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a b s t r a c t 

The immune regulation of cancer growth and regression has 

been underscored by the recent success of immunother- 

apy. The possibility that immune microenvironmental fac- 

tors may impact on clinical outcome and treatment re- 

sponse still requires intense investigations. Hereby, support- 

ing data of the research article “Integrated CT Imaging and 

Tissue Immune Features Disclose a Radio-Immune Signature 

with High Prognostic Impact on Surgically Resected NSCLC”
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[1], are presented. With the ultimate aim to provide non- 

invasive prognostic scores, we report on our approach to 

correlate different Tumor Immune Microenvironment (TIME) 

profiles with CT imaging-derived qualitative (semantic, CT- 

SFs) and quantitative (radiomic, CT-RFs) features in a cohort 

of 60 surgically resected NSCLC. The renowned characteri- 

zation of TIME, essentially based on the score evaluation of 

Programme Death Ligand-1 (PD-L1) and Tumor Infiltrating 

Lymphocytes (TILs), was implemented here by the assess- 

ment of effector and suppressor phenotypes including the 

analysis of Programme Death receptor 1 (PD-1). Thus, we 

defined two main TIME categories: hot inflamed (PD-L1 high , 

CD8/CD3 high and PD-1/CD8 low ) as opposed to cold inactive 

(PD-L1 low , CD8/CD3 low and PD-1/CD8 high ). Importantly, as re- 

ported in the extended publication [1], these distinctive im- 

mune contextures identified different prognostic classes and 

were decoded by radiomics. To corroborate our radiomic ap- 

proach, a comparative estimation of CT-RFs extracted from 60 

NSCLC and 13 non neoplastic tissues was undertaken, docu- 

menting high discrimination ability. Moreover, we tested the 

potential association of qualitative radiologic features with 

clinico-pathological and TIME parameters. Taken together, 

our findings suggest that CT-SFs and CT-RFs may underlay 

specific patterns of lung cancer. 

© 2020 Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
Specifications Table 

Subject Oncology 

Specific subject area Prognostic Biomarkers in Non Small Cell Lung Cancer 

Type of data Table 

Image 

Graph 

Fig. 

Raw data 

How data were acquired Data were retrospectively collected. 

Radiology. 

- Digital Imaging and Communications in Medicine (DICOM) datasets 

retrieved from PACS; 

- CT scanners: 6-slice and second generation dual source 128-slice; 

- Open-source software for quantitative analyses: 3dSlicer 4.9.0, 

www.slicer.org [9] . 

Scanned Assisted Microscopy. - Optical and fluorescence. 

- Immunohistochemistry. 

Calculations and graphics. 

- IBM SPSS version 25 (IBM Corporation, Armonk, NY, USA). 

- Morpheus software (Broad, Institute, Cambridge, MA, USA). 

- GraphPad PRISM, version 5 (GraphPad Software, Inc., La Jolla, CA, USA). 

Data format Tables 1-5 .pptx, Fig.s 1 and 2 .tiff and raw data to Tables and Fig.s in excel 

format 

Parameters for data collection Clinico-pathological data. 

CT scan images. 

Immunohistochemical parameters. 

( continued on next page ) 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.slicer.org
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Description of data collection Clinico-pathological data were collected retrospectively from the local 

electronic hospital information system or the electronic patient record. 

Immunohistochemical (IHC) analysis was performed on tissue samples 

archived at the Pathology Unit of our Institution. IHC data were 

retrospectively investigated on surgical specimens of NSCLC patients who 

underwent surgical resection at the Thoracic Surgery Unit 

Entered data was double checked to reduce the possibility of potential 

errors. 

Raw data are provided in Excel file format. 

Data source location Department of Medicine and Surgery and University Hospital of Parma, 

Medical Oncology, Radiology, Pathology Units 

Via Gramsci, 14 43126 Parma ITALY 

Data accessibility Raw data to Tables 1-5 and Fig.s 1-2 are provided as supplementary files in 

excel format within the article 

Related research article Giulia Mazzaschi, Gianluca Milanese, Paolo Pagano, Denise Madeddu, Letizia 

Gnetti, Francesca Trentini, Angela Falco, Caterina Frati, Bruno Lorusso, 

Costanza Lagrasta, Roberta Minari, Luca Ampollini, Mario Silva, Nicola 

Sverzellati, Federico Quaini, Giovanni Roti and Marcello Tiseo 

Integrated CT Imaging and Tissue Immune Features Disclose a 

Radio-Immune Signature with High Prognostic Impact on Surgically 

Resected NSCLC 

Lung Cancer ID-19-01653 

Value of the data 

• These data may help to achieve the goal to non-invasively decipher the tumor immune mi-

croenvironment by advanced imaging analysis. 

• These data would benefit the translational research to generate new clinically applicable al-

gorithms. 

• These data can serve as potential benchmark for other researchers involved in the analysis of

tumor immune contexture and its integration in multiparametric models. 

• These data may represent the basis for the development of predictive scores of the response

to immunotherapy in NSCLC. 

• These data may prospectively contribute to the selection of early stage NSCLC patients can-

didate to receive neoadjuvant or adjuvant treatment 

1. Data Description 

1.1. Tumor Immune Signature 

The morphometric analysis of NSCLC samples documented a large variability in tissue compo-

sition within patients and between Squamous Cell Carcinoma (SCC) and Adenocarcinoma (ADC)

( Table 1 ). Compared to ADC, SCC showed higher amount of fibrosis and necrosis with a relative

reduced fractional volume occupied by neoplastic cells ( Table 1 ). In addition, CD3 pos TILs were

more abundant in ADC while SCC were richer in PD-1 pos lymphocytes ( Table 1 ). No differences

among histotypes were observed in PD-L1 expression, as measured by both H-score and QIF, nor

in CD8 pos TILs number. 

To define a tumor immune signature, first we immunohistochemically assessed PD-L1 levels

and the incidence of TILs as major determinants of the widely reported classification of TIME

into four immune classes [2] . In our cohort of NSCLC, more than 1/3 of cases belonged to class

II implying a rather desert immune contexture ( Fig. 1 ). 

The quantitative values and the relative contribution of PD-L1 and TILs phenotypes to the

composition of these classes of TIME are reported in Table 2 . 

Nonetheless, in our patient population the clinical relevance of the above-mentioned clas-

sification was faint [1] . Thus, to further distinguish active from dormant TIME profiles, we in-
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Table 1 

Morphometric Analysis. 

Tissue Composition 

SCC = 39 ADC = 30 NSCLC = 69 

Range Mean ± St. Err Range Mean ± St. Err Range Mean ± St. Err 

Tumour 

Volume, cm3 

0.27-717 53.12 ±23.80 0.6-297 44.32 ±12.25 0.27-717 48.87 ±13.55 

Neoplastic cells, 

% 

18.82-61.57 41.26 ±1.93 14.93-85.10 57.26 ± 2.85 ( ∗) 14.93-85.10 49.01 ±6.74 

TILs, % 1.11-35.09 11.09 ±1.52 0.08-43.29 11.09 ±1.82 0.08-43.29 11.09 ±4.17 

Fibrosis, % 7.58-33.62 18.95 ±1.21 0.69-29.17 14.61 ±1.22 ( ∗) 0.69-33.62 16.84 ±1.98 

Necrosis, % 0.01-55.35 9.79 ±1.76 0.01-21.38 4.35 ±0.98 ( ∗) 0.01-55.35 7.15 ±1.59 

Tumour Immune Microenvironment 

SCC = 39 ADC = 30 NSCLC = 69 

Range Mean ± St. Err Range Mean ± St. Err Range Mean ± St. Err 

CD3 + , n/mm2 55.99-2372.05 691.05 ±77.37 92.05-6016.75 1197.27 ±201.82 ( ∗) 55.99-6016.75 893.76 ±107.11 

CD8 + , n/mm2 13.00-382.34 118.11 ±12.54 8.73-397.72 95.86 ±15.06 8.73-397.72 104.71 ±9.75 

CD4 + , n/mm2 13.07-287.53 74.66 ±12.97 0.00-76.80 39.59 ±9.32 ( ∗) 0.001-287.53 61.17 ±9.47 

PD-1 + , n/mm2 0.001-158.20 47.25 ±6.36 2.67-135.96 31.83 ±5.26 ( ∗) 0.001-158.20 39.34 ±4.25 

CD57 + , n/mm2 0.001-14.07 1.66 ±0.72 0.001-1.32 0.59 ±0.17 0.001-14.07 1.27 ±0.56 

CD25 + , n/mm2 4.78-16.05 8.96 ±1.47 1.59-14.08 7.12 ±1.55 1.59-16.05 8.10 ±1.01 

FOXP3 + , n/mm2 1.94-4.89 3.42 ±0.99 0.12-1.33 0.73 ±0.61 0.12-4.89 2.07 ±1.01 

GZB + , n/mm2 0.001-12.46 5.58 ±1.46 0.001-8.20 2.96 ±1.23 ( ∗) 0.001-12.46 4.27 ±1.14 

PD-L1 

H-Score 68.0 0-30 0.0 0 178.18 ±20.76 0.0 01-295.0 0 104.35 ±15.22 0.0 01-30 0.0 0 122.07 ±13.52 

QIF (x106) 29.14 -288.13 135.01 ±18.41 0.049-130.94 48.54 ±8.46 0.049-288.13 80.30 ±11.39 

TILs: Tumour Infiltrating Lymphocytes; GZB: Granzyme B; QIF: quantitative immunofluorescence; ( ∗) P < 0.05 vs SCC 

Fig. 1. Distribution of TIME categories among the overall patient population of NSCLC. 
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Table 2 

TILs incidence and PD-L1 Expression according to TIME categories. 

Parameters Type I Type II Type III Type IV 

Range Mean ± St. Err Range Mean ± St. Err Range Mean ± St. Err Range Mean ± St. Err 

CD3 + , n/mm2 420.75-6016.72 1441.9 ±429.8 92.05-1144.87 626.7 ±76.01 148.78-3140.19 546.7 ±167.6 55.9-2719.9 1247.5 ±147.4 

CD8 + , n/mm2 39.41-397.71 131.11 ±29.26 8.73-174.42 68.45 ±10.43 13.92-254.68 83.84 ±11.75 11.04-435.93 159.08 ±30.06 

CD4 + , n/mm2 34.00-104.66 73.60 ±14.69 0.00-51.40 30.44 ±15.57 0.00-94.05 54.09 ±8.36 5.01-287.53 79.80 ±31.42 

PD-1 + , n/mm2 2.66-104.52 39.90 ±7.38 0.00-135.65 41.89 ±6.67 9.89-79.99 34.43 ±6.28 2.00-143.66 51.45 ±11.39 

CD8-to-CD3 0.03-0.24 0.11 ±0.02 0.008-0.25 0.08 ±0.016 0.04-0.57 0.21 ±0.03 0.008-0.41 0.15 ±0.04 

PD-1-to-CD8 0.03-1.45 0.91 ±0.14 0.001-3.92 1.01 ±0.23 0.08-1.56 0.48 ±0.12 0.034-3.65 0.65 ±0.24 

CD57 + , n/mm2 0.25-1.01 0.56 ±0.16 0.01-0.77 0.27 ±0.24 0.01-14.06 2.31 ±1.68 0.11-1.96 0.72 ±0.16 

CD25 + , n/mm2 3.69-11.24 7.44 ±2.17 0.00-3.75 3.62 ±1.56 1.59-11.03 6.98 ±1.39 4.80-16.05 9.54 ±1.86 

FOXP3 + , n/mm2 0.11-2.24 0.99 ±0.19 0.29-3.13 2.07 ±1.01 0.12-1.94 1.03 ±0.91 1.33-4.88 3.11 ±1.77 

GZB + , n/mm2 2.29-8.20 4.84 ±1.75 0.00-3.75 1.68 ±1.10 5.89-12.46 9.17 ±3.28 0.00-9.06 3.31 ±2.05 

PD-L1 

H-Score 62-295 181.56 ±20.74 0-300 98.79 ±19.92 0-280 162.83 ±17.88 14-170 80-88 ±13.83 

QIF (x106) 72.72-210.52 137.8 ±20.8 2.13-102.25 43.74 ±8.53 61.32-288.12 148.15 ±23.72 0.4 88-116.6 8 44.8 ±11.4 

TILs: Tumour Infiltrating Lymphocytes; GZB: Granzyme B; QIF: quantitative immunofluorescence 
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Table 3 

Incidence of specific TILs phenotypes in Hot and Cold TIME. 

Hot n = 15 Cold n = 15 

Parameters Range Mean ± St. Err Range Mean ± St. Err 

CD57 + , n/mm2 0.00-7.08 2.26 ±1.02 0.00-1.16 0.20 ±0.08 ( ∗) 

CD25 + , n/mm2 0.00-1.05 0.12 ±0.06 1.09-5.28 3.12 ±1.78 ( ∗) 

FOXP3 + , n/mm2 3.94-10.89 7.40 ±2.59 5.09-11.33 8.50 ±0.77 

GZB + , n/mm2 4.01-12.46 8.44 ±1.73 0.001-8.20 1.05 ±0.80 ( ∗) 

GZB: Granzyme B; ( ∗) P < 0.05 vs Hot TIME 

Table 4 

CT-derived Semantic Features (CT-SFs). 

SCC = 39 ADC = 30 NSCLC = 69 

n (%) n (%) n (%) 

Shape 

Spherical 22 (56) 15 (50) 37 (54) 

Non spherical 17 (44) 15 (50) 32 (46) 

Margins 

Well defined 5 (13) 4 (13) 8 (12) 

Undefined 9 (23) 8 (27) 18 (26) 

Lobulated 10 (26) 8 (27) 19 (27) 

Spiculated 15 (38) 10 (33) 24 (35) 

Texture 

Solid 36 (92) 26 (87) 63 (91) 

Non solid 3 (8) 4 (13) 6 (9) 

Structure 

Homogeneous 13 (33) 20 (67) 33 (48) 

Non homogeneous 26 (67) 10 (33) 36 (52) 

Effect on parenchyma 

No effect 17 (44) 13 (43) 31 (45) 

Pleural retraction 13 (33) 9 (30) 23 (33) 

Scissural displacement 8 (21) 5 (17) 12 (18) 

Overinflation 1 (2) 3 (10) 3 (4) 
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c  

s  
roduced the combined evaluation of PD-L1 with both the relative proportion of CD8 pos cells

ver the total population of T CD3 pos lymphocytes (CD8-to-CD3 ratio) and the incidence of

D-1 inhibitory receptor on CD8 pos cytotoxic cells (PD-1-to-CD8 ratio). By this approach, high

D-L1 levels, high CD8-to-CD3 ratio and low expression of PD-1 on CD8 pos cytotoxic lympho-

ytes depicted hot TIME (PD-L1 high -CD8/CD3 high -PD-1/CD8 low ) while PD-L1 low/neg -CD8/CD3 low -

D-1/CD8 high characterized cold immune background (raw data see Appendix A). 

In support to our categorization in hot and cold TIME, effector phenotypes (CD57 + NK and

rzB + ) were prominent in hot while suppressor cells (CD25 + Treg) prevailed in cold TIME ( Table

 ). 

The differential impact of hot and cold TIME on NSCLC survival outcome is clearly docu-

ented in the main manuscript [1] . All raw datasets referring to Table 1 - 3 and Fig. 1 are in-

luded in the supplementary data (see raw data in Appendix A). 

.2. CT-derived Semantic Features (CT-SFs) 

To initially assess the impact of qualitative CT descriptors on patients’ outcome, we analyzed

hape, margins, texture, structure and effect on parenchyma, whose clinical relevance in NSCLC

ad been previously demonstrated [3] . The distribution of semantic CT features in our cohort of

atients is reported in Table 4 . We observed that association of clinical parameters with CT-SFs

ould identify specific patterns of NSCLC. For example, a trend toward a correlation of active

moking with CT non-homogeneous structure was documented ( P = 0.09). Moreover, an associ-
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ation between pTNM staging and CT structure ( P = 0.074) and margins ( P = 0.032) was present

( Table 5 ). All raw datasets referring to Table 4 - 5 are included in the supplementary data (see

raw data Appendix A). 

1.3. CT-derived Radiomic Features (CT-RFs) 

Specificity and reliability of our proposed radiomic approach to tumor lesions (NSCLC) were

validated using control tissues (muscles and lymph nodes). 

Considering the 841 CT-RFs as correlated variables, we employed specific algorithms for di-

mensionality reduction. Thus, principal component analysis (PCA) was applied to CT-RFs ex-

tracted from 60 lung cancers and 13 normal tissues (10 uninvolved lymph nodes, 3 skeletal

muscles). As shown in Fig. 2 A, two vectors contain nearly the 50% of data variance, sufficient to

preliminary distinguish tumor versus normal samples. 

To further confirm our PCA results, the unsupervised hierarchical clustering analysis demon-

strated that normal and tumor samples cluster in different branches, indicating that tissue het-

erogeneity may be intercepted by radiomic features ( Fig. 2 B). All raw datasets referring to Fig.

2 are included in the supplementary data (see raw data Appendix B). 

2. Experimental Design, Materials, and Methods 

2.1. Patient Population 

The patient population included in our analysis consisted of surgically resected stage I-IIIa

NSCLC according to the 8th TNM edition [1] . Tissue specimens and CT scans were collected at

the time of diagnosis from 60 consecutive patients undergoing radical major lung resection for

primary NSCLC. 

2.2. Morphometric Analysis 

The quantification of the fractional volume occupied by neoplastic cells, inflammatory infil-

trate, fibrosis, vascular-stromal compartment and necrosis was performed at 200X magnification

applying a morphometric grid defining a tissue area of 0.23 mm 

2 and containing 42 sampling

points each covering an area of 0.0052 mm 

2 . The number of points overlying each tissue com-

ponents was counted and expressed as the percentage of the total number of points explored.

The morphometric quantification of tumor necrosis was assessed by morphology, the amount

of fibrosis on Masson’s Trichrome while the fractional volume of neoplastic cells and TILs was

determined in Cytokeratin (CK) and CD3 immunostained sections, respectively. 

2.3. Immunohistochemical Analysis 

Most parameters were acquired based on a methodology widely employed by our laboratory

and already reported in several publications [ 4 , 5 ]. 

2.3.1. Programmed Death Ligand-1 (PD-L1) 

The quantification of PD-L1 expression was assessed after a comparative evaluation between

immunoperoxidase and immunofluorescence on control tissues (placenta) and on serial sections

from the same cases. After careful evaluation and consultation with expert pathologists (L.G.),

reliable and consistent results were obtained using clone 28-8 (Abcam #ab205921, o/n at 1:100

concentration) that was employed for quantitative analysis. 



8
 

G
.
 M

a
zza

sch
i,
 G

.
 M

ila
n

ese
 a

n
d
 P.

 P
a

g
a

n
o
 et

 a
l.
 /
 D

a
ta
 in

 B
rief

 31
 (2

0
2

0
)
 10

5
7

8
1
 

Table 5 

Clinico-pathological and CT-SFs Correlations. 

Effect Margins Texture Shape Structure 

Presence Absence Well defined Spiculated Solid Non solid Spherical Non spherical Homogeneous Non homogeneous 

n (%) n (%) P n (%) n (%) P n (%) n (%) P n (%) n (%) P n (%) n (%) P 

Sex 

Male 30 (60) 20 (40) 0.057 18 (36) 32 (64) 0.786 48 (96) 2 (4) 0.185 24 (48) 26 (52) 0.165 22 (44) 28 (56) 0.384 

Female 7 (37) 12 (63) 7 (37) 12 (63) 14 (74) 5 (26) 13 (32) 6 (32) 11 (58) 8 (42) 

Smoking status 

Never 4 (67) 2 (33) 0.883 3 (50) 3 (50) 0.667 5 (83) 1 (17) 0.425 3 (50) 3 (50) 0.680 5 (83) 1 (17) 0.043 ( ∗) 

Current 13 (56) 10 (44) 9 (39) 14 (61) 20 (83) 4 (17) 15 (65) 8 (35) 7 (30) 16 (70) 

Ex 22 (55) 18 (45) 16 (33) 24 (67) 35 (87) 5 (13) 19 (48) 21 (52) 20 (50) 20 (50) 

Histotype 

SCC 22 (56) 17 (44) 0.589 14 (36) 25 (64) 0.455 37 (95) 2 (5) 0.287 22 (56) 17 (44) 0.643 13 (33) 26 (67) 0.008 (#) 

ADC 17 (57) 13 (43) 12 (40) 18 (20) 26 (87) 4 (13) 15 (50) 15 (50) 20 (67) 10 (33) 

Stage 

I 16 (55) 13 (45) 0.872 20 (69) 9 (31) 0.028 ( ∗) 27 (94) 2 (6) 0.222 15 (52) 14 (48) 0.956 19 (65) 10 (35) < 0.001 

II 13 (57) 10 (43) 13 (57) 10 (43) 20 (87) 3 (13) 11 (48) 12 (52) 3 (13) 20 (87) 

III 7 (41) 10 (59) 5 (29) 12 (71) 15 (88) 2 (12) 10 (59) 7 (41) 7 (41) 10 (59) 

EGFR Mutation 

WT 10 (52) 11 (48) 0.578 8 (38) 13 (62) 0.657 16 (76) 5 (34) 0.343 9 (43) 12 (57) 0.635 11 (52) 10 (48) 0.127 

Mut 2 ()50 2 (50) 2 (50) 2 (50) 4 (100) 0 (0) 2 (50) 2 (50) 4 (100) 0 (0) 

KRAS Mutation 

WT 12 (66) 6 (34) 0.255 5 (28) 13 (72) 0.101 16 (89) 2 (11) 0.368 11 (61) 7 (39) 0.535 11 (61) 7 (39) 0.535 

Mut 1 (25) 3 (75) 3 (75) 1 (25) 3 (75) 1 (25) 2 (50) 2 (50) 2 (50) 2 (50) 
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Fig. 2. A : Principal Component Analysis (PCA) score plots representing the congruence of CT-RFs extracted from tumor 

(blue dots) and normal tissues (yellow dots). B : Heatmap illustrating the unsupervised cluster analysis of RFs extracted 

from CT slices of 60 NSCLC (yellow), 10 uninvolved lymph nodes (green) and 3 skeletal muscles (purple). While strings 

from two lymph nodes are intercalated to NSCLC samples, the sharp right-sided CT-RFs clustering of most normal tissues 

is apparent (see histotype bar code). 

 

 

 

 

 

 

 

 

 

- Immunoperoxidase: tissue sections (5 μm thick) were cut from formalin-fixed, paraffin-

embedded blocks containing representative tumor and processed for IHC. For immunoperox-

idase the reaction was revealed by DAB staining and hematoxylin counterstaining. The anal-

ysis of PD-L1 expression in tumor cells involved the counting of a minimum of 32,0 0 0 to a

maximum of 80 0,0 0 0 tumor cells. For the quantification, an algorithm was used to obtain the

PD-L1 score (H-score; 0–300), which is computed on the basis of both extent and intensity

of PD-L1 staining [6] . 

- Confocal Immunofluorescence: lung sections were double labelled by anti-PD-L1 antibody

followed by FITC conjugated secondary antibody (Sigma Aldrich) and by Pan-Cytokeratin an-

tibody (Mouse monoclonal, clone AE1/AE3, Dako M3515, 1:50 o/n 4 °C) followed by TRITC
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conjugated secondary antibody. Images were digitally captured at 200X final magnification

with “LAS Advanced Fluorescence” software (Leica) connected to a motorized epifluorescent

microscope (Leica DMI60 0 0B) provided by a digital camera (LeicaDFC350FX) and a Z-stack

automation system. For each sample a tissue surface from a minimum of 1.23 mm 

2 to a

maximum of 46.95 mm 

2 was analyzed. 

The emission signals of FITC, TRITC and DAPI were excited at 495nm, 552nm and 359nm

espectively and their fluorescence intensities recorded. The specificity of the reaction and aut-

fluorescence were carried out by omitting the primary antibody. 

For each region of interest, a graph plotting mean pixel intensity and the emission wave-

ength was generated. The spectrum obtained from PD-L1 positive cells exhibited a major peak

t ∼519 nm. In contrast, the spectrum of autofluorescence was more uniformly spread across

he range of wavelengths and did not show a clearly defined peak of emission. To compare the

hape of each curve obtained from PD-L1 positive and negative structures, the values of emission

pectra were normalized by dividing the intensity of each wavelength by the peak signal. 

Scores were normalized to the exposure time and bit depth at which the images were cap-

ured, allowing scores collected at different exposure times to be comparable. The fractional

rea occupied by the fluorescent signal and its intensity, expressed as Integrated Optical Density

IOD) per unit area, was then evaluated using a software for image analysis (Image Pro Plus 4.0).

.3.2. Tumor Infiltrating Lymphocytes (TILs) 

TILs were analyzed by the immunohistochemical detection of CD3, CD8, PD-1, CD25, CD57

nd Granzyme B. Immunoperoxidase was performed using an automated staining system (Op-

iView DAB IHC Detection Kit - Ventana Medical Systems) with antibodies against CD3 (rabbit

onoclonal, clone 2GV6, ready-to-use o/n a 4 °C, Ventana), CD8 (rabbit monoclonal, clone SP16,

:50, o/n a 4 °C, Neomarkers), PD-1 (mouse monoclonal, clone NAT105, 1:100, 30’, 37 °C, Roche),

D25 (mouse monoclonal, clone 4C9,ready to use, 30’, 37 °, Roche), FOXP3 (rabbit monoclonal,

lone 5H10L18, 1:20 o/n, ThermoFisher Scientific), Granzyme B (rabbit polyclonal, ready to use,

0’, 37 °, Roche) and CD57 (mouse monoclonal, clone NK1, ready to use, 30’, 37 °, Roche). 

T lymphocyte subpopulations and PD-L1 were also studied by confocal immunofluorescence

n order to simultaneously evaluate multiple epitopes (Zeiss LSM 700 system with Axio Ob-

erver). To this purpose specific secondary antibodies (anti-mouse or anti-rabbit –FITC/-TRITC/-

y5, 1:20, 60’ 37 °C, Sigma-Aldrich) were employed. Nuclei were counterstained with DAPI. 

The density (n/mm 

2 ) of CD3, CD8, PD-1, CD57, FOXP3 and CD25 labelled cells was computed

nalyzing a tissue area of a minimum of 2.97 mm 

2 to a maximum of 18.77 mm 

2 for SCC samples

nd a minimum of 2.51 mm 

2 to a maximum of 17.17 mm 

2 for ADC samples. In addition, based

n their relative incidence or double immunofluorescence confocal analysis, the ratio of CD8 pos

ells among the whole population of T (CD3p 

os ) lymphocytes (CD8-to-CD3) and the fraction of

D-1 expressing cells over the cytotoxic (CD8 pos ) lymphocytes (PD-1-to-CD8) were computed. 

.4. TIME 

.4.1. Immune Categories 

Cut off values, established according to regression tree (CART) analysis, were applied to PD-

1 levels and TILs density to define PD-L1 high/low and TILs rich/poor cases. On this basis Type

-IV classification according to Teng M et al [2] was defined as follow: 

- Type I adaptive immune resistance (PD-L1 positive and high TILs with effector phenotype) 

- Type II immune ignorance (PD-L1 negative and low TILs with immunosuppressive phenotype)

- Type III intrinsic induction (PD-L1 positive and low TILs with residual effector phenotype) 

- Type IV immune tolerance (PD-L1 negative and high TILs with immunosuppressive pheno-

type). 

To characterize effector and suppressor phenotypes, the number of CD57 + NK and granzyme

, and CD25 + FOXP3 + Treg phenotypes, respectively, was computed. 
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2.4.2. Hot and Cold TIME 

To assess these two immune contextures, an approach was followed based on our [4] and

other findings [ 7 , 8 ] indicating the relevance of the presence of PD-1 receptor at PD-L1 medi-

ated checkpoint and the extent of T effector lym phocytes in the immune response to cancer.

Specifically, the incidence of CD8 + lymphocytes over the whole CD3 + T cell compartment and

the magnitude of the available pool of PD-1 negative cytotoxic CD8 + cells were combined with

PD-L1 levels. Thus, hot TIME included tumor samples displaying PD-L1 high , CD8-to-CD3 high and

PD-1-to-CD8 low while cold were defined as PD-L1 low , CD8-to-CD3 low and PD-1-to-CD8 high . 

2.5. CT Examination 

2.5.1. Qualitative analysis 

CT datasets reconstructed with sharp and soft tissue convolution kernel (B70 and B30) with

lung (window width, 1600 HU; window level, −600 HU) and mediastinal (window width, 400

HU; window level, 60 HU) window settings were made available for qualitative analysis per-

formed by a trained radiologist (PP, 5 years of experience in chest imaging). The reader was

instructed to carefully review all CT images and was allowed to modify both window width

and window level to identify qualitatively assessable morphological findings (hereinafter termed

semantic features, SF). 

The five categories of Semantic Features evaluated in the present work according to reports

from the Radiology Society of North America [3] were: 

- Shape: the reader was instructed to differentiate between spherical and non-spherical le-

sions. Lesions were deemed spherical when displaying a round morphology on axial, coronal

and sagittal CT reformatted images; 

- Margins: margins were stratified into four categories: well-defined, poorly-defined, lobulated

and spiculated); 

- Texture: lesions were divided into solid and sub-solid lesions (i.e. lesions displaying a

ground-glass component). A sub-solid lesion consists of both non-solid and solid soft-tissue

attenuation components; 

- Structure: homogeneous lesions were differentiated from heterogeneous. Heterogeneous le- 

sions were those displaying hypoattenuating areas because of cavitation (air within the le-

sion) or necrosis (hypodense areas within the lesion); 

- Effect on parenchyma: an effect on surrounding structures was identified for lesions display-

ing indentations, scissural and/or pleural retraction. 

2.5.2. Quantitative analysis 

Pre-surgical CT scans were retrospectively retrieved and loaded into a dedicated open-source

software (3dSlicer, version 4.9.0, www.slicer.org , #ref.9), which allowed the extraction of ra-

diomic features (RF). The vast majority of CT images were obtained without intravenous ad-

ministration of contrast media, however, in a number of cases (15 CT datasets, 21.7%) only en-

hanced CT images were available and were included in the analysis. For the purpose of quan-

titative analysis, the same reader who performed the qualitative evaluation (PP) was instructed

to semi-automatically delineate regions of interest (ROIs). Non-tumoral structures (e.g. healthy

parenchyma, vessels, airways) were excluded. Volume of interest (VOI) outlining pulmonary le-

sions acted as source of information for quantitative analyses, allowing the extraction of 841

CT-RFs belonging to 8 main categories. Highly-correlated features were excluded to prevent over-

fitting. 

As a result of the retrospective fashion of our analysis, technical parameters could vary be-

tween scanning protocols. Therefore, image compensation approach was applied to realign fea-

ture distributions. Radiomic models obtained from either original or image-compensated fea-

tures were compared to evaluate the optimal reproducibility of radiomic signatures under dif-

ferent scan protocols. Additionally, to overcome, at least in part, the potential inter-software and

http://www.slicer.org
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nter-reader variability, we performed a comparison between different radiomic software plat-

orms and tested the inter-reader reproducibility in extracting radiomic features. 

To reinforce the specificity and reliability of our radiomic investigation, the same high-

hroughput approach was applied to CT images of mediastinal lymph nodes (n = 10) and latis-

imus dorsi, trapezius and deltoid muscles (n = 3) from subjects unaffected by cancer (controls).

T-RFs extracted from these 13 control tissues together with 60 NSCLC were simultaneously

ubjected to cluster analysis. 

.6. Statistical analysis 

The Fisher’s exact test was used to examine the differences in categorical variables, and the

ann-Whitney U test to detect differences in continuous variables between groups of patients,

iven that the distribution of data was not normal (Kolmogorov-Smirnov test). 

P value of 0.05 was set as a threshold of statistical significance. IBM SPSS Statistics v 25.0

IBM) and Stata 13 with Cart module (Statacorp) were used to perform all computational anal-

ses. Heatmaps and matrix analyses were performed by freely available modules in “Morpheus”

oftware (Broad, Institute, Cambridge, MA, USA). 
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