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Novel insights into the epigenetics of diffuse glioma
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ABSTRACT
Loss-of-function mutations of the chromatin regulator ATRX (α-thalassemia mental retardation X-linked)
occur frequently in diffuse gliomas, but the molecular mechanisms by which ATRX inactivation promotes
oncogenesis remain unclear. We recently reported that Atrx deficiency drives glioma-relevant pheno-
types, such as increased motility and astrocytic differentiation profiles, by directly modulating epige-
nomic lanscapes in glioma cells of origin. Our work has significant implications on the role of epigenetic
regulator dysfunction in the oncogenic process.
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Diffuse gliomas represent the most common adult and pedia-
tric brain tumors. While they are histologically and molecularly
heterogeneous, they are all incurable at present, due to both
their wide infiltration into surrounding normal brain, and their
tendency to relapse in the face of intensive treatment with
surgery, radiation, and chemotherapy1. Recent comprehensive
analyses integrated histopathologic, molecular and prognostic
features of diffuse gliomas establishing important correlations
between somatic driver alterations, molecular disease classifica-
tion, and clinical outcome2. These advances have laid the
groundwork for the development of more effective treatment
strategies, efforts that will require an improved understanding
of the unique molecular features driving the pathogenesis of
individual glioma subclasses.

Inactivating mutations in the chromatin remodeling gene
ATRX (α-thalassemia mental retardation X-linked) represent
defining molecular alterations in major subgroups of both
adult and pediatric glioma that tend to exhibit morphologic
and immunohistochemical features of astrocytes and are thus
classified as “astrocytomas”. In these tumors, ATRX defi-
ciency invariably co-occurs with mutations in tumor protein
p53 (TP53, best known as p53), and in genes encoding either
isocitrate dehydrogenase enzymes (IDH1 and IDH2) in adults
or H3.3 histone monomers (H3F3A and HIST13HB) in
children3–5. So far, ATRX inactivation in cancer has been
solely correlated with a telomerase-independent mechanism
of telomere maintenance known as alternative lengthening of
telomeres (ALT)6. However, the downstream effects of ATRX
deficiency on cellular epigenomic landscapes and their patho-
genic consequences are almost entirely unknown.

For the first time, we recently reported that Atrx deficiency
influences the expression of specific gene sets that drive glioma-
relevant phenotypes by directly modulating epigenomic profiles
in glioma cells of origin7.Wemodeled the cellular andmolecular
context of ATRX-mutant gliomagenesis by inactivating Atrx in

p53-intact and deficient murine neuroepithelial progenitors
(mNPCs), and observed that Atrx deficiency, particularly when
combined with p53 loss, promotes in mNPCs cell migration
while also shifting the expression of differentiation markers
toward an astrocytic lineage. These phenotypes recapitulate
two defining features of infiltrating astrocytomas and their
acquisition was accompanied by large shifts in transcriptional
profiles that strongly correlated with known gene expression
signatures derived from ATRX-mutant gliomas3,4. These find-
ings indicate that transcriptional alterations induced by Atrx
deficiency in mNPCs and their downstream functional sequelae
are highly reminiscent of those occurring in ATRX-mutant
gliomas.

We went on to characterize the molecular basis of Atrx-
deficient phenotypes in mNPCs. In particular, we demon-
strated that the increased cellular motility arising with Atrx
deficiency is, at least in part, due to upregulation of G protein
subunit alpha 13 (Gna13), an upstream effector of ras homo-
log family member A (RhoA) GTPase signaling8. Moreover,
we found that Atrx deficiency disrupted the expression of
crucial astrocytic makers and master regulators such as, glial
fibrillary acidic protein (Gfap), inhibitor of DNA binding 3
(Id3) and signal transducer and activator of transcription 3
(Stat3). Validating these mechanistic findings in ATRX-
mutant human gliomas and primary patient-derived glioma
stem cell lines, provided further support for the disease rele-
vance of our discoveries.

Integrating the transcriptional changes described above
with genome-wide Atrx distribution and chromatin accessi-
bility profiles occurring with Atrx deficiency demonstrated
that Atrx loss directly impacts gene expression through global
epigenomic remodeling. Particularly significant correlations
were observed for key genes driving disease-defining pheno-
types, such as Gfap and Gna13, whose promoter regions
exhibited Atrx binding sites as well as shifts in chromatin
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accessibility following Atrx inactivation. Moreover, Atrx defi-
ciency at these loci was associated with disruptions in H3.3
histone content, consistent with an established mechanism by
which ATRX regulates chromatin structure and organization.
Taken together, these findings indicate that Atrx loss modu-
lates chromatin composition primarily in the immediate vici-
nity of vacant Atrx binding sites, dysregulating local gene
expression and promoting phenotypic behavior typical of
diffuse astrocytic gliomas (Figure 1).

The significance of our work lies in its characterization of
novel mechanisms by which mutational disruptions involving
epigenetic regulator networks can directly mediate cancerous
cellular behavior. In doing so, we also describe targetable
molecular pathways mediating key phenotypes in a malignant,
incurable disease. Finally, we provide concrete evidence that
the gliomagenic effects of ATRX deficiency are not limited to
genomic instability and ALT, which have received the lion’s
share of attention from the cancer research community to
date, but also include broad epigenomic dysfunction, consis-
tent with the established role of ATRX as a regulator of
chromatin state and composition9.

In recent years, it has become increasingly evident that dysre-
gulated epigenetic processes can play central roles in cancer onset
and progression, diffuse glioma included1. The reversibility of
epigenetic modifications renders them suitable for pharmacologi-
cal interventions. As such, they are now considered attractive
therapeutic targets. Inhibitors of chromatin modulating enzymes,
like the histone methyltransferases DOT1 like histone lysine
methyltransferase (DOT1L) and enhancer of zeste 2 polycomb
repressive complex 2 subunit (EZH2) as well as the demethylase
lysine demethylase 1A (KDM1A), have already reached early-
stage clinical trials for cancer therapy10. We are confident that

similarly addressing the epigenetic effects of ATRX deficiency has
the potential to transform personalized therapy for malignant
gliomas, particularly those harboring ATRX mutations.
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Figure 1. Epigenomic and transcriptional dysregulation occurring with ATRX deficiency drive disease-defining phenotypes in glioma cells of origin. ATRX
(α-thalassemia mental retardation X-linked) loss of function mutations, together with IDH1/2 (isocitrate dehydrogenase enzymes 1 and 2) and TP53 (tumor protein
p53) mutations, are defining molecular alterations characterizing the diffusely infiltrating astrocytomas. We demonstrated that Atrx inactivation alters chromatin
structure and accessibility in the immediate vicinity of vacant Atrx binding sites (blue), in part due to shifts in the incorporation of the H3.3 histone variant. These
changes induce the misexpression of locally situated genes, promoting the acquisition of disease-defining cellular phenotypes, such as motility and induction of
astrocytic gene expression profiles.
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