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Abstract
Advances in single-cell isolation and barcoding technologies offer unprecedented opportunities to profile DNA,
mRNA, and proteins at a single-cell resolution. Recently, bulk multiomics analyses, such as multidimensional genomic
and proteogenomic analyses, have proven beneficial for obtaining a comprehensive understanding of cellular events.
This benefit has facilitated the development of single-cell multiomics analysis, which enables cell type-specific gene
regulation to be examined. The cardinal features of single-cell multiomics analysis include (1) technologies for single-
cell isolation, barcoding, and sequencing to measure multiple types of molecules from individual cells and (2) the
integrative analysis of molecules to characterize cell types and their functions regarding pathophysiological processes
based on molecular signatures. Here, we summarize the technologies for single-cell multiomics analyses (mRNA-
genome, mRNA-DNA methylation, mRNA-chromatin accessibility, and mRNA-protein) as well as the methods for the
integrative analysis of single-cell multiomics data.

Introduction
Recent advances in single-cell isolation and barcoding

technologies have enabled DNA, mRNA, and protein
profiles to be measured at a single-cell resolution. Various
experimental protocols have been developed and applied
to diverse cellular systems to demonstrate the power of
single-cell level analyses1–4. For example, Tirosh et al.5

applied single-cell RNA sequencing (scRNA-seq) to
human melanoma and identified two groups of malignant
cells with high expression of the microphthalmia-
associated transcription factor (MITF) gene: a master
melanocyte transcriptional regulator group (MITF-high
cells) and a group expressing the AXL gene conferring
resistance to targeted therapies (AXL-high cells).
Although bulk analysis showed that each tumor could be
classified as MITF-high or AXL-high, the single-cell
analysis further revealed that every tumor contained
both groups of malignant cells, but the MITF-high tumors
harbored a subpopulation of AXL-high cells that were

undetectable through bulk analysis and vice versa.
Moreover, Villani et al.6 clustered human blood dendritic
cells (DCs) and monocytes using scRNA-seq and identi-
fied a subpopulation of DCs with a potent T cell activation
ability. These studies demonstrate that single-cell analyses
provide unique insights into cell subpopulations and their
functions associated with pathophysiological processes.
Multiomics analyses at the bulk tumor level have been

reported to provide a comprehensive understanding of
cellular processes through the integration of different
types of molecular data (e.g., data on mutations, mRNAs,
proteins, and metabolites). For example, proteogenomic
analyses have been applied to colorectal7,8, ovarian9,10,
breast11,12, and gastric cancers13. Mun et al.13 identified
correlations between somatic mutations (e.g., nonsynon-
ymous somatic mutations in the ARID1A gene, a com-
ponent of SWI/SNF chromatin remodeling complexes)
and altered signaling pathways (e.g., PI3K-AKT and
MAPK signaling), which facilitate the interpretation of the
functional associations of somatic mutations and signal-
ing pathways in gastric cancers. Moreover, they found
that patient subtypes identified on the basis of mRNA
expression patterns could be further divided according to
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protein abundance and/or phosphorylation data, provid-
ing detailed molecular signatures for immunogenic and
invasive diffuse gastric cancers. Other integrative analyses
of mRNA data with DNA methylation, histone mod-
ification, microRNA and/or mutation data have also been
reported14–17. These multiomics studies demonstrate that
integrative analyses of different types of omics data can
provide more comprehensive insights into tumor biology
than a single type of omics data alone due to their com-
plementary nature.
The advantage of this approach has prompted the

development of single-cell multiomics technologies. Var-
ious experimental protocols for single-cell multiomics
analysis (e.g., mRNA-DNA methylation and mRNA-pro-
tein) have been developed and applied to examine cell
type-specific gene regulation. Gaiti et al.18 integrated
single-cell transcriptome and DNA methylome data and
identified a lineage tree of human chronic lymphocytic
leukemia (CLL) after drug (ibrutinib) treatment and its
link to the transcriptional transition after therapy. They
first used epigenome data to construct a lineage tree for
CLL cells based on stochastic DNA methylation changes,
referred to as epimutations, and found that different CLL
lineages were preferentially affected by ibrutinib and
expelled from the lymph nodes after treatment. By pro-
jecting the transcriptome data onto the lineage tree, they
further found that the cells preferentially affected by

ibrutinib showed upregulation of genes involved in cell
cycle and Toll-like receptor signaling. Jia et al.19 also
integrated single-cell transcriptome and chromatin
accessibility data to study the developmental trajectories
of mouse embryonic cardiac progenitor cells and identi-
fied marker genes linking transcriptional and epigenetic
regulation during development. Therefore, single-cell
multiomics analysis can provide more comprehensive
insights into cell type-specific gene regulation than single-
cell mono-omics analysis.
The core components of single-cell multiomics analysis

are (1) technologies for single-cell isolation, barcoding,
and sequencing, to measure multiple types of molecules
from the same cells, and (2) integrative analysis of the
molecules measured at the single-cell level, to identify cell
types and their functions related to pathophysiological
processes based on the molecular signatures. Here, we
first review the technologies used in single-cell multio-
mics analyses, mainly focusing on mRNA-genome,
mRNA-DNA methylation, mRNA-chromatin accessi-
bility, and mRNA-protein data (Fig. 1 and Table 1). By
presenting representative applications of these technolo-
gies, we illustrate the expected outcomes from the inte-
grative analysis of multiple types of data, including
associations of genomic alterations and gene expression,
regulatory relationships between epigenetic changes and
gene expression, and correlations between mRNA and
protein expression (Fig. 1). Finally, we summarize the
methods for the integrative analysis of single-cell mul-
tiomics data.

Cell isolation and barcoding
For single-cell multiomics analysis, it is essential to

isolate multiple types of molecules from the same cells,
which involves (1) the isolation of single cells and (2) the
subsequent barcoding of multiple types of molecules. The
isolation of single cells begins with the mechanical or
enzymatic dissociation of viable cells followed by cap-
turing single cells from the dissociated cell suspension.
Several capture methods used for single-cell mono-omics
analysis are commonly employed in single-cell multiomics
analysis, including (1) low-throughput methods to capture
tens or hundreds of cells, including laser capture micro-
dissection20 and robotic micromanipulation21, and (2)
high-throughput methods to capture tens of thousands of
cells, including fluorescence-activated cell sorting (FACS)
followed by plate-based isolation and the use of micro-
fluidic platforms with microfluidic channels and reaction
chambers or nanowells4. Low-throughput methods retain
spatial information on the isolated cells, while this infor-
mation is lost under high-throughput methods.
Multiple types of molecules are then isolated from the

individual captured cell. Genomic DNA (gDNA) is loca-
ted in the nucleus, while the majority of mRNAs are
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Fig. 1 An overview of single-cell multiomics sequencing
technologies. Single-cell multiomics sequencing technologies and
the expected outcomes are illustrated. Technologies that measure
more than two types of data are included in multiple categories (e.g.,
scTrio-seq in transcriptome-genome and transcriptome-DNA
methylation categories).
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contained in the cytosol. After treatment with a plasma
membrane-selective lysis buffer, the nuclei are separated
from the cytoplasm by centrifugation22. gDNA is isolated
from the nuclei, while mRNAs are isolated from the
cytoplasm, resulting in the loss of mRNAs located in the
nucleus. In an alternative method, oligo-dT-coated mag-
netic beads are used to selectively capture mRNAs, and
the pull-down of these beads using a magnet allows the
mRNAs to be separated from gDNA23. Under these
methods, different barcodes (cell- and molecule-
identifying barcodes) are used for the separated gDNA
and mRNA to distinguish gDNA and mRNA from each
other. However, the separation process can lead to sample
loss. To resolve this problem, an alternative strategy that
does not require separation was developed24. Under this
method, mRNAs are reverse transcribed (RT) with no
separation after cell lysis using poly-dT primers, produ-
cing single-stranded cDNA. gDNA and cDNA are
simultaneously amplified via quasilinear whole-genome
amplification with primers similar to multiple annealing
and looping-based amplification cycles (MALBAC)
adapters. After the product is split into two portions,
gDNA is amplified from one half of the product by
polymerase chain reaction (PCR), and cDNAs are ampli-
fied from the other half by in vitro transcription.
Additional precautions must be taken sufficiently to

measure multiple types of molecules from the same cell.
Clinical samples are often flash-frozen or embedded in
paraffin, and the freezing process disturbs the cytoplasmic
membrane but not the nuclear membrane. For these
samples, the single-cell multiomics analysis of gDNA and
nuclear mRNA after the isolation of single-cell nuclei is
still possible, but the analysis of cytosolic mRNAs can lead
to misleading conclusions25. For fresh tissues, however,
prolonged exposure to dissociation enzymes or extensive
mechanical mincing can result in the degradation or
perturbation of mRNAs and proteins, respectively26.

Integrative analysis of genome and transcriptome
data
Various sequencing methods for single-cell multio-

mics analysis have been adopted from those developed
for single-cell mono-omics analysis. Single-cell whole-
genome sequencing (scWGS) methods include multiple
displacement amplification (MDA)27, MALBAC28, and
PicoPLEX (Rubicon Genomics PicoPLEX Kit). Single-
cell RNA sequencing (scRNA-seq) methods include
Quartz-seq29, switching mechanism at the 5′ end of the
RNA transcript (Smart-seq)30, and cell expression by
linear amplification and sequencing (CEL-seq)31. These
methods involve different strategies to achieve different
purposes. Quartz-seq measures the 3′ end of tran-
scripts, while Smart-seq measures full-length tran-
scripts, and CEL-seq barcodes and pools samples before

the linear amplification of mRNAs to multiplex single-
cell samples.
Several approaches for single-cell multiomics analyses

of the genome and transcriptome have been developed,
including single-cell triple omics sequencing (scTrio-
seq)22, genome and transcriptome sequencing (G&T-
seq)23, gDNA-mRNA sequencing (DR-seq)24, simulta-
neous isolation of genomic DNA and total RNA (SIDR)32,
and TARGET-seq33. The characteristics of these tech-
nologies are summarized in Table 1. scTrio-seq involves
the physical separation of the cytoplasm (cytoplasmic
mRNAs) and nucleus (gDNA) from the same single cells
by centrifugation (Fig. 2a). The separated gDNA and
mRNAs are then independently amplified and sequenced
using scWGS protocols (e.g., MDA or PicoPLEX) and
Smart-seq2, respectively. G&T-seq separates poly-A-
tailed mRNAs from gDNA using oligo-dT-coated mag-
netic beads as described above. The separated mRNAs
and gDNA are then sequenced using Smart-seq2 and
scWGS protocols, respectively (Fig. 2b, right). DR-seq
involves the aforementioned simultaneous MALBAC-like
quasilinear preamplification of gDNA and cDNA with no
separation of gDNA and mRNA (Fig. 2b, left). After the
preamplified gDNA and cDNA are split into two frac-
tions, scRNA-seq and scWGS are separately performed
for the two fractions using CEL-seq and MALBAC,
respectively. However, DR-seq presents limited options
under the WGS method24 and is unable to sequence full-
length transcripts, precluding the detection of splicing
variants and fusion transcripts34. Another method refer-
red to as SIDR was developed. Under this method, cells
are incubated with antibody-conjugated magnetic
microbeads, and bead-labeled single cells are sorted into a
48-well microplate (Fig. 2c). Hypotonic lysis is then
applied to release cytosolic RNAs from the captured
single cells while preserving nuclear lamina integrity,
followed by the isolation of the RNA-containing super-
natant from the nucleus-containing cell lysate. The
TARGET-seq approach, which can improve the coverage
of key mutations, was developed recently. Under this
method, mild protease digestion is used to improve the
release of gDNA and mRNAs during cell lysis; heat
inactivation of the protease is performed to avoid the
inhibition of RT and PCR; and RT and PCR amplification
is followed by scRNA and targeted scDNA-seq, respec-
tively (Fig. 2d).
Several studies using these methods have reported that

genomic alterations are closely correlated with the tran-
scription levels of the genes in the altered regions of the
genome. For example, using G&T-seq, Macaulay et al.23

identified a subpopulation of HCC38-BL cells exhibiting
trisomy of chromosome 11. The expression of genes on
chromosome 11 was higher in this subpopulation than in
diploid cells. Genomic imbalances on chromosome 16
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were also found to be consistent with the changes in the
expression of genes in the region with the imbalance.
Moreover, after applying DR-seq to SK-BR-3 breast can-
cer cells, Dey et al.24 compared copy number variations
(CNVs) with mRNA expression levels and observed a
monotonic increase in the mean expression of genes
within the regions with increased copy numbers across
the single cells. Using TARGET-seq, Rodriguez-Meira
et al.33 also found aberrant expression of oncogenes (e.g.,
MYCN, TP53, and PPP2R5A), genes related to hedgehog
and Wnt signaling, or interferon-associated genes in
JAK2V617F-mutated hematopoietic stem and progenitor
cells from patients with myeloproliferative neoplasms. All
these data demonstrate the correlation of genomic
alterations (e.g., CNVs or mutations) with gene expression
at the genome level in single cells.

Integrative analysis of the transcriptome with
epigenome data
DNA methylation, histone modifications (e.g., methyla-

tion and acetylation), and chromatin accessibility collec-
tively contribute to gene expression and have been shown
to be measured at a single-cell resolution. Single-cell
bisulfite sequencing (scBS-seq) methods for measuring the
single-cell DNA methylome include single-cell reduced
representative bisulfite sequencing (scRRBS)35, single-cell

whole-genome bisulfite sequencing (scWGBS)36, single-
nucleus methylcytosine sequencing (snmC-seq)37, and
single-cell combinatorial indexing for methylation (sci-
MET)38. The first single-cell multiomics analysis of the
DNA methylome and transcriptome was performed via the
scM&T-seq (single-cell methylome and transcriptome
sequencing) approach, in which the G&T-seq procedure is
used to isolate and amplify gDNA and RNA from the same
single cell, and scBS-seq is applied to the amplified gDNA
to generate DNA methylome data39 (Fig. 3a). Hu et al.40

developed single-cell methylome and transcriptome
sequencing (scMT-seq), in which micropipetting is used to
isolate the nuclei from the lysates of single cells, and per-
formed scRRBS and a modified Smart-seq2 procedure to
generate DNA methylome and transcriptome data,
respectively (Fig. 3b). Moreover, scTrio-seq, which profiles
the genome, methylome, and transcriptome, uses scRRBS to
generate DNA methylatome data22. However, one limita-
tion of these methods is the loss of information due to DNA
degradation caused by bisulfite treatment41. The char-
acteristics of these technologies are summarized in Table 1.
Droplet-based chromatin immunoprecipitation (Drop-

ChIP) sequencing has been developed to measure mod-
ifications of histone proteins (histone H3 di- and tri-
methylation) at a single-cell resolution42. Under this
method, microfluidic devices are used to encapsulate a
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Fig. 2 Single-cell multiomics sequencing protocols for the integrative analyses of the genome and transcriptome. Protocols for the isolation
of single cells or nuclei and the barcoding of gDNA and mRNAs are shown for five types of multiomics analyses of the genome and transcriptome:
scTrio-seq (a), DR-seq and G&T-seq (b), SIDR (c), and TARGET-seq (d). Blue solid circles, nucleus; blue dotted line, permeabilized membrane; red and
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single cell in a droplet with a lysis detergent and micro-
coccal nuclease, generating mono-, di-, or trinucleosomes.
These nucleosome droplets are then merged one by one
with a droplet containing a cell-specific barcode, gen-
erating barcoded chromatin fragments. ChIP-seq can then
be performed on these pooled fragments to identify his-
tone modification sites. However, this method produces a
low coverage of the DNA methylome (~800 peaks per
cell). Single-cell multiomics analysis using Drop-ChIP has
rarely been explored. The profiling of open chromatin
(e.g., promoters and enhancers) can be used to predict
operative transcription factors by footprinting analysis43.
Single-cell chromatin accessibility methods include
single-cell DNase sequencing (scDNase-seq)44, single-cell
combinatorial indexing assay for transposase-accessible
chromatin with sequencing (sci-ATAC-seq)45, single-cell
assay for transposase-accessible chromatin using
sequencing (scATAC-seq)46, nucleosome occupancy and
methylation sequencing (NOMe-seq)47, and single-cell

micrococcal nuclease sequencing (scMNase-seq)48. Based
on these methods, several strategies for the multiomics
analysis of chromatin accessibility and transcriptomes
have been developed, including single-cell combinatorial
indexing chromatin accessibility and mRNA (sci-CAR)49,
single-nucleus chromatin accessibility and mRNA
expression sequencing (SNARE-seq)50, and single-cell
nucleosome, methylation and transcription sequencing
(scNMT-seq)51.
The sci-CAR method measures both open chromatin

sites and mRNA levels from the same single nuclei using
plate-based single-nucleus isolation and combinatorial
indexing49. This method barcodes nuclear mRNAs using
indexed RT and open chromatin sites via indexed trans-
position with barcode-carrying transposases (Fig. 3c). All
nuclei are then pooled, redistributed, and lysed. After the
nuclear lysate is split into two portions, a second barcode
is added with indexed PCR for RNA-seq in one half and
with indexed PCR for ATAC-seq in the other half.
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Combinatorial barcoding enables mRNAs and open
chromatin from single nuclei to be distinguished.
Recently, Zhu et al.52 developed parallel analysis of indi-
vidual cells for RNA expression and DNA accessibility by
sequencing (Paired-seq), which is similar to sci-CAR-seq
but involves the use of restriction enzymes at the final
step. SNARE-seq is another method for profiling open
chromatin and mRNAs from the same single nuclei using
a microdroplet platform and barcoded beads50. The pro-
tocol for this method begins with the isolation of single
nuclei and open chromatin tagmentation in the isolated
nuclei using a transposase (Fig. 3d). The tagmented nuclei
are then encapsulated in a droplet including both an
oligo-dT-containing barcoded bead and a splint oligonu-
cleotide, which links the tagmented gDNA fragments to
the bead, enabling the bead to capture both mRNAs and
open chromatin fragments. After mRNAs and gDNA
fragments are released from the bead by heating, RT and
PCR amplification are performed to generate a library of
cDNA and open chromatin gDNA fragments. Moreover,
scNMT-seq51 was developed to profile the nucleosome,
DNA methylome, and transcriptome from the same single
cells by combining scM&T-seq and NOMe-seq (Fig. 3e).
The characteristics of these technologies are summarized
in Table 1.
Several studies using these methods have reported that

DNA methylation differences are correlated with variation
in gene transcription across single cells. For example,
using scM&T-seq, Angermueller et al.39 found that
regions of low methylation showed high variance in
methylation levels, consistent with their roles as distal
regulatory elements that control gene expression. Using
scM&T-seq, Hernando-Herraez et al.53 also identified a
link between epigenetic and transcriptional signatures
associated with the aging of tissue-specific mouse stem
cells. Moreover, using scMT-seq, Hu et al.40 found that
non-CpG island promoters showed variable CpG
enrichment, contributing to methylome heterogeneity
among dorsal root ganglion single cells. They further
found that transcript levels were positively correlated with
gene body methylation but negatively correlated with
promoter methylation and found a correlation between
allelic gene body methylation and allelic gene expression
in single cells40,54. Moreover, using scNMT-seq, Clark
et al.51 identified dynamic coupling of the nucleosomes,
DNA methylome, and transcriptome in single mouse
embryonic stem cells during their differentiation. All
these data demonstrate the links between the epigenome
and gene expression at the genome level in single cells.

Integrative analysis of transcriptome and
proteome data
Despite the biological importance of proteins, the

number of proteins that can be measured by single-cell

proteome profiling is limited because proteins cannot be
amplified, unlike DNA and mRNA. Several methods that
can measure both the transcriptome and proteome of a
single cell have been developed, including proximity
extension assay/specific RNA target amplification (PEA/
STA)55, proximity ligation assay for RNA (PLAYR)56,
cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq)57, and RNA expression and pro-
tein sequencing assay (REAP-seq)58 (Table 1). Under the
PEA/STA method, proximity extension assay (PEA)-tag-
ged antibody pairs are used for the proximity-dependent
hybridization of DNA oligos ligated to the antibody pairs,
which convert proteins into DNA oligos, and RT is carried
out for mRNAs using random RT primers to generate
cDNAs (Fig. 4a). Both DNA oligos and cDNAs are then
amplified by PCR and quantified using quantitative PCR
or sequencing. The PLAYR method labels proteins with
antibodies containing elemental isotopes and uses PLAYR
probes that bind to mRNAs. Adjacent PLAYR probe pairs
provide a docking site for RNA-specific insert-backbone
oligos, and they are then ligated to isotope-labeled probes
through rolling circle amplification, which converts
mRNA levels into isotope label levels (Fig. 4b). Subse-
quently, the levels of isotope-labeled mRNAs and proteins
are measured by mass cytometry.
Recently, CITE-seq and REAP-seq have been developed

to detect both cell surface proteins and mRNAs using
oligonucleotide-labeled antibodies. For example, in a
single-cell suspension, CITE-seq first tags the cells
expressing target proteins on the surface using target-
specific antibodies conjugated with DNA oligos contain-
ing PCR handles, antibody-identifying barcodes, and poly-
A tails (Fig. 4c). The cells are then encapsulated into a
droplet with a bead containing oligo-dT primers. After
cell lysis within the droplet, the bead captures both
mRNAs and DNA barcodes conjugated to the antibodies
through the binding of oligo-dT primers and poly-A tails,
as described in scG&T-seq. A library is generated for
mRNAs and proteins using RT and PCR amplification and
is then sequenced to quantify both mRNAs and proteins.
REAP-seq is a similar technology with a different con-
struct of the barcode conjugated to the bead. Unlike the
CITE- and REAP-seq methods, which target cell surface
proteins, an alternative method, single-cell RNA and
immunodetection (RAID), can detect intracellular pro-
teins or phosphorylated proteins together with mRNAs59.
After crosslinking and permeabilization, intracellular
target proteins are immunostained in single cells using
antibodies conjugated with RNA barcodes, which convert
proteins into RNAs (Fig. 4d). After the cells are sorted
into plates containing CEL-seq2-compatible primers,
RNAs are liberated through reverse crosslinking and
converted into cDNAs by RT. These methods can mea-
sure tens of proteins. Despite the limited proteome size,
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these methods are high throughput, allowing analysis of
thousands of cells. The characteristics of these technolo-
gies are summarized in Table 1.
Numerous studies using these methods have been per-

formed in diverse cellular systems to examine the link
between the transcriptome and proteome at the single-
cell level. For example, using the PEA method, Darmanis
et al.60 investigated the effects of BMP4 on early-passage
glioblastoma cells (U3035MG cell line) by measuring the
levels of 82 mRNAs and 75 proteins (61 in common).
They found subpopulations of glioblastoma cells showing
distinct changes in mRNA and protein abundance after
BMP4 treatment, suggesting significant heterogeneity in
the response to BMP4. They further observed poor cor-
relations between protein and mRNA expression levels
across single cells, with proteins more accurately defining
the response to BMP4. Moreover, using the PLAYR
method, Frei et al.56 simultaneously quantified 40 differ-
ent mRNAs and proteins, including cell surface markers,
cytokines, and stem cell-related proteins, in several cell
types, such as Jurkat T cells, NK cells, peripheral blood
mononuclear cells, and embryonic stem cells. From the
data obtained, they found that transcripts showed more
gradual differences than the corresponding proteins (e.g.,
HLA-DRA) in single PBMCs and that proteins (e.g.,

ITGAX) were expressed even when there were virtually
no corresponding transcripts in a subpopulation of
PBMCs. Moreover, using the CITE-seq method, Stoeckius
et al.57 captured 8005 cord blood mononuclear cells
(CBMCs) using 13 well-characterized monoclonal anti-
bodies that recognize cell surface proteins commonly
used as markers for immune cell classification, and then
characterized populations of CBMCs based on mRNA
profiles measured from the single CBMCs. CITE-seq has
recently been modified to expanded CRISPR-compatible
cellular indexing of transcriptomes and epitopes by
sequencing (ECCITE-seq), which provides multiple
modalities of information, including transcriptome, pro-
tein, clonotype, and CRISPR perturbation data, with high
sensitivity at a single-cell resolution61.

Methods for single-cell omics data analysis
Single-cell mono-omics analysis provides different types

of information, including data on genomic alterations
(mutations and CNVs), DNA methylation sites, open
chromatin sites, and mRNA or protein abundance, at the
single-cell level. Different methods have been developed
for each type of data to achieve diverse goals based on the
corresponding information. For scRNA-seq data, various
methods have been developed to identify cell populations,
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regulatory networks, and cellular trajectories62. First, for
cell population characterization, the methods cluster cells
based on the similarity of the expression profile and
identify marker genes that are predominantly expressed in
each cell cluster. For cell clustering, many methods
combine dimensionality reduction and clustering analysis.
Principal component analysis63 and t-distributed sto-
chastic neighbor embedding64 have been widely used for
dimensionality reduction. Recently, methods that deal
with missing values65 or neural network-based models66

have been developed. Clustering methods differ in dis-
tance measures (e.g., Euclidean distance and inverted
correlation), clustering algorithms (e.g., k-means, hier-
archical, and graph-based clustering), and the capability to
perform simultaneous clustering of genes and cells. The
frequently used methods include Seurat67, pcaReduce68,
SC369, BackSPIN70, and SNN-cliq71. The detailed algo-
rithms and applications of these and other methods have
been extensively reviewed72–74.
Second, another set of methods infer the regulatory

networks delineating regulatory relationships among
marker genes (e.g., transcription factors and their targets)
showing coexpression across different cells in a cell
population. Although scRNA-seq offers many advantages
in network inference over bulk RNA-seq, the zero infla-
tion caused by dropout events and the high dimension-
ality of scRNA-seq data make it difficult to correctly infer
regulatory networks under this approach. To address
these issues, network inference methods generate appro-
priate models for zero-inflated distributions and infer
network models on the basis of discretized regulatory
relationships (e.g., binary values) or cell populations and
gene modules with similar expression profiles. The
methods that are frequently used for network inference
include the SCNS toolkit75, inferenceSnapshot76,
SCODE77, and SCENIC78 approaches. The detailed algo-
rithms and applications of these and other methods have
been extensively reviewed79,80. Finally, there is a set of
methods for inferring the cellular trajectory (e.g., the
differentiation trajectory) describing the temporal evolu-
tion of cells, which is estimated through the transition
analysis of expression profiles. Early trajectory inference
methods fixed the topology of the trajectory (e.g., linear,
bifurcated, or cyclic) and focused on correctly ordering
the cells along the fixed topology. However, recently
developed methods infer the topology of the trajectory
and the order of cells on the individual branches at the
same time. The methods that are frequently used for cell
trajectory inference include Monocle81, DPT82, Wish-
bone83, and Waddington-OT84. These and other methods
have been extensively reviewed by Saelens et al.85.
For scWGS data, the major goals are to identify CNVs

and single-nucleotide variations (SNVs) at the single-cell
level54. To achieve these goals, the algorithms developed

to identify CNVs in bulk WGS data have been modified to
effectively handle the low coverage of the genome found
in scWGS data86. Various methods for identifying CNVs
from scWGS data have been developed, including
Ginkgo87, baseqCNV88, SCNV89, SCCNV90, and
SCOPE91. To identify the regions of copy number gains or
losses, these methods use the segmentation procedure of
circular binary segmentation (CBS). Moreover, several
methods, such as SCcaller92, baseqSNV88, MonoVar93,
and SCAN-SNV94, have been developed to effectively
identify SNVs from scWGS data with high allele coverage
biases due to the low coverage of the genome and high
PCR amplification error. For example, for a given SNV,
SCcaller92 estimates the distribution of the allele fractions
of heterozygous germline single-nucleotide polymorph-
isms in the region containing the SNV as a model of the
local allele bias and then adjusts the probability of the
SNV based on the local allele bias model. These and other
methods have been extensively reviewed1.
For single-cell epigenome data, the major goals are to

identify open chromatin and DNA methylation sites in
single cells. Single-cell epigenome analysis produces a low
depth of DNA sequences compared to bulk analysis,
making it difficult to identify the peaks corresponding to
open chromatin or DNA methylation sites. One strategy
for resolving this problem is to aggregate the data from
~100 single cells, identify peaks using the algorithms
developed for bulk data, and then determine whether
these peaks are present in each single cell using the data
from the single cells. scABC95 uses this strategy to identify
open chromatin sites from scATAC-seq data. Never-
theless, this strategy can still miss peaks corresponding to
a low level of DNA methylation or open chromatin due to
a lack of information even in aggregated data. Another
strategy is to aggregate signals from adjacent regions or
regions with similar regulatory elements. For example,
Smallwood et al.41 binned the genome into segmented
regions and then identified the regions with high read
counts as regions including putative peaks for DNA
methylation sites. Farlik et al.36 identified the regions
including peaks by combining the data for regions sharing
DNA methylation according to a cis-regulatory element
database such as encyclopedia of DNA elements
(ENCODE). Among these methods, chromVAR96 uses
this strategy to identify open chromatin sites from
scATAC-seq data, while cisTopic97 and SCALE98 com-
bine the results from cell- and region-level aggregation for
peak identification. These and other methods have been
extensively reviewed99,100.

Integrative analysis of single-cell multiomics data
For the integrative analysis of single-cell multiomics

data, the methods developed for single-cell mono-omics
data have been extended and combined. The strategies
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can be categorized as (1) correlation analysis between
single-cell mono-omics data (Fig. 5a); (2) the analysis of
one type of single-cell data (e.g., scRNA-seq) followed by
the integration of another single-cell data type (e.g., SNVs
from scWGS or open chromatin sites from scATAC-seq)
(Fig. 5b); and (3) the integrative analysis of all types of
single-cell omics data to generate the overall single-cell
map (e.g., for a cell population or differentiation trajec-
tory) (Fig. 5c).
A number of studies have used the first strategy to

examine the correlation of CNVs24 or DNA methylation
levels39,40 with mRNA expression levels at the single-cell

level. For example, Angermueller et al.39 applied scM&T-
seq to mouse embryonic stem cells and computed the
weighted Pearson correlations of DNA methylation levels
in several genomic contexts (promoters, distal regulatory
elements, and gene bodies) with mRNA expression levels
across single cells for individual genes. Negative correla-
tions of DNA methylation and mRNA expression levels
were found to be dominant in non-CpG island promoters,
whereas both positive and negative correlations were
observed for distal regulatory elements. Correlation ana-
lysis has also been applied to examine the relationship
between mRNA and protein expression levels58. For
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example, Peterson et al.58 applied REAP-seq to PBMCs
and computed the Pearson correlations between mRNA
and protein expression levels across single cells for
immune cell markers. They found that the levels of
mRNAs and proteins were poorly correlated and that
protein quantification was more sensitive than mRNA
quantification for markers with low mRNA expression.
Under the second strategy, scRNA-seq is the most

common single-cell mono-omics data type into which the
other data are integrated, due to its higher coverage of the
transcriptome compared to those provided by other
single-cell omics data types; scWGS, scBS-seq or
scATAC-seq data exhibit low coverage of the genome,
while CITE-seq data exhibit lower coverage of the whole
proteome. For example, Cao et al.49 applied sci-CAR to
mouse kidney cells and classified 10,727 cells into
14 subpopulations using scRNA-seq data. They further
identified open chromatin sites (total 22,026 sites) unique
to each of the 14 subpopulations and identified cis-
regulatory elements (e.g., transcription factor binding
sites) that may contribute to the population-specific
expression of several marker genes. Moreover, Stoeckius
et al.57 applied CITE-seq to CBMCs and identified 15
populations of 8005 cells using scRNA-seq data based on
556 genes showing population-specific expression. Scatter
plot analyses for every pair of antibodies using tag counts
derived from the antibodies showed that protein expres-
sion levels could be used to further subdivide cell popu-
lations identified from scRNA-seq with subtle mRNA
expression differences, such as the NK cell population.
The third strategy is commonly used when the different

single-cell omics data being integrated present compar-
able coverage. Otherwise, integration may lead to bias
toward the data with a higher coverage. For this third
strategy, several matrix factorization-based methods have
recently been developed, including linked inference of
genomic experimental relationships (LIGER)101 and
multi-omics factor analysis (MOFA)102. LIGER employs
integrative nonnegative matrix factorization (iNMF) for
integration. Although this method has been applied to
integrate scRNA-seq and scBS-seq data from different
single-cell mono-omics analyses, it may be applicable to
multiple datasets from single-cell multiomics data. LIGER
defines cell populations according to genes for which (1)
both mRNA expression and DNA methylation levels are
available or (2) only either mRNA expression or DNA
methylation data are available. For the former cell popu-
lations, the relationships between mRNA expression and
DNA methylation can reveal the potential regulatory
effects of DNA methylation on mRNA expression for the
genes defining these populations. MOFA employs a
multiway matrix decomposition method that generates
one factor (cell population) loading matrix (the degree to
which cells can belong to the individual cell populations)

and one weight matrix for each data type (the degree to
which molecular features can contribute to the cell
populations according to the individual data)39. MOFA
was applied to previously reported mRNA expression and
DNA methylation data generated from mouse embryonic
stem cells by scM&T-seq after the imputation of missing
values in the individual datasets. MOFA provided the
genes whose mRNA expression and/or DNA methylation
levels contributed greatly to each cell population, thereby
enabling the regulatory relationships between mRNA and
DNA methylation defining the cell population to be
inferred. The authors further determined a differentiation
trajectory of mouse embryonic stem cells in the factor
space and then identified the genes showing mRNA
expression and DNA methylation patterns associated with
the transition along the trajectory based on the molecular
features defining the factors in the weight matrixes102.

Discussion
Single-cell multiomics approaches provide unprece-

dented opportunities to systematically explore cellular
diversity and heterogeneity by enabling a more compre-
hensive delineation of the state of single cells than that
provided by single omics data based on multichannel
molecular readouts. The integration of multiple molecular
readouts can provide insights into causal factors that
regulate cellular states based on the associations between
causal factors and target genes in cell populations. For
example, genotype–phenotype correlations measured via
the integrative analysis of single-cell genome and tran-
scriptome data can reveal the link between genomic
alterations and the transcriptional consequences for target
genes involved in disease-related processes. Furthermore,
the integrative analysis of the epigenome and tran-
scriptome can provide regulatory links between epigenetic
changes and the expression of target genes. In addition,
the integration of information from multiple omics layers,
including DNA, RNA, and protein data, can enhance the
accuracy of the identification of cell populations, cellular
trajectories, or lineage tracing and new or rare cell types.
The applications of single-cell multiomics analyses are

still at an early stage. There remain many paths to be
explored and considerable opportunities for expansion.
Moreover, there are still several technical and computa-
tional limitations that should be overcome to improve
both the content and the quality of the information
obtained from single-cell multiomics analysis. For exam-
ple, bisulfite treatment can lead to DNA damage that can
affect the accuracy of the measured DNA methylome.
Additionally, cell fixation is prone to reduce the yield of
information, thereby introducing bias in the measure-
ments. Furthermore, the number of proteins that can be
detected using current single-cell multiomics technolo-
gies is limited due to insufficient sensitivity, which may

Lee et al. Experimental & Molecular Medicine (2020) 52:1428–1442 1439

Official journal of the Korean Society for Biochemistry and Molecular Biology



introduce bias in the interpretation of the proteome
because the functions of the measured proteins in single
cells should be defined by their interactions with other
proteins. The optimization of existing single-cell experi-
mental protocols or development of new protocols is also
required to improve the sensitivity (mutations, CNVs, and
proteomes), accuracy (DNA methylation and phospho-
proteome), and coverage (mutations, CNVs, and pro-
teomes) of single-cell multiomics measurements.
Moreover, new omics combinations for different multi-
channels of molecules (e.g., integrative analysis of single-
cell genome and proteome) are needed to infer unprece-
dented regulatory associations (e.g., the mutation and
phosphorylation of signaling molecules).
Despite the rich resources of experimental protocols

available for single-cell omics analysis, computational
methods for the integrative analysis of single-cell mul-
tiomics data have just begun to emerge. While recent
advances in scRNA-seq technologies have led to an
exponential increase in the number of cells and genes
probed, the technologies available for other types of
single-cell omics analyses still provide intrinsically sparse
information with a significant fraction of missing values
and high levels of noise signals. Thus, methods that can
effectively handle the discrepancy in the coverage of
information between the transcriptome and other types of
single-cell omics data are needed for more sophisticated
multiomics statistical models during data integration. In
addition, given such missing values, systematic noise, and
coverage discrepancy, the improvement of existing data
analysis methods or development of new data analysis
methods is necessary to optimally extract information
through the integrative analysis of single-cell multiomics
data. Furthermore, most of the current methods used for
single-cell multiomics analyses are limited to the inte-
gration of two omics layers at once. As single-cell mul-
tiomics technologies for measuring more omics layers
emerge, methods that can integrate three or more types of
omics data are required for the effective characterization
of regulatory relationships among the different omics
layers.
Advancements in both experimental technologies and

data analysis methods for single-cell multiomics analysis
are critical to ensure more accurate regulatory relation-
ships among different omics layers for important mole-
cules in disease pathogenesis. These regulatory
relationships can provide new insights into the molecular
mechanisms underlying disease-related processes at the
single-cell level, as illustrated by the integrative analysis of
multiple bulk omics data7–9,13. These molecular
mechanisms can then reveal new diagnostic markers and
therapeutic targets, thereby transforming the current
strategies for the diagnosis and therapy of diseases.
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