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The novel coronavirus pneumonia COVID-19 infected by SARS-CoV-2 has attracted
worldwide attention. It is urgent to find effective therapeutic strategies for stopping
COVID-19. In this study, a Bounded Nuclear Norm Regularization (BNNR) method
is developed to predict anti-SARS-CoV-2 drug candidates. First, three virus-drug
association datasets are compiled. Second, a heterogeneous virus-drug network is
constructed. Third, complete genomic sequences and Gaussian association profiles are
integrated to compute virus similarities; chemical structures and Gaussian association
profiles are integrated to calculate drug similarities. Fourth, a BNNR model based
on kernel similarity (VDA-GBNNR) is proposed to predict possible anti-SARS-CoV-2
drugs. VDA-GBNNR is compared with four existing advanced methods under fivefold
cross-validation. The results show that VDA-GBNNR computes better AUCs of 0.8965,
0.8562, and 0.8803 on the three datasets, respectively. There are 6 anti-SARS-
CoV-2 drugs overlapping in any two datasets, that is, remdesivir, favipiravir, ribavirin,
mycophenolic acid, niclosamide, and mizoribine. Molecular dockings are conducted
for the 6 small molecules and the junction of SARS-CoV-2 spike protein and human
angiotensin-converting enzyme 2. In particular, niclosamide and mizoribine show higher
binding energy of −8.06 and −7.06 kcal/mol with the junction, respectively. G496
and K353 may be potential key residues between anti-SARS-CoV-2 drugs and the
interface junction. We hope that the predicted results can contribute to the treatment of
COVID-19.

Keywords: SARS-CoV-2, bounded nuclear norm regularization, virus-drug association, FDA-approved drugs,
molecular docking

INTRODUCTION

Novel coronavirus pneumonia COVID-19, erupted in Wuhan, Hubei, China, has become a global
public health challenge (Nittari et al., 2020). By July 26, 2021, it has caused 192,284,207 confirmed
cases and 4,128,152 deaths (WHO, 2021). Although the COVID-19 vaccine has been researched
and developed in many countries and regions, it still fails to avoid the risk of infection. Therefore,
it is an urgent task to design effective drugs for the COVID-19 treatment (Khan et al., 2020a).

COVID-19 is caused by SARS-CoV-2 infection. SARS-CoV-2, like most coronaviruses, is a
positive single stranded virus with unique coronal protein spikes (Khan et al., 2020b). It invades
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human body through SARS-CoV-2 Spike (S) protein binding
with the surface of host angiotensin-converting enzyme 2 (ACE2)
(Morse et al., 2020). Based on the homology between SARS-CoV-
2 and other RNA viruses (such as SARS-CoV and MERS-CoV),
we can investigate RNA virus-related FDA-approved drugs to
find possible chemical agents for preventing COVID-19.

Computational methods for identifying potential antiviral
drugs against COVID-19 contain structure-based methods and
network-based methods. Structure-based methods are a pivotal
implement based on computer-aided drug design and structural
molecular biology. The type of methods aims at predicting
binding sites between chemical agents and target proteins and
thus elucidating basic biochemical processes (McConkey et al.,
2002). Lan et al. (2020) determined the crystal structure of
receptor-binding domain (RBD) in which the S protein binds
to ACE2. Li et al. (2021) screened 21 antiviral, antifungal and
anticancer compounds to identify possible SARS-CoV-2 papain
inhibitors based on silicon molecular docking. Elfiky, 2020a
utilized sequence analysis and molecular docking to construct
an anti-COVID-19 RNA-dependent RNA polymerase (RdRp)
prediction model. Panda et al. (2020) used molecular docking
technique to implement virtual screening among SARS-CoV-
2 protein, main protease, and RDB/ACE2 complex and FDA-
approved antiviral drugs. Maurya et al. (2020) screened possible
antiviral natural products against the S protein and its cellular
receptor from Ayurveda through molecular docking. Choudhary
et al. (2020) utilized a structure-based virtual screening technique
to find possible inhibitors for SARS-CoV-2 entering cells. Wang
et al. (2020a) investigated the development of structure-based
methods and emphasized the limitations and further works of
anti-SARS-CoV-2 drug research. Gahlawat et al. (2020) exploited
structure-based virtual screening technique to investigate the
inhibition effects of major proteases in coronavirus.

Network-based methods have been broadly applied to anti-
SARS-CoV-2 drug screening. For example, Peng et al. (2020)
built one virus-drug (VDA) association dataset and employed
a regularized least square classifier to explore the therapeutic
clues of COVID-19 by combining drug chemical structures,
virus complete genome sequences, bipartite local model and
neighborhood association information. Zhou L. et al. (2020)
exploited a KATZ algorithm (VDA-KATZ) to predict candidate
drugs for the SARS-CoV-2 prevention on the VDA dataset.
Peng et al. (2021) continued to construct two VDA datasets
and developed a random walk with restart method (VDA-
RWR) to prioritize drugs related to COVID-19. Zhou Y.
et al. (2020) designed a formidable network-based method to
reposition the existing chemical agents and quickly screened
latent drug combinations for COVID-19. Taz et al. (2021)
identified the infectious responses between SARS-CoV-2 and
idiopathic pulmonary fibrosis-infected lung cells based on
protein-protein interaction network. Du et al. (2021) probed
a network-based virus-host interaction prediction method and
considered its application on SARS-CoV-2. Messina et al.
(2020) studied pathogenesis of SARS-CoV-2 infection to discover
the etiopathogenesis of COVID-19 by analyzing virus-host
interactome. Ahmed (2020) found that Vitamin D may inhibit
SARS-CoV-2 infection based on a network analysis approach.

Stolfi et al. (2020) used a broader molecular map to reveal
potential therapeutic strategy for COVID-19.

Computational methods effectively prioritize potential drugs
for the SARS-CoV-2 infection. In this work, we propose a Virus-
Drug Association (VDA) prediction algorithm, VDA-GBNNR,
to discover potential chemical agents against COVID-19 based
on virus similarity, drug similarity, VDA network, Gaussian
Association Profile Kernel (GAPK), and Bounded Nuclear
Norm Regularization (BNNR). VDA-GBNNR is compared with
three existing VDA prediction methods, that is, VDA- RLSBN
(Peng et al., 2020), VDA-KATZ (Zhou L. et al., 2020), VDA-
RWR (Peng et al., 2021) and one network-based microRNA-
anticancer drug association prediction model SMiR-NBI (Li
et al., 2016) on three VDA datasets. The experimental results
show that VDA-GBNNR computes the best AUC, accuracy,
sensitivity, and specificity. In addition, the inferred top six
antiviral drugs against SARS-CoV-2, remdesivir, favipiravir,
ribavirin, mycophenolic acid, niclosamide, and mizoribine come
together in any two datasets. Molecular dockings between the
six compounds and the junction of SARS-CoV-2 S protein
and human ACE2 are implemented to calculate molecular
binding energies and identify binding sites between them.
Niclosamide and mizoribine are found to have the strongest
binding energy of −8.06 and −7.06 kcal/mol with the
junction, respectively.

MATERIALS AND METHODS

In this study, inspired by the works provided by Chen and
Huang (2017); Chen et al. (2018b), Yang et al. (2019), and Liu
et al. (2020) we develop a VDA prediction framework (VDA-
GBNNR) to screen underlying drugs for inhibiting COVID-
19. First, virus similarity and drug similarity are calculated
based on virus complete genomic sequences, drug chemical
structures, and Gaussian Association Profiles (AP). Second, a
BNNR model is developed to complete unknown associations
between viruses and drugs. Finally, the predicted top anti-
SARS-CoV-2 drugs are docked with the junction of the S
protein bound with ACE2. The overall workflow is shown
in Figure 1.

Datasets
Three VDA datasets are obtained from Peng et al. (2021).
Each dataset contains virus similarity matrix, drug similarity
matrix, and VDA matrix. In each dataset, virus complete
genomic sequences were downloaded from the NCBI database
(Coordinators, 2018), and MAFFT (Katoh et al., 2019) (a multi-
sequence alignment tool) was utilized to compute virus sequence
similarity matrix Wvv. Drug chemical structures were obtained
from DrugBank (Wishart et al., 2018) and RDKit (an open-
source chemical information software) was used to calculate
drug chemical structure similarity matrix Wdd. VDA matrix Wvd
is achieved by searching the DrugBank, NCBI, and PubMed
(Motschall and Falck-Ytter, 2005) databases. In Wvd, Wij = 1 if
virus vi interacts with drug dj; otherwise, Wij = 0. Table 1 shows
the details of three VDA datasets.
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FIGURE 1 | Overall flow chart of VDA-GBNNR.
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TABLE 1 | Details of three VDA datasets.

Datasets Dataset 1 Dataset 2 Dataset 3

Number of viruses (m) 12 69 34

Number of drugs (n) 78 128 203

Number of VDAs 96 770 407

Proportion of VDA to all virus-drug pairs 10.26% 8.72% 5.90%

Similarity Computation
GAPK Similarity
For a given virus vi, the Gaussian association profile AP(vi) is
defined as the ith row of a VDA matrix Wvd to describe its
association information with all drugs. GAPK similarity between
two viruses [i.e., (vi, vj)] is calculated by Eq. (1).

GV
(
vi, vj

)
= exp

(
−γv

∣∣∣∣AP (vi)− AP
(
vj
)∣∣∣∣2)

γv = γ
′

v/

(
1
m

m∑
k = 1
||AP (vk)||

2

)
(1)

where γv represents normalized kernel bandwidth based on
bandwidth parameter γ

′

v, and m is the number of viruses.
For a given drug di, its Gaussian association profile AP(di)

is defined as the ith column of a VDA matrix Wvd to describe
its association information with all viruses. GAPK similarity
between two drugs [i.e., (di, dj)] is computed by Eq. (2):

GD
(
di, dj

)
= exp

(
−γd

∣∣∣∣AP
(
di
)
− AP

(
dj
)∣∣∣∣2)

γd = γ
′

d/

(
1
n

n∑
k = 1

∣∣∣∣AP(dk)
∣∣∣∣2) (2)

where γd indicates normalized kernel bandwidth based on
bandwidth parameter γ

′

d, and n is the number of drugs.

Similarity Integration
Complete genomic sequence similarity Wvv, chemical structure
similarity Wdd, and GAPK similarity (GV and GD) are integrated
to compute the final virus similarity matrix SV (Eq. 3) and
drug similarity SD (Eq. 4). The parameter w is introduced to
measure the importance between biological similarity and GAPK
similarity.

SV = wGV + (1− w) Wvv (3)

SD = wGD + (1− w) Wdd (4)

Heterogeneous Network Construction
A heterogeneous virus-drug network is constructed by
integrating virus similarity network, drug similarity network
and VDA network. The edge between two viruses/drugs is
weighted according to their similarity. The heterogeneous
network can be represented as a bipartite graph G(V, D, E),
where E (G) = {eij} ⊆ V × D, eij represents the edge between
the virus vi and the drug dj, V and D represent virus set and
drug set, respectively. The adjacency matrix of the heterogeneous

network is defined as Eq. (5).

M =
[

Mdd WT
vd

Wvd Mvv

]
(5)

where Wvd denotes known VDA matrix, Mdd and Mvv represent
the adjacency matrices of drug similarity network and virus
similarity network, respectively. Hence, the adjacency matrix can
be rewritten as Eq. (6).

M =
[

SD WT
vd

Wvd SV

]
(6)

VDA-GBNNR Model
In three VDA datasets, known VDAs in the matrix Wvd account
for about 10.26, 8.72, and 5.90% among all possible virus-drug
pairs, respectively. That is, the majority of virus-drug pairs are
unlabeled and need to be completed. Therefore, we aim to
complete unknown elements through a bounded nuclear norm
regularization model.

The rank of a matrix describes information redundancy, and
lower rank denotes less information redundance. Indeed, VDA
prediction can be represented as a low-rank matrix completion
problem. Therefore, we built the following model to complete the
missing association information in a VDA matrix by Eq. (7):

min Arank (A)

subject to P� (A) = P� (M)
(7)

where A is a matrix after completion, rank(·) indicates the rank
of a matrix, M ∈ R(m+n) × (m+n) is a given VDA matrix, � is the
set of index pairs (i, j) which contains all known VDAs in M, and
P� is the projection operator on �.

(P� (A))ij =

{
Aij,

(
i, j
)
∈ �

0,
(
i, j
)

/∈ �
(8)

The solution of rank (A) in Eq. (7) is a non-convex problem.
Based on the nuclear norm optimization provided by Candes and
Recht (2013), the model Eq. (7) can be solved by Eq. (9):

minA ||A||∗
subject toP� (A) = P� (M)

(9)

where ||A||∗ denotes the nuclear norm of A and can be obtained
by summating all singular values in A.

The elements in virus similarity matrix Wvv and drug
similarity matrix Wdd are between 0 and 1, and the elements
in VDA matrix Wvd are either 1 or 0. Therefore, the predicted
association scores for unknown virus-drug pairs are expected
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TABLE 2 | Parameter settings for the top 10 AUCs.

Rank Dataset 1 Dataset 2 Dataset 3

α β w γ
′

AUC α β w γ
′

AUC α β w γ
′

AUC

1 1 0.1 0.5 0.5 0.9013 1 10 0.4 0.5 0.8564 1 10 0.2 0.5 0.8818

2 1 1 0.5 0.5 0.9010 1 10 0.3 0.5 0.8562 1 1 0.7 0.5 0.8804

3 1 1 0.5 1 0.9002 1 10 0.2 0.5 0.8559 1 10 0.1 0.5 0.8799

4 1 1 0.4 0.5 0.8994 1 10 0.5 1 0.8557 1 10 0.1 1 0.8795

5 1 0.1 0.4 0.5 0.8977 1 10 0.3 1 0.8554 1 1 0.6 0.5 0.8794

6 1 0.1 0.5 1 0.8919 1 10 0.4 1 0.8553 1 10 0.3 0.5 0.8792

7 1 0.1 0.4 1 0.8907 10 10 0.4 1 0.855 1 10 0 2.5 0.8782

8 1 1 0.4 1 0.8896 10 10 0.5 1 0.8546 1 10 0 2 0.8782

9 1 1 0.3 0.5 0.8894 1 10 0.5 0.5 0.8544 1 10 0 1.5 0.8775

10 1 1 0.6 1 0.8878 1 10 0.4 1.5 0.854 1 0.1 0.5 0.5 0.8775

TABLE 3 | Optimal parameter settings for different models.

VDA-KATZ VDA-RLSBN VDA-RWR VDA-GBNNR

Dataset 1 β = 0.04
w1 = w2 = 0.9
γ
′

v = γ
′

d = 2.5

α = 0.4 r = 0.7
µ = 0.9
α = 0.5

α = 1
β = 0.1
w = 0.5
γ
′

= 0.5

Dataset 2 β = 0.06
w1 = w2 = 0.3
γ
′

v = γ
′

d = 1.0

α = 0.1 r = 0.7
µ = 0.9
α = 0.5

α = 1
β = 10
w = 0.3
γ
′

= 0.5

Dataset 3 β = 0.05
w1 = w2 = 0.7
γ
′

v = γ
′

d = 2.5

α = 0.1 r = 0.7
µ = 0.9
α = 0.5

α = 1
β = 10
w = 0.1
γ
′

= 0.5

TABLE 4 | Performance comparison of different methods.

Datasets Methods Sensitivity Specificity Accuracy AUC

Dataset 1 SMiR-NBI 0.8342 0.1925 0.2069 0.5728

VDA-KATZ 0.6976 0.6684 0.6691 0.8803

VDA-RLSBN 0.9279 0.9841 0.9298 0.9085

VDA-RWR 0.4824 0.7831 0.8278 0.8582

VDA-GBNNR 0.8224 0.8460 0.8400 0.8965

Dataset 2 SMiR-NBI 0.8339 0.0939 0.1078 0.4146

VDA-KATZ 0.5512 0.7574 0.7535 0.8296

VDA-RLSBN 0.5517 0.7391 0.7228 0.7873

VDA-RWR 0.5022 0.6643 0.6613 0.6675

VDA-GBNNR 0.8358 0.8425 0.8365 0.8562

Dataset 3 SMiR-NBI 0.9232 0.0431 0.0540 0.4378

VDA-KATZ 0.7116 0.5666 0.5684 0.8478

VDA-RLSBN 0.7004 0.6048 0.6102 0.8264

VDA-RWR 0.5053 0.7057 0.7032 0.7123

VDA-GBNNR 0.8611 0.8519 0.8482 0.8803

The bold values represent the best performance among five VDA prediction methods.

to be between 0 and 1. The value closer to 1 denotes bigger
probability that a virus and a drug pair is linked, and vice
versa. However, the elements in Eq. (9) may be any real value

in (−∞,+∞). To ensure that the predicted results are within
the interval of [0, 1], a bounded constraint is added to Eq. (9).
In addition, there may exist data noise when evaluating virus
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similarities and drug similarities. To solve this problem, we build
a matrix completion model with noise tolerance based on rank
minimization by Eq. (10):

minA ||A||∗
subject to ||P� (A)− P� (M)||F ≤ ∈

(10)

where ||·||F denotes Frobenius norm and ∈ indicates
the noise level.

Since the noise level is unknown, it is difficult to choose
the most appropriate parameters in Eq. (10). Therefore, a soft
regularization term is introduced to tolerate unknown noise and
reduce computational complexity. Thus, a bound nuclear norm
regularization model (VDA-GBNNR) is developed to screen
possible associations between viruses and drugs by Eq. (11):

minA ||A||∗ + α
2 ||P� (A)− P� (M)||2F

subject to 0 ≤ A ≤ 1
(11)

where α is a parameter used to balance the nuclear norm and the
error term, and each element in A satisfies 0 ≤ Aij ≤ 1.

Through introducing an auxiliary matrix W, Eq. (11) can
be optimized using alternating direction method of multipliers
defined by Eq. (12).

minA ||A||∗ + α
2 ||P� (W)− P� (M)||2F

subject to A = W
0 ≤ W ≤ 1

(12)

where the initial term A1 = P� (M). Consequently, the
augmented Lagrange function can be defined by Eq. (13).

L (W, A, B, α, β) = ||A||∗ +
α

2
||P� (W)− P� (M)||2F + Tr

(
BT (A−W)

)
+

β

2
||A−W||2F (13)

where B denotes the Lagrange multiplier and β > 0 indicates the
penalty parameter. At each iteration, VDA-GBNNR alternatively
calculates Wk+1, Ak+1 and Bk+1 by fixing other two terms. The
specific solutions about Wk+1, Ak+1 and Bk+1 were provided by
Yang et al. (2019). VDA-GBNNR can update VDA matrix W∗vd by
completing the missing elements in Wvd.

RESULTS

Evaluation Metrics
In this study, sensitivity, specificity, accuracy, and AUC are
used to evaluate the performance of our proposed VDA-GBNNR
method. Accuracy denotes the proportion of correctly inferred
positive and negative VDAs to all positive and negative VDAs.
Sensitivity denotes the ratio of correctly predicted positive VDAs
to all positive VDAs. Specificity represents the rate of correctly
identified negative VDAs to all negative VDAs. The details are
defined by Eqs. (14)–(16):

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Sensitivity =
TP

TP + FN
(15)

Specificity =
TN

TN + FP
(16)

where TP, FP, FN, and TN indicate true positive, false positive,
false negative, and true negative, respectively.

AUC denotes Area Under the Receiver Operating
Characteristic (ROC) Curve. In the curve, the horizontal
axis indicates False Positive Rate (FPR) and the vertical axis
indicates True Positive Rate (TPR). FPR denotes the proportion
of predicted false positive VDAs to all negative VDAs and TPR
demonstrates the proportion of true positive VDAs to all positive
VDAs. They are defined by Eqs. (17)–(18):

TPR =
TP

(TP + FN)
(17)

FPR =
FP

(FP + TN)
(18)

Experimental Settings and Parameter
Selection
In the experiment, we conduct fivefold cross validation for 10
times to evaluate the performance of VDA-GBNNR. Eighty
percent of elements in the VDA matrix Wvd are randomly
selected as the training set and the remaining is used the
testing set. Parameters α, β, w, and γ

′

are set in the
range of [0.1, 1, 10, 100], [0.1, 1, 10, 100], [0, 0.1, 0.2, ..., 1],
and [0.5, 1, 1.5, ..., 3], respectively. The optimal parameter
combination is obtained by grid search. Table 2 shows parameter
combinations when the top 10 AUCs are confirmed based fivefold
cross validation for 10 times.

Table 3 shows the optimal parameter settings for VDA-KATZ,
VDA-RLSBN, VDA-RWR, and VDA-GBNNR based on grid
search. The four methods obtain the best performance when
parameters are set the corresponding values provided by Table 3.
In the SMiR-NBI method, there is no parameter to set.

Performance Comparison With Other
Methods
To evaluate the performance of VDA-GBNNR, we compare
it with four classical association prediction methods based
on fivefold cross validation, that is, SMiR-NBI, VDA-RLSBN,
VDA-KATZ, and VDA-RWR. SMiR-NBI prioritized miRNAs
as possible biomarkers to depict their responses to anticancer
drug therapy on a heterogeneous drugs-miRNA network. VDA-
KATZ, VDA-RLSBN, and VDA-RWR are the newest three VDA
prediction algorithms. The experiments are implemented for 100
times and the average performance is taken as the final results.
Table 4 gives sensitivities, specificities, accuracies, and AUCs of
the five VDA identification models on the three VDA datasets.

From Table 4, it can be seen that VDA-RLSBN obtains better
performance than VDA-GBNNR in dataset 1. However, VDA-
GBNNR achieves the best sensitivity, specificity, accuracy, and
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FIGURE 2 | The AUC values of five VDA prediction models on three datasets. (A) The AUC values of five VDA prediction models on dataset 1. (B) The AUC values of
five VDA prediction models on dataset 2. (C) The AUC values of five VDA prediction models on dataset 3.
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FIGURE 3 | Performance comparison between VDA-BNNR and VDA-GBNNR on three datasets. (A) Performance comparison between VDA-BNNR and
VDA-GBNNR on dataset 1. (B) Performance comparison between VDA-BNNR and VDA-GBNNR on dataset 2. (C) Performance comparison between VDA-BNNR
and VDA-GBNNR on dataset 3.

AUC on dataset 2 and the best specificity, accuracy, and AUC on
dataset 3, significantly outperforming other four VDA prediction
methods including VDA-RLSBN. For example, in dataset 2,
VDA-GBNNR computes the highest accuracy of 0.8365, better
87.11, 9.92, 13.59, and 20.94% than SMiR-NBI, VDA-KATZ,
VDA-RLSBN, and VDA-RWR, respectively. VDA-GBNNR still

calculates the best AUC of 0.8562, better 51.58, 3.11, 8.05, and
22.04% than the four methods, respectively.

On dataset 3, although SMiR-NBI obtains the best sensitivity
of 0.9232, the performance calculated by VDA-GBNNR
significantly outperforms SMiR-NBI in terms of specificity,
accuracy, and AUC. VDA-GBNNR computes the highest
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TABLE 5 | The predicted top 10 antiviral drugs against SARS-CoV-2 in dataset 1.

Number Drugs References

1 Remdesivir PMID: 33857725, 33267759 , 32258351, 32127666, 32020029, 32282022,
32023685, 32022370, 32297571, 32035533, 31971553, 31996494

2 Oseltamivir PMID: 32127666, 32297571, 32034637,
DOI: 10.1038/d41573-020-00016-0

3 Zanamivir PMID: 32294562, 32511320

4 Laninamivir DOI: 10.3389/fneur.2020.0051

5 Presatovir PMID: 32147628, 33281124

6 Peramivir DOI: 10.1101/2020.07.13.20180

7 Valganciclovir DOI: 10.1002/med.21776

8 Maribavir DOI: 10.1002/med.21776

9 Mizoribine PMID: 32886002
DOI: 10.1152/ajpheart.00506.2020.

10 Baloxavir marboxil PMID: 32127666, 32373347

TABLE 6 | The predicted top 10 antiviral drugs against SARS-CoV-2 in dataset 2.

Number Drugs References

1 Favipiravir PMID: 32869558, 32282022, 32297571, 33130203,
32127666, 32346491, 32967849, 32972430, 32246834

2 Remdesivir PMID: 33857725, 33267759, 32258351, 32127666,
32020029, 32282022, 32023685, 32022370, 32297571,
32035533, 31971553, 31996494

3 Ribavirin PMID: 33550050, 32222463, 32127666, 32869558,
32282022, 33556871, 32034637, 32227493, 26492219,
32771797,
DOI: 10.1038/d41573-020-00016-0

4 Mycophenolic acid PMID: 33525411, 32579258

5 Cidofovir PMID: 32546018,
DOI: 10.1007/s10067-020-05133-0

6 Itraconazole DOI: 10.22541/au.159467021.16927198

7 Niclosamide PMID: 32125140, 33689873

8 Pleconaril DOI: 10.30493/DLS.2020.225404

9 Cyclosporine PMID: 33385128

10 BCX4430 (Galidesivir) PMID: 32127666, 32711596

TABLE 7 | The predicted top 10 antiviral drugs against SARS-CoV-2 in dataset 3.

Number Drugs References

1 Ribavirin PMID: 33550050, 32222463, 32127666, 32869558,
32282022, 33556871, 32034637, 32227493, 26492219,
32771797,
DOI: 10.1038/d41573-020-00016-

2 Nitazoxanide PMID: 32127666, 32568620, 32448490

3 Chloroquine PMID: 32127666 , 32020029, 32023685, 32282022,
32297571, 32145363, 32074550, 32236562

4 Favipiravir PMID: 32869558, 32282022, 32297571, ,33130203
32127666, 32346491, 32967849, 32972430, 32246834

5 Camostat PMID: 32347443

6 Niclosamide PMID: 32125140, 33689873

7 Umifenovir PMID: 32127666, 32941741

8 Hexachlorophene PMID: 15950190

9 Mizoribine PMID: 32886002,
DOI: 10.1152/ajpheart.00506.2020.

10 Mycophenolic acid PMID: 33525411, 32579258
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TABLE 8 | Molecular docking between antiviral drugs and the junction of the S protein-ACE2 interface.

Ligands Molecular formula Binding energy (kcal/mol) Binding sites

Remdesivir C27H35N6O8P −7.00 Q493

K68

Favipiravir C5H4FN3O2 −5.32 G496

K353

Ribavirin C8H12N4O5 −6.59 496, Q493, R403

K353

Mycophenolic acid C17H20O6 −7.00 G496

F390, K353

Niclosamide C13H8Cl2N2O4 −8.06 E37

Mizoribine C9H13N3O6 −7.06 N439, Q506

N330, Q325

accuracy of 0.8482, better 93.63, 32.99, 28.06, and 17.10%
than SMiR-NBI, VDA-KATZ, VDA-RLSBN, and VDA-RWR,
respectively. VDA-GBNNR achieves the best AUC of 0.8803,
higher 50.27, 3.69, 6.12, and 19.08% than the above four methods,
respectively. Figure 2 shows the AUC values computed by five
VDA prediction models on three VDA datasets.

Performance of BNNR With Gaussian
Kernel or Not
In this section, we investigate the effect of GAPK on the
prediction performance. In the BNNR model (VDA-BNNR)

without GAPK, the adjacent matrix M =

[
Wdd WT

vd
Wvd Wvv

]
is used

to represent the heterogeneous virus-drug network where Wvv
and Wdd denote virus complete genomic sequence similarity and
drug chemical structure similarity, respectively. The comparison
results are illustrated in Figure 3. From Figure 3, we can
observe that VDA-GBNNR improves the prediction performance
compared to VDA-BNNR.

Case Study
After confirming the prediction performance of VDA-GBNNR,
we further discover potential available drugs applied to the
treatment of COVID-19. Small molecules with the top 10
association scores with SARS-CoV-2 are shown in Tables 5–
7. In addition, we search the recent documents and find that
all the inferred top 10 chemical agents have been reported
by COVID-19-related publications in the three datasets. In
particular, remdesivir, favipiravir, ribavirin, mycophenolic acid,
niclosamide and mizoribine come together in any two datasets.

Remdesivir is an intravenous nucleotide prodrug bound with
viral RdRp and can inhibit viral replication through premature
termination of RNA transcription (Amirian and Levy, 2020).
It has been validated to be able to inhibit the replication
of SARS-CoV and MERS-CoV (Sheahan et al., 2017). The
drug has obtained an emergency use authorization to treat the
patients infected by SARS-CoV-2 from the Food and Drug
Administration (FDA) (Moirangthem and Surbala, 2020).

Favipiravir is a guanosine analog targeting RdRp and blocking
the rhinoviruses replication (Kocayiğit et al., 2021). The drug

is effective against a large-scale grippe virus types and subtypes
(Furuta et al., 2017). Two recent open-label experiments
discovered its therapeutic effective on COVID-19 (Cai et al.,
2020; Prakash et al., 2020). It has been also applied to the
treatment of COVID-19 by the Japanese government (Hoang
and Anh, 2020), and exhibited hopeful results in clinical
researches in Russia and China. More importantly, its anti-SARS-
CoV-2 experiments are conducting in the United States, the
United Kingdom and India (Joshi et al., 2020).

Ribavirin is an antiviral drug against hepatitis C virus and
other RNA viruses (Tian et al., 2021). It can inhibit viral RNA
synthesis and hander normal viral replication by binding to viral
RNA (Kim et al., 2019). It combines closely with RdRp and is
a powerful antiviral drug against SARS-CoV-2 (Elfiky, 2020b).
Clinical trials about the treatment of ribavirin on the patient with
COVID-19 have been conducted (Zarandi et al., 2021).

Mycophenolic acid is an antibiotic extracted from
penicillium species. Mycophenolic acid can block the
production of guanosine monophosphate by inhibiting inosine
monophosphate dehydrogenase. Mycophenolic acid is also
an immunosuppressive drug with a strong anti-proliferation
effect (Kim et al., 2019). Studies suggest that mycophenolic acid
has a potential inhibitory effect on the enzyme reproduced by
SARS-CoV-2 (Muhseen et al., 2021).

Niclosamide is an oral bioavailable chlorosalicylanilide with
deworming and potential anti-tumor effect (Kim et al., 2019).
Niclosamide has various biological activities, for instance, anti-
tuberculosis activity (Piccaro et al., 2013), antibacterial activity
(Imperi et al., 2013), anticancer activity (Osada et al., 2011),
and extensive antiviral activity resistant to coronaviruses (SARS-
CoV and MERS-CoV) (Xu et al., 2020). Niclosamide can prevent
cells from the cytopathic impact produced by the SARS-CoV-2
infection, suggesting that it may be applied to threat the COVID-
19 pandemic (Shamim et al., 2021).

Mizoribine is an imidazole nucleoside antibiotic isolated
from bacillus brucellosis (Mizuno et al., 1974). Mizoribine
lacks antimicrobial activity, however, it has powerful
immunosuppressive activity and has been used in clinic
after kidney transplantation (Tajima et al., 1984). It may be used
as a potentially beneficial drug for hypertensive patients infected
by COVID-19 (Jakovac, 2020).
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FIGURE 4 | Molecular docking between the predicted six anti-SARS-CoV-2 drugs and the domain of the S protein binding to ACE2. (A) Remdesivir (the docking
between remdesivir and the domain of the S protein bound to ACE2 are from Peng et al., 2021). (B) Favipiravir. (C) Ribavirin (the docking between remdesivir and
the domain of the S protein bound to ACE2 are from Peng et al., 2021). (D) Mycophenolic acid. (E) Niclosamide. (F) Mizoribine.
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Molecular Docking
Inspired by molecular docking provided by Peng et al. (2021), we
further investigate the binding energy between the predicted six
anti-SARS-CoV-2 drugs and the junction of the S protein-ACE2
interface by molecular docking. The chemical structures of the
overlapping six small molecules are achieved from DrugBank in
the PDB format. The PDB file is then converted to the PDBQT
format by AutoDock4 (Morris et al., 2009). The structure of
the S protein bound with ACE2 is downloaded from the RCSB
Protein Data Bank (Burley et al., 2017), and the PDBID number
is 6M0J. The predicted drugs are then regarded as ligands, and the
junction of the S protein-ACE2 interface is regarded as receptors.

Table 8 illustrates molecular docking results including
molecular binding energies and binding sites. It can be observed
that the six drugs have higher molecular docking energies with
the junction of the S protein-ACE2 interface. More importantly,
the key residues between the six small molecules and the interface
junction are Q493 and K68 for remdesivir, G496 and K353 for
favipiravir, G496, Q493, R403, and K353 for ribavirin, G496,
F390, and K353 for mycophenolic acid, E37 for niclosamide, and
N439, Q506, N330, and Q325 for mizoribine. In addition, the
results suggest that G496 and K353 may be potential key residues
between anti-SARS-CoV-2 drugs and the interface junction.

Figure 4 demonstrates the dockings between remdesivir,
favipiravir, ribavirin, mycophenolic acid, niclosamide and
mizoribine and the junction of the S protein-ACE2 interface. In
the figure, cyan indicates the S protein, green represents human
ACE2, and the circles in each subgraph denotes key residues.

DISCUSSION

With the rapid spread of SARS-CoV-2, it is vital to screen
specific drugs for patients infected by COVID-19. Although
vaccines have been launched, it is well known that the effect
of vaccines for SARS-CoV-2 is mainly prevention, rather than
treatment. After vaccination, it cannot completely ensure that
people will not be infected by SARS-CoV-2. Therefore, it is
an urgent task to find possible clues of treatment for patients
with the infection of COVID-19. Furthermore, the research
and development of a new drug need consume a vast of time
and resource. Hence, it may be a more appropriate strategy to
screen anti-SARS-CoV-2 drug candidates from existing FDA-
approved drugs.

In this manuscript, we arrange three VDA datasets including
VDA matrix, virus complete genomic sequence similarity matrix,
and drug chemical structure similarity matrix. First, virus GAPK
similarity and drug GAPK similarity are computed. Second, the
final similarity is obtained by integrating biological similarity and
GAPK similarity. Third, a bounded nuclear norm regularization
model is developed to predict anti-SARS-CoV-2 drug candidates.
Finally, molecular docking is applied to measure the binding
capabilities between the predicted anti-SARS-CoV-2 drugs and
the junction of the spike protein-ACE2 interface. Although
datasets used in this work is relatively small, we used three VDA
datasets to evaluate the performance of VDA-GBNNR. More
importantly, antiviral drugs against COVID-19 screened by the

proposed VDA-GBNNR method come together in at least two
VDA dataset instead of one dataset.

VDA-GBNNR can obtain the best prediction performance. It
may mainly be the following advantages. First, GAPK similarity
can effectively depict the association similarity between two
viruses (or drugs). Second, the proposed bound nuclear norm
regularization model can reduce the overfitting problem. Finally,
range constraint makes all the predicted association scores can be
within a predefined range.

CONCLUSION

In this study, we integrate the heterogeneous virus-drug network
and design a VDA prediction model based on bounded nuclear
norm regularization to explore potential anti-SARS-CoV-2 drugs.
Experimental results show that VDA-GBNNR is an effective VDA
identification method. The six FDA-approved drug candidates
are found to be potential antiviral drugs against SARS-CoV-
2. We hope that the inferred drugs can contribute to the
inhibition of COVID-19.

In the future, first, we will integrate various data resource
and build larger dataset. Second, we will consider different
computational models (Gaur and Chaturvedi, 2019; Liu et al.,
2019; Gutiérrez-Cárdenas and Wang, 2021), for example,
matrix decomposition (Chen et al., 2018a), bidirectional label
propagation (Wang et al., 2019), network distance analysis
(Zhang et al., 2021), internal confidence-based collaborative
filtering recommendation (Wang et al., 2020b), sparse subspace
learning with Laplacian regularization (Chen et al., 2017) to
search possible associations between viruses and drugs. Third,
we will try to use deep learning methods to predict drugs for
COVID-19 (Wang et al., 2017; Alakus and Turkoglu, 2021; Kang
et al., 2021). Finally, we will also investigate the relationship
between antimicrobial compounds and COVID-19.
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