this effect of Ang-1. These results suggest that the Ang-1/Tie-2 signaling increases
vascular entry and exit of tumor cells to facilitate tumor dissemination and metastases by giving
rise to enlarged blood vessels. In contrast to this study, Ang-1 did enhance tumor angiogenesis in
a rat glioma model [66]. In addition, multiple studies demonstrated that Ang-1 actually inhibited
tumor growth [67,68]. One study found no detectable effect of Ang-1 on dissemination of Lewis lung
carcinoma and TA3 mammary carcinoma cells [69]. Therefore, the role of Ang-1 in tumor angiogenesis
and growth seems to be highly dependent on the specific type of cancer.

In contrast to Ang-1, Ang-2 overexpression gave rise to aberrant “leaky” blood vessels or
aggregated vascular endothelial cells with few associated smooth muscle cells, suggesting that Ang-2
does play a role in regulating tumor angiogenesis [69]. Similar results were also obtained with other
cancer models including pancreatic cancer, liver cancer, breast cancer, as well as colon cancer [70–73].
In addition to Ang-2/Tie-2 signaling, Ang-2 may promote tumor angiogenesis through additional
mechanisms. Immuno-histochemical analysis data showed that Ang-2 in human gastric cancer biopsies
was predominantly localized in cancer tissues when compared with normal tissues, and was expressed
not only in endothelial cells but also in cancer cells [74]. Nude mice implanted with tumor cells
over-expressing Ang-2 into the gastric walls developed highly metastatic tumors with hypervascularity
as compared with mice implanted with tumor cells expressing the control vector. In addition, there was
a significant correlation between Ang-2 expression and lower grade vessel maturation. Furthermore,
higher levels of proteases such as matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-9
(MMP-9), and urokinase-type plasminogen activator were detected in the tumor tissues than in normal
tissues, suggesting possible involvement of these proteases in Ang-2 mediated tumor angiogenesis.
In full agreement with this notion, all three proteases in endothelial cells were up-regulated upon
treatment with Ang-2 in the presence of VEGF in vitro, further suggesting that Ang-2 contributes
to tumor angiogenesis by induction of proteases in endothelial cells [74]. The roles of Ang-3 and
Ang-4 in cancer development remain largely undefined. Only one study reported that Ang-3 inhibits
pulmonary metastasis by inhibiting tumor angiogenesis [75], demonstrating inhibition of endothelial
cell proliferation and thus reduced angiogenesis when Ang-3 is over-expressed in the tumor cells.

In brief, despite some contradictory findings in different tumor models, most studies have found
critical roles of both Ang-1 and Ang-2 in tumor angiogenesis [76–79]. As summarized in Figure 1, due to
constant higher levels of Ang-2 in cancer patients, tumor angiogenesis is a continuous process that
supports tumor growth and progression, which is in contrast to the transient feature of angiogenesis
during wound healing. In addition, as a result of reduced Ang-1 to Ang-2 ratio, tumor angiogenesis
often generates unsealed “leaky” blood vessels. The role of Ang-1 and Ang-2 in tumor angiogenesis is
further supported by recent studies showing remarkable effectiveness of several Ang-1/Ang-2 specific
inhibitors and neutralizing antibody in blocking tumor angiogenesis and tumor growth [64,65,80–82].



Cells 2020, 9, 457 4 of 17

Cells 2020, 9, x FOR PEER REVIEW 4 of 18 

 

by recent studies showing remarkable effectiveness of several Ang-1/Ang-2 specific inhibitors and 
neutralizing antibody in blocking tumor angiogenesis and tumor growth [64,65,80–82]. 

 
Figure 1. Differences between wound healing angiogenesis and tumor angiogenesis. With constant 
production of high levels of Ang-2, tumor angiogenesis is a continuous process that supports tumor growth 
and progression. In contrast, Ang-2 is only transiently induced during injury, and angiogenesis is halted 
right after wound healing. Secondly, high levels of Ang-1 assures maturation and “sealing” of newly 
generated blood vessels by recruiting pericytes during wound healing. However, due to insufficient levels 
of Ang-1 in cancer patients, tumor angiogenesis generates unsealed “leaky” blood vessels. 

2.3. Roles of Angiopoietins in Tumor Invasion and Metastasis 

Accumulating evidence points to a tight association between Ang-2 expression and tumor invasion 
and metastasis in various human cancers [78,83–85], which apparently goes far beyond the angiogenic 
effect of Ang-2. Indeed, Ang-2 stimulated invasion of glioma and breast cancer cells through up-regulation 
and activation of matrix metalloprotease 2 (MMP-2) in the tumor cells [19,72,86]. Although Ang-2 is a 
specific ligand of Tie-2, apparently it also interacts with other receptors. Indeed, Ang2 interacted with α5β1 
integrin in Tie2- deficient human glioma cells, leading to activation of focal adhesion kinase (FAK), 
p130Cas, extracellular signal-regulated protein kinase (ERK) 1/2, and c-jun NH2-terminal kinase (JNK) and 
induction of MMP-2 expression and secretion [19,72,86]. Expressional knocking down (KD) of Ang-2 
resulted in simultaneous reduction of MMP-2 expression and metastasis of human pancreatic carcinoma 
[87]. Ang-2 may induce additional proteinases to promote tumor cell invasion and metastasis [88]. 

In addition to Ang-2, high levels of Ang-1 have also been associated with capsular invasion, 
extrathyroid extension, lymphovascular invasion, lymph node metastasis, and recurrence in patients [89], 
although the underlying mechanisms remain obscure. 

2.4. Roles of Angiopoietins in Tumor Inflammation and Microenvironment 

Angiopoietins, particularly Ang-2, also play important roles in inflammation. One study 
demonstrated that administration of Ang-2, but not Ang-1, induced edema in the mouse paw in a dose-
dependent manner [90], which was blocked by co-administration of soluble Tie-2. Both Ang-1 and Ang-2 
demonstrated the abilities to attract migration of inflammatory cells such as neutrophils and monocytes 
[90–94]. Chemotaxis seems to be a driving force for Ang-1/Ang-2 mediated migration of inflammatory cells 
[92]. However, the angiopoietin/Tie-2 signaling most likely is involved in this event as well. Indeed, 
significant numbers of neutrophils and monocytes express weak to moderate levels of the Tie-2 receptor, 
and the effects of both Ang-1 and Ang-2 on neutrophil/monocyte migration were shown to be Tie-2 

Figure 1. Differences between wound healing angiogenesis and tumor angiogenesis. With constant
production of high levels of Ang-2, tumor angiogenesis is a continuous process that supports tumor
growth and progression. In contrast, Ang-2 is only transiently induced during injury, and angiogenesis
is halted right after wound healing. Secondly, high levels of Ang-1 assures maturation and “sealing” of
newly generated blood vessels by recruiting pericytes during wound healing. However, due to
insufficient levels of Ang-1 in cancer patients, tumor angiogenesis generates unsealed “leaky”
blood vessels.

2.3. Roles of Angiopoietins in Tumor Invasion and Metastasis

Accumulating evidence points to a tight association between Ang-2 expression and tumor
invasion and metastasis in various human cancers [78,83–85], which apparently goes far beyond
the angiogenic effect of Ang-2. Indeed, Ang-2 stimulated invasion of glioma and breast cancer cells
through up-regulation and activation of matrix metalloprotease 2 (MMP-2) in the tumor cells [19,72,86].
Although Ang-2 is a specific ligand of Tie-2, apparently it also interacts with other receptors. Indeed,
Ang2 interacted with α5β1 integrin in Tie2- deficient human glioma cells, leading to activation of focal
adhesion kinase (FAK), p130Cas, extracellular signal-regulated protein kinase (ERK) 1/2, and c-jun
NH2-terminal kinase (JNK) and induction of MMP-2 expression and secretion [19,72,86]. Expressional
knocking down (KD) of Ang-2 resulted in simultaneous reduction of MMP-2 expression and metastasis
of human pancreatic carcinoma [87]. Ang-2 may induce additional proteinases to promote tumor cell
invasion and metastasis [88].

In addition to Ang-2, high levels of Ang-1 have also been associated with capsular invasion,
extrathyroid extension, lymphovascular invasion, lymph node metastasis, and recurrence in
patients [89], although the underlying mechanisms remain obscure.

2.4. Roles of Angiopoietins in Tumor Inflammation and Microenvironment

Angiopoietins, particularly Ang-2, also play important roles in inflammation. One study
demonstrated that administration of Ang-2, but not Ang-1, induced edema in the mouse paw in
a dose-dependent manner [90], which was blocked by co-administration of soluble Tie-2. Both Ang-1
and Ang-2 demonstrated the abilities to attract migration of inflammatory cells such as neutrophils
and monocytes [90–94]. Chemotaxis seems to be a driving force for Ang-1/Ang-2 mediated migration
of inflammatory cells [92]. However, the angiopoietin/Tie-2 signaling most likely is involved in this
event as well. Indeed, significant numbers of neutrophils and monocytes express weak to moderate
levels of the Tie-2 receptor, and the effects of both Ang-1 and Ang-2 on neutrophil/monocyte migration
were shown to be Tie-2 dependent [91,95,96]. This event may engage additional mechanisms as well.
In fact, Ang-2 also promoted monocyte infiltration in a β2-integrin-dependent manner [97,98].

Tumor-associated macrophages (TAMs) are important drivers of tumor angiogenesis [99]. The Tie-2
expressing monocytes (TEMs) are present in blood and rapidly differentiate and polarize into TAMs
once they are recruited into tumors [100]. Elimination of TEMs in various tumor models suppressed
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tumor angiogenesis [101,102]. Global gene expression analysis indicated that circulating TEMs were
already preprogrammed in the circulation to be more angiogenic and expressed higher levels of such
proangiogenic genes as MMP-9, vascular endothelial cell growth factor A (VEGFA), cyclooxygenase-2
(COX-2), and Wnt family member 5A (WNT5A) than Tie2-negative monocytes [103]. Ang-2, produced
by tumor blood vessel endothelial cells, not only attracted TEMs to migrate into tumors but also had an
impact on global gene expression of TEMs through both Tie-2 and integrin signaling [98,101,104]. Ang-2
enhanced the proangiogenic activity of TEMs and increased their expression of two proangiogenic
enzymes: thymidine phosphorylase (TP) and cathepsin B (CTSB). In another study, Ang-2 also increased
expression of interleukin-10 (IL-10), mannose receptor (MRC-1), and chemokine (C-C motif) ligand 17
(CCL-17) in TEMs, which are three markers for the so-called “pro-tumor M2-like macrophages [103].
Consistent with the gene expression profile of TEMs, tumors grown in transgenic mice with Ang-2
overexpression specifically by endothelial cells were significantly more vascularized and contained
greater numbers of TEMs than tumors grown in wild-type mice [103].

Besides promoting vascular angiogenesis, the Ang-2/TEMs interaction contributes to tumor
lymphangiogenesis as well. In malignant tumors of untreated breast cancer patients, TEMs expressed
the canonical lymphatic markers LYVE-1, Podoplanin, VEGFR-3 and PROX-1 [105]. In addition to
acquisition of these lymphatic markers, TEMs inserted into lymphatic vessels in tumors but not in
the adjacent non-neoplastic tissues, suggesting that the tumor microenvironment shapes both TEM
phenotype and spatial distribution [105].

The interaction between Ang-2 and TEMs may regulate the tumor microenvironment in additional
ways, including weakening of the host’s anti-tumor immunity. Ang-2 was found to markedly inhibit
release of the important anti-tumor cytokine, tumor necrosis factor-alpha (TNF-α), by monocytes
in vitro [106]. Following extravasation of monocytes and their differentiation into macrophages,
many TEMs accumulated in the hypoxic areas of inflamed and malignant tissues. As mentioned
earlier, hypoxia up-regulates Ang-2 expression in endothelial cells and Tie-2 expression in monocytes
and macrophages. Hypoxia also augmented the inhibitory effect of Ang-2 on the release of the
anti-angiogenic cytokine, interleukin-12 (IL-12) by monocytes [106]. Moreover, Ang-2 not only
augmented expression but also stimulated release of the potent immunosuppressive cytokine,
IL-10, from TEMs, which is a chemokine for regulatory T cells (T-reg). IL-10 suppressed T cell
proliferation, increased the ratio of CD-4+ T cells to CD-8+ T cells, and promoted the expansion of
CD-4+CD-25(high)FOXP-3+ T-reg [107]. Accordingly, syngeneic murine tumors expressing high levels
of Ang-2 contained not only high numbers of TEMs but also increased numbers of T-reg, whereas
genetic depletion of tumor TEMs resulted in a marked reduction in the frequency of T-reg in tumors.
Therefore, the Ang-2/TEMs interaction axis represents a potent immunosuppressive force in tumors.

In summary, as shown in Figure 2, Ang-2 contributes to cancer development in multiple ways.
Through Tie-2 signaling and in collaboration with VEGF, Ang-2 promotes tumor angiogenesis. Through
both Tie-2 and integrin signaling, Ang-2 induces chemotaxis and migration of myeloid cells including
TEMs into tumors, which subsequently become tumor-promoting TAMs. Through integrin signaling,
Ang-2 also induces expression of MMPs to promote tumor invasion.
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Figure 2. Ang-2 contributes to cancer development through multiple mechanisms. Acting on endothelial
cells through Tie-2/integrin signaling, Ang-2 promotes tumor angiogenesis. Acting on myeloid cells
including TEMs through Tie-2 and integrin signaling, Ang-2 induces chemotaxis and their migration
into tumors, which subsequently become tumor-promoting TAMs. Ang-2 also blocks production of
TNF-α and IL-12 from the myeloid cells to undermine their anti-tumor activity. Ang-2 can also act on
tumor cells through integrin signaling, inducing expression of MMPs to promote tumor invasion.

3. Angiopoietins and Neoplasia Associated with Viral Infection

Infection accounts for over 15% of all cancers [108], with viral infection being a leading cause
of infection-associated cancers [109–111]. A number of viruses have been identified as oncogenic
viruses that can directly transform normal cells into malignant tumor cells. Examples of such
oncogenic viruses include: (1) Epstein–Barr virus (EBV), which is associated with a subset of Hodgkin’s
lymphoma [112–117], a subset of diffuse large B-cell lymphoma (DLBCL) [118], endemic Burkitt
lymphoma [119], as well as nasopharyngeal carcinoma [119,120] and gastric adenocarcinoma [121];
(2) Kaposi’s sarcoma-associated herpesvirus (KSHV), which is associated with Kaposi’s sarcoma
(KS) [122], primary effusion lymphoma (PEL) [123,124], and multicentric Castleman disease (MCD) [125];
(3) High-risk isotypes of human papillomaviruses (HPV), which can cause cervical, anal, oral, vulvar,
vaginal, and penile cancers [126–130]; (4) Merkel cell polyomavirus (MCV), which is linked to
Merkel cell carcinoma (MCC) [131]; and (5) human T-cell leukemia virus type 1 (HTLV-1) [132–136].
Other viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) can indirectly cause liver
cancer through chronic inflammation [137]. A unique feature of virus infection-associated cancers is
that most oncogenic viruses directly induce expression of angiogenic and inflammatory cytokines
including angiopoietins to promote tumor angiogenesis, inflammation, and tumor growth [138–141].
As an example, in the following sections, we will review the literature on how KSHV induces expression
of Ang-2 to promote development of KS, which is the most common malignancy in people infected
with human immune deficiency virus (HIV) [142].

3.1. Ang-2, But Not Ang-1, Is Highly Expressed in KS Tumors

Kaposi’s sarcoma (KS) is a neoplasia of endothelial cell origin [143,144]. Early-stage KS
is not a true malignancy but hyperplasia driven by KSHV-induced angiogenesis, inflammation,
and proliferation [144–146]. Due to accumulative genetic mutations over time, the hyperplasia further
progresses into malignant tumors. KS lesions consist of not only the proliferative KSHV-infected
tumor cells that express endothelial cells-specific markers but also a large number of infiltrating
inflammatory cells including lymphocytes, monocytes and macrophages [147]. Another feature of KS
lesions is the extensive “slit-like” leaky blood vessels [144,148–150]. It is believed that inflammation
and dysregulated angiogenesis play a crucial role in the development and progression of KS.
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Brown et al. conducted the first study that examined possible involvement of Tie-2 and
angiopoietins in KS [151]. High levels of Ang-2, Tie-1, and Tie-2 mRNAs were detected in KS
tumors. However, no Ang-1 mRNA was detected. Consistent with this report, two later studies
demonstrated strong expression of Ang-2 protein in KS biopsies [44,152]. KSHV infection was
held responsible for the elevated expression of Ang-2 and other cytokines in KS [153–156]. First,
KSHV infection of endothelial cells strongly induced Ang-2 transcription via activation of Ets-1 and
AP-1 [44,154], two crucial transcription factors involved in Ang-2 transcription, which was mediated
by the mitogen-activated protein kinase (MAPK) pathway [41,45]. Inhibition of these signaling
pathways attenuated KSHV-induced Ang-2 transcription. Two KSHV-encoded cytokines named viral
interleukin-6 (vIL-6) and viral G-protein–coupled receptor (vGPCR) were found to induce Ang-2
transcription in lymphatic endothelial cells through activation of the MAPK pathway as well [155].
These viral proteins are expressed at the highest levels about two days after KSHV infection [157].
Indeed, strongest level of Ang-2 mRNA was detected at 54 h post-infection [44], further supporting
the involvement of vIL-6 and vGPCR in Ang-2 transcriptional induction. Interestingly, HBV and
HCV also induced Ang-2 expression through activation of the MAPK pathways [138]. However,
these two viruses may engage host cytokines to induce Ang-2 expression as they do not encode
any viral cytokines. Additional regulatory mechanisms and viral proteins for KSHV-induced Ang-2
transcription may exist as well. For instance, Nutlin-3, which activates the tumor repressor p53 [158],
repressed Ang-2 expression in KSHV-infected endothelial cells [159], which may be indicative of a role
of p53 in repressing Ang-2 expression. This tumor repressor is known to repress transcription of
VEGF [160]. It is important to note that p53 is one of the most important tumor suppressor genes [161],
which is either lost or mutated in about 50% of all cancers [162,163]. Many oncogenic viruses including
KSHV inactivate p53 [164–166]. Nevertheless, two studies did not find a significant association between
p53 and Ang-2 expression in other types of cancer [167,168].

In addition to induction of Ang-2 transcription, KSHV also was also found to stimulate immediate
release of Ang-2 that is pre-synthesized and stored in the Weibel–Palade bodies (WPB) of endothelial
cells [156]. KSHV binding to integrin receptors triggered tyrosine phosphorylation of the focal
adhesion kinase (FAK), the tyrosine kinase Src, and the Calα2 subunit of the l-type calcium channel.
These sequential events led to rapid calcium (Ca2+) influx and Ang-2 release, which could be blocked by
pretreatment of endothelial cells with protein tyrosine kinases inhibitors and calcium channel blockers.

3.2. Ang-2 Promotes Angiogenesis, Inflammation, and KS Tumor Growth

Initially, in a “tumor cell free” angiogenesis assay, Ye et al. demonstrated that Matrigel blocks
filled with supernatant from KSHV-infected human umbilical vein endothelial cells (HUVECs)
displayed significantly higher numbers of micro-vessels than those filled with supernatants from
mock-infected HUVECs two weeks after inoculation into mice [44]. Adding Ang-2 neutralization
antibody into the Matrigel effectively blocked the angiogenic effect of KSHV-induced Ang-2. This data
is concordant with a recent study using a KSHV-induced endothelial cell tumor model that strongly
expressed Ang-2 [94,169]. When equal numbers of the KSHV-induced tumor cells were used in
a Matrigel-based angiogenesis assay in nude mice, inclusion of AMG-138 or L1-10, two peptide-based
Ang-2 inhibitors [81], substantially reduced the numbers of blood vessels. Moreover, shRNA KD
of Ang-2 expression in these tumor cells had similar effects. Therefore, Ang-2 is a crucial for KS
tumor angiogenesis.

In addition to blocking tumor angiogenesis, the two Ang-2 inhibitors also significantly inhibited
KSHV-induced tumor growth in nude mice [94]. Consistent with this result, Ang-2 KD in the
tumor cells also led to reduced tumor sizes. Furthermore, there were significantly fewer numbers
of infiltrating mouse CD-16 positive myeloid cells in the tumors from mice treated with the two
inhibitors or inoculated with Ang-2 KD tumor cells [94]. This result indicated that Ang-2 played a key
role in attracting monocytes/macrophages to infiltrate into tumors. Indeed, in an in-vitro migration
assay using immortalized human monocytes, KSHV-induced Ang-2 strongly enhanced migration of
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monocytes [94]. Chemotaxis may be a driving force for Ang-2 induced monocyte migration. However,
as described earlier, Ang-2 directly interacts with monocytes and TEMs through both Tie-2 and integrin
signaling [170–172]. These myeloid cells, once present in a KSHV infection microenvironment, rapidly
differentiated into TAMs [157,173], which, as described earlier, are well known to promote tumor
growth and progression [171,174,175]. Therefore, as shown in Figure 3, KSHV-induced Ang-2 plays
a pivotal role in the development of KS by promoting both tumor angiogenesis and inflammation.
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Figure 3. KSHV-induced Ang-2 promotes angiogenesis, inflammation, and KS tumor development.
KSHV acute infection of endothelial cells strongly induces Ang-2 transcription via activation of
the transcription factors Ets1 and AP1, and triggers its rapid release through integrin signaling.
The KSHV-induced Ang-2 acts on uninfected endothelial cells to promote angiogenesis in collaboration
with KSHV-induced VEGF, and stimulates chemotaxis and migration of monocytes and TEMs towards
the infection sites. Proliferation of the KSHV-infected endothelial cells, extensive blood vessels,
and infiltration of inflammatory cells are hallmarks of KS tumors. The effective inhibition of KS tumor
growth in nude mice by Ang-2 inhibitors strongly suggests that Ang-2 plays a pivotal role in KS
tumor development.

4. Conclusions and Perspectives

Dysregulation of Ang-1 and Ang-2 is a characteristic feature of cancer patients. Elevated serum
levels of Ang-2 inversely correlate with cancer prognosis. Hypoxia, cytokines, and infection by
oncogenic viruses induce Ang-2 expression. Ang-2 not only acts on endothelial cells through Tie-2
signaling to promote tumor angiogenesis but also interacts with tumor cells through integrin signaling,
leading to elevated expression of MMPs and tumor cell invasion. Ang-2 also interacts with various
myeloid cells particularly TEMs through Tie-2 and/or integrin signaling, attracting their migration and
infiltration into tumors. These tumor stromal cells secrete various cytokines and other factors to further
stimulate tumor angiogenesis, invasion, and metastasis, and inhibit the host’s anti-tumor immunity.
Since Ang-2 contributes to cancer development in so many different ways, it has become an important
target for chemotherapy. Multiple strategies, including soluble Tie-2, humanized Ang-2 neutralization
antibody, and small peptides have achieved remarkable anti-tumor effectiveness in various cancer
models. These Ang-1/Ang-2 blocking molecules definitely offer a new promising treatment for cancer
including neoplasia associated with viral infection.
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