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KEY POINTS 

Question: What risk factors are associated with post-acute sequelae of SARS-CoV-2 (PASC) in the 

National COVID Cohort Collaborative (N3C) EHR Cohort? 

Findings:  This national study identified important risk factors for PASC such as middle age, severe 

COVID-19 disease, specific comorbidities, and the number of physicians per capita. 

Meaning: Clinicians can use these risk factors to identify patients at high risk for PASC while they are still 

in the acute phase of their infection and also to support targeted enrollment in clinical trials for preventing 

or treating PASC. 
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ABSTRACT 

Background: More than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection 

(PASC, which includes long-COVID). 

Objective: To identify risk factors associated with PASC/long-COVID. 

Design: Retrospective case-control study. 

Setting: 31 health systems in the United States from the National COVID Cohort Collaborative (N3C). 

Patients: 8,325 individuals with PASC (defined by the presence of the International Classification of 

Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 controls within the 

same health system.  

Measurements: Risk factors included demographics, comorbidities, and treatment and acute characteristics 

related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine 

the associations between risk factors and PASC.  

Results: Among 8,325 individuals with PASC, the majority were >50 years of age (56.6%), female 

(62.8%), and non-Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; 

OR ranging from 2.32 to 2.58), female sex (OR 1.4, 95% CI 1.33-1.48), hospitalization associated with 

COVID-19 (OR 3.8, 95% CI 3.05-4.73), long (8-30 days, OR 1.69, 95% CI 1.31-2.17) or extended 

hospital stay (30+ days, OR 3.38, 95% CI 2.45-4.67), receipt of mechanical ventilation (OR 1.44, 95% 

CI 1.18-1.74), and several comorbidities including depression (OR 1.50, 95% CI 1.40-1.60), chronic 

lung disease (OR 1.63, 95% CI 1.53-1.74), and obesity (OR 1.23, 95% CI 1.16-1.3) were associated 

with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated 

with a lower likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 

29 years), male sex, non-Hispanic Black race, and comorbidities such as substance abuse, 
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cardiomyopathy, psychosis, and dementia. More doctors per capita in the county of residence was 

associated with an increased likelihood of PASC diagnosis or care at a long-COVID clinic. Our findings 

were consistent in sensitivity analyses using a variety of analytic techniques and approaches to select 

controls.  

Conclusions: This national study identified important risk factors for PASC such as middle age, severe 

COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to 

better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering 

PASC course. 
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INTRODUCTION 

Globally, over 500 million individuals have confirmed cases of COVID-19, including 86 million in the 

United States (U.S.) [1,2]. Although COVID-19 has resulted in short-term complications and deaths [3], 

long-term consequences are poorly understood. Many of those infected have developed long-term 

complications, commonly known as post-acute sequelae of SARS-CoV-2 infection (PASC) or long-

COVID. The World Health Organization (WHO) defines long-COVID as the illness that occurs in 

people with a history of probable or confirmed SARS-CoV-2 infection, usually within 3 months from 

the onset of COVID-19 with symptoms that last for at least 2 months [4]. Long-COVID symptoms and 

complications include fatigue, cognitive dysfunction, post-exertional malaise, shortness of breath, 

depression, and many others [5,6]. Although it is difficult to estimate the true rate of PASC or long-

COVID, nearly one-third of individuals in the U.S. have long-COVID [7–9].  

 

Considerable research effort is geared toward identifying risk factors for PASC. Studies have identified 

that female sex, increased age, greater viral load, severity of acute illness, and comorbidities are 

associated with an increased likelihood of PASC [10–12]. Although age >70 was associated with 

increased likelihood of PASC diagnosis, recent data suggests that younger people aged 35 to 69 are at 

the highest risk of PASC [13]. The role of comorbidities in PASC risk needs to be explored in greater 

detail. Moreover, some prior studies relied on self-reported data captured through mobile app-based or 

web-based surveys, which can result in selection and responder bias [6,10]. Although social 

determinants of health (SDoH) such as poverty and access to healthcare are important risk factors for 

adverse COVID-19 outcomes, [14–17] their association with PASC is not well characterized [18], [19]. 
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As a part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, we conducted 

this study to identify risk factors associated with PASC using the National COVID Cohort Collaborative 

(N3C) data, the largest publicly available electronic health records (EHRs) for COVID-19 in the U.S. 

We evaluated the association of demographic, comorbidity, clinical course, and patient-level SDoH 

factors on PASC risk. 

 

METHODS 

Data 

N3C structure, access, and analytic capabilities have been described in detail previously [20]. The N3C 

collects information from single- and multi-hospital health systems across the U.S. and stores data in a 

central location, the N3C data enclave. As of April 14, 2022, it contained data from 72 health systems 

and >4.9 million individuals with COVID-19. For this study, we used a limited data set, which contains 

deidentified data, five-digit patient ZIP codes, and exact dates of COVID-19 diagnoses and service use 

(eMethods) [21].  

 

Study design and cohort (Figure 1) 

The study cohort is based on 4,559,795 potentially eligible patients from 59 health systems who were 

diagnosed with SARS-CoV-2 infection or had a positive polymerase chain reaction (PCR) or antigen 

(AG) lab test for SARS-CoV-2. Of these, 3,884,477 were adults (>18 years of age). Individuals may 

have multiple SARS-CoV-2 infections, so we considered the earliest documented date of positive test 

or diagnosis as the COVID index date. An index date was required to determine the relative timing of 

infection and long-COVID diagnosis (International Classification of Diseases, Tenth Revision, Clinical 

Modification [ICD-10-CM] code U09.9) or long-COVID clinic visit. Not all health systems currently 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.15.22278603doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.15.22278603
http://creativecommons.org/licenses/by-nc/4.0/


use U09.9 or have clinics dedicated to long-COVID treatment [22]. Therefore, we limited our cohort to 

patients from the 31 health systems with at least one documented long-COVID case using U09.9 or a 

long-COVID clinic visit between Oct 1, 2021 and Feb 28, 2022 (n=1,490,823). We excluded patients 

who died within 45 days of the index date because by definition they would not be at risk of 

developing PASC (n=1,467,804). Finally, in order for patients to have an adequate observation period 

after acute infection, we required them to have their index acute infection date between March 1, 2020 

and December 1, 2021 (N=1,062,661). In this way, we employed a restrictive case definition to 

maximize the likelihood of selecting true cases of PASC from this base cohort.   

 

Case and control selection 

In our primary analyses, we defined cases as those with a documented U09.9 diagnosis or a documented 

long-COVID clinic visit flag in the N3C (n=8,325). As a sensitivity analysis, we also defined cases as 1) 

U09.9 only (n=7,512) or 2) long-COVID clinic visits only (n=1,241).  

 

Controls were challenging to select because individuals may have had PASC but not received a 

diagnosis. We used three methods to identify controls, i.e., individuals without PASC. Our base 

analysis allowed any patient who was not a case to be considered as a possible matched control (not 

restricted controls).  Additionally, for two control cohorts, we applied our previously developed 

computable phenotype (CP) model for long-COVID to refine our control patient pool [23]. We applied 

CP model to the 1,054,336 non-cases (1,062,661 - 8,325) to generate a predicted probability for U09.9 

diagnosis or long-COVID clinic visit. The models generate the predicted probability of PASC for 

716,203 individuals who became eligible for matched control selection (eMethods). 
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1) Unrestricted controls (Method 1): All individuals who were not identified as cases became 

eligible (n=1,054,336).  

2) Restricted controls (Method 2): We excluded individuals highly suspected of having long-

COVID, defined as a predicted probability >= 0.75 based on the CP model of having a U09.9 

diagnosis and having visited a long-COVID clinic. Overall, 621,374 individuals became 

eligible for controls.  

3) More restricted controls (Method 3): We included individuals highly suspected of not having 

long-COVID (predicted probability <=0.25) based on the CP model of having a U09.9 

diagnosis and a long-COVID clinic visit. Overall, 496,073 individuals became eligible for 

controls.  

 

In each of the above three methods, we randomly matched 1 case to 5 controls without replacement 

from the same health system and COVID index date within +/- 45 days of the corresponding case's 

earliest COVID index date. In the “unrestricted” method, We matched 8,325 cases to 41,625 controls 

in the “unrestricted” method, and 8,322 cases to 41,610 controls in the “restricted” and “more 

restricted controls” methods.  

 

Risk factors 

We used existing literature [10–12], clinical expertise, and availability of information in the N3C to 

identify potential risk factors for PASC that are identifiable in EHR data (Table 1 and Supplemental 

eTable 1 for full list). We used information before COVID-19 diagnosis date to identify an individual’s 

age, gender, race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, Asians, others), obesity 

(a diagnosis of obesity or a body mass index [BMI]>=30), smoking status, substance abuse status, and 
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comorbidities. We included 17 common comorbidities used in the Charlson Comorbidity Index [24] and 

additional comorbidities and treatments (e.g., use of corticosteroids) which are considered risk factors 

for severe acute COVID-19 as per the U.S. Centers for Disease Control (CDC) [25]. We also identified 

hospitalization for COVID-19, invasive mechanical ventilation use, extracorporeal membrane 

oxygenation (ECMO) use, vasopressor use, acute kidney injury diagnosis, sepsis diagnosis, remdesivir 

use, and total length of hospital stay (eMethods). 

 

For SDoH, we used county-level variables from the Sharecare-Boston University School of Public 

Health Social Determinants of Health dataset [26]. Specifically, we used percent of households with 

income below poverty, percent of residents with college degree, percent of residents 19-64 with public 

insurance, and physicians per 1000 residents [26]. These are all included as tertiles in the analyses. 

 

Statistical analysis  

We used descriptive statistics to compare PASC cases with the three non-PASC control cohorts, 

including counts and percentages for categorical variables and means and standard deviation for 

continuous variables. 

 

We used multivariable logistic regression to determine associations between risk factors and PASC. We 

constructed three separate logistic regression models for the three cohorts of matched cases and 

controls. All patient characteristics, with and without SDoH, were included as independent variables in 

the three models. We reported odds ratios (OR) and 95% confidence intervals (CI) for risk factors.  
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In addition to logistic regression, we used two machine learning methods, random forest (RF) [27] and 

XGBoost, to identify influential risk factors for developing PASC [28]. Machine learning methods 

provide the ability to investigate massive datasets and reveal patterns within data without relying on a 

priori assumptions such as pre-specified statistical interactions, specific variable associations, or 

linearity in variable relationships [29]. We conducted feature importance analysis for both RF and 

XGBoost models [30], and display SHAP (SHapley Additive exPlanations) plots [31] from the XGboost 

models (eMethods). 

 

Secondary and stratified analysis 

For the unrestricted controls and PASC cases defined by U09.9 or a long-COVID visit (primary cohort), 

we performed planned secondary analysis by including SDoH variables in logistic regression and two 

machine learning models. We performed stratified analysis by hospitalization status to assess whether 

risk factors differed for these two groups (eMethods). 

 

Sensitivity analyses 

To check the robustness of our results, we examined risk factors using the matched case-control design 

separately for cases identified: (a) using U09.9 diagnosis code and (b) based on long-COVID clinic 

visits, each with five matched controls. We refit each of the three model types in the above six cohorts 

of PASC cases and matched controls.  

 

RESULTS 

Study cohort 
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Among the 8,325 individuals with PASC, the majority were >50 years of age (56.6%), female (62.8%), 

and non-Hispanic White (68.6%) (Table 1). The most common comorbidities were obesity (56.4%), 

hypertension (40.4%), chronic lung disease (28.9%), and uncomplicated diabetes (20.5%). Compared to 

unrestricted controls (N=41,625), PASC cases were older (mean age 52 [SD 15.5] vs. 46 [SD 17.8] 

years), and greater proportion were male (37.2% vs. 44.4%) and non-Hispanic White (68.6% vs. 

63.6%). The prevalence of all comorbidities was higher among PASC cases compared to controls, such 

as hypertension (40.4% vs. 26.2%), chronic lung disease (28.9% vs. 13.7%), and uncomplicated 

diabetes (20.5% vs. 13.3%). The rate of COVID-associated hospitalization was much higher among 

cases (37.3% vs. 14.8%) compared to all controls. We found similar patterns when comparing PASC 

cases with the less restrictive and more restrictive control cohorts (Table 1 and eTable 1). 

 

Risk factors associated with PASC  

Unrestricted Controls (Primary Analysis): Using logistic regression (eFigure 2, eTable 2) we identified 

that age was a risk factor for PASC, with particularly high risk among individuals between 40 and 69 

years (OR ranging from 2.32 to 2.58). Females had a greater likelihood of having PASC (OR 1.40, CI 

1.33-1.48). Non-Hispanic Blacks (OR 0.78, CI 0.73-0.85), Hispanics (OR 0.80, CI 0.73-0.87), and 

Asians (OR 0.80, CI 0.66-0.97) had a lower likelihood of having PASC than non-Hispanic Whites. The 

top five comorbidities associated with PASC were tuberculosis (OR 1.65, CI 1.03-2.65), chronic lung 

disease (OR 1.63, CI 1.53-1.74 ), rheumatologic disease (OR 1.27, CI 1.11-1.46), peptic ulcer (OR 1.25, 

CI 1.07-1.46) and obesity (OR 1.23, CI 1.16-1.30). Severe acute infection were the strongest predictors 

of PASC including extended hospital stays (31+ days, OR 3.38, CI 2.45-4.67), long hospital stays (8-30 

days, OR 1.69, CI 1.31-2.17), COVID-associated hospitalizations (OR 3.8, CI 3.05-4.73), and 

mechanical ventilation (OR 1.44, CI 1.18-1.74). Characteristics associated with a lower likelihood of 
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PASC included psychosis, cardiomyopathies, metastatic cancer, moderate to severe liver disease, 

substance abuse, tobacco smoking, and COVID-19 diagnosis during hospitalization. 

 

The performance of XGBoost and logistic regression models was similar (both AUC 0.73), closely 

followed by RF model (AUC 0.69) (eTable 3). Risk factors for PASC identified by the XGBoost 

models had a similar direction compared to logistic regression models (Table2, eTable 4). However, 

risk factors' magnitude and order of importance varied between XGBoost and logistic regression. For 

example, invasive mechanical ventilation was ranked 6 by XGBoost versus 21 by logistic regression.  

 

Restricted Controls: eTable 5 and eTable 6 shows the importance of risk factors among less restrictive 

and more restrictive controls, respectively. For most patient characteristics, the direction and magnitude 

of the odds ratios were similar to the primary analysis (eTable 2). However, obesity was no longer 

significant when we used the less and more restrictive controls. Also, ECMO was associated with PASC 

when the more restrictive controls were used, but it was not a statistically significant factor when the 

unrestricted controls were used.  

 

Secondary Analysis Including SDoH  

We repeated our primary analysis (U09.9 or long-COVID clinic model, unrestricted control cohort) by 

adding SdoH variables(Figure 2, eTable 7). The number of medical doctors per 1000 residents in the 

county of residence was associated with PASC, indicating having access to healthcare services 

increases the likelihood of diagnosis and/or treatment at a long-COVID clinic. Other SDoH factors 

were not associated with PASC in logistic regression but were important features in the machine 

learning models (eFigure 3, Table 3). 
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Stratified Analysis by COVID-index Hospitalization 

To assess risk factors unique to less severe SARS-CoV-2 infections, we stratified analysis by whether 

the patient was hospitalized at the time of COVID-19 index date (eTables 8-13). For the hospitalized 

sample, the strongest risk factors across LR, XGBoost, and RF models are possible markers of 

COVID-19 severity (e.g., ECMO, ED Visit, Mechanical Ventilation) and obesity. Living in a 

community with higher education increased likelihood of diagnosis or care at a long-COVID clinic 

(eFigure 4). For those not hospitalized at COVID index date, the following risk factors pre-COVID 

differ from hospitalized patients: systemic corticosteroid use and depression, peptic ulcer, or coronary 

artery disease diagnosis. When we limit to non-hospitalized patients during COVID-19 index, some 

SDoH factors were also strong predictors including lower poverty and higher education communities ( 

eFigure 4, eFigure 5). Some risk factors are common to both the hospitalized and non-hospitalized 

samples, including middle age (40-69), chronic lung disease, and white non-Hispanic race/ethnicity 

(eFigure 4, eFigure 5).  

Sensitivity Analysis: Other Definitions of PASC  

We have described sensitivity analysis in detail in eResults. Overall, sensitivity analysis results based 

on only U09.9 definition or only long-COVID clinic visits were similar to the primary analysis.  

 

DISCUSSION 

In this first large-scale US study of PASC risk factors, we found that middle age (40 to 69 years), 

female sex, severity of acute infection (e.g., hospitalization for COVID-19, long or extended hospital 

stay, treatment for acute COVID-19 during hospitalization), and several comorbidities including 

depression, chronic lung disease, obesity, and malignant cancer were associated with increased 
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likelihood of PASC diagnosis or care at a long-COVID clinic. Risk factors associated with a lower 

likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), 

male sex, non-Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, 

psychosis, and dementia. We also found that a greater number of physicians per capita in the county of 

residence were associated with an increased likelihood of PASC diagnosis or care. Our findings were 

consistent in sensitivity analyses using a variety of approaches to select controls and several robust 

analytic techniques.  

 

Our findings add to the growing body of evidence identifying and characterizing PASC risk factors. 

Although females were less likely to die or be hospitalized due to acute COVID-19, [32,33], they appear 

to have a greater risk of developing PASC. Our finding that there is a higher likelihood of PASC 

diagnosis among middle-aged individuals is consistent with a recent United Kingdom Office for 

National Statistics analysis, but is in contrast with another report that found that older individuals were 

at the highest risk for PASC[8,12]. Risk factors such as chronic lung disease, rheumatologic disease, 

and obesity were associated with both hospitalization and death due to COVID-19 and also increased 

risk of PASC diagnosis or care. 

 

We previously established a machine learning phenotype [23] that used clinical features observed after 

COVID-19 infection to generate a probability for whether a patient currently has PASC.  In contrast, the 

current analysis uses features selected from the acute phase of COVID-19 (such as pre-existing clinical 

comorbidities and hospitalization characteristics at the time of the initial infection) to assess risk factors 

for the later emergence of PASC as indicated by a U09.9 diagnosis or long-COVID clinic visit. The models 

in this analysis can be applied by clinicians to identify patients at risk for PASC while they are still in the 
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acute phase of their infection and also to support targeted enrollment in clinical trials for preventing or 

treating PASC.  

 

The association we found between more severe acute COVID-19 and increased likelihood of PASC is 

consistent with prior literature [34]. Individuals who were hospitalized for COVID-19 or received 

intensive treatment may have long-lasting effects on the brain, heart, lungs, and other organs [35–39]. 

Counterintuitively, we found that diabetes, a strong risk factor for worse outcomes after acute COVID-

19, was associated with less likelihood of PASC diagnosis. Our previous work has demonstrated that 

glycemic control in patients with diabetes, as measured by pre-infection HbA1c levels, is an important 

risk factor for poor acute infection outcomes[40]. The level of granularity available in EHR data may 

not be sufficient to completely disentangle PASC risk associated with some comorbidities from PASC 

risk from SDoH and unmeasured biological features. We found that a pre-existing diagnosis of 

depression was associated with a higher risk of subsequent PASC. Interestingly, however, prior 

diagnoses of other mental health diagnoses (e.g., psychosis) were associated with lower risk. Comorbid 

substance abuse (also associated with lower likelihood of PASC diagnosis) with psychosis may explain 

some of this difference, as those with substance abuse disorders may have challenges accessing health 

care. Antidepressants and antipsychotics have differential immunomodulatory effects, which could also 

contribute to this observation. Another interesting finding is that we found patients with comorbidities 

such as cardiomyopathy, metastatic solid tumors, and liver disease that made them vulnerable to worse 

outcomes after acute COVID-19 had lower likelihood of PASC diagnosis. Although we cannot 

determine causality from this association, this finding may be hypothesis-generating.  

 

The association we found between higher numbers of doctors per capita with PASC diagnosis or care 

underscores the importance of access to medical care. Given the disruption of medical care for both 
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COVID and non-COVID illnesses during the pandemic, it is important to improve access to care, 

particularly for minorities [41]. Our findings of lower likelihood of PASC diagnosis among non-

Hispanic Blacks support this hypothesis. The focus of this study was to investigate patient-level factors 

and therefore we did not consider several SDoH that can impact PASC risk such as essential worker 

status, financial issues, housing, and isolation. These are excellent candidate variables for future 

study[42]. Future research is also required to delineate the complex relationship of individual vs. 

contextual factors in the diagnosis and care for PASC. Policy measures such as strengthening primary 

care, optimizing SDoH data quality, and addressing SDoH are required to reduce inequalities in 

diagnosis and care for PASC [17]. 

 

The US Government Accountability Office estimates that between 7.7 and 23 million US adults have 

PASC [43]. Given the potential clinical and economic consequences, the US government has allocated 

over a billion dollars to study it[44]. Our study validates some findings of prior studies on PASC risk 

factors and provides novel information including the impact of SDoH. With the sample size available in 

N3C, we can evaluate more risk factors simultaneously than previous studies. Also, this study can be 

used to generate hypotheses about possible mechanisms and potential treatments for PASC. For 

example, because this study found that rheumatological conditions are a risk factor for PASC, future 

studies can assess whether treatment for rheumatological conditions can alter the likelihood of PASC 

diagnosis. 

 

Our study has several limitations. First, the N3C only contains EHR data, which has inherent limitations 

and may encode biases related to health care access and racism. N3C collects data from health systems 

that maintain a data warehouse using one of four common data models (OMOP, PCORnet, ACT, and 
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TriNetX) [20]. However, the age, sex, race, and ethnicity distribution in N3C is representative of many 

segments of the U.S. population. Therefore, our findings on risk factors may generalize to the broader 

US population. Second, because identification of individuals without PASC (controls) is not 

straightforward without clear definitions or biomarkers, we used three approaches to identify controls. 

Two of those leveraged our CP classification model for long-COVID [23]. Some pre-existing conditions 

can carry forward from the acute phase and appear later as features in the PASC phase. We 

acknowledge some potential for circularity. Importantly, however, model performance did not have 

clinically meaningful differences across different cohort selection methods. Third, further analysis is 

needed to determine the role of SDoH and how it impacts individual-level risk factors for PASC. While 

research shows that county-level SDoH variables can be significant for patient-level analysis, more 

granular geographic unit or patient-level data would likely provide a greater understanding of the 

relationship between SDoH and PASC outcomes [45,46].   Fourth, we did not evaluate the role of 

vaccines and therapeutics such as paxlovid for the likelihood of PASC diagnosis. Fifth, we did not 

evaluate the association of COVID-19 reinfection and PASC diagnosis or care. 

 

CONCLUSIONS 

This national study using N3C data identified important risk factors for PASC such as middle age, 

severe COVID-19 disease, and comorbidities. Further clinical and epidemiological research is needed to 

better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering 

the course of PASC. 
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FIGURES 

 

Figure 1. Cohort selection diagram 
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Figure 2. Forest Plots from Logistic Regression for Unrestricted Controls with SDoH (PASC define

as U09.9 or long-COVID Clinic Visit) 
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TABLES  

Table 1 Cohort Characteristics for PASC Cases defined by U09.9 or long-COVID clinic visit 

 
PASC  

 (N=8325)b 

Method 1 
Unrestricted 

controls 
(N=41625) 

Method 2 
Restricted 
controls 

(N=41610) 

Method 3 
Most restricted 

controls 
(N=41610) 

Demographics      

Age (Mean[SD]) 52.3 (15.5) 47.5 (18.4) 46.8 (17.8) 48.1 (18.2) 

Sex      

Female 5225 (62.8%) 23090 (55.5%) 24112 (57.9%) 24530 (59.0%) 

Male 3096 (37.2%) 18481 (44.4%) 17482 (42.0%) 17051 (41.0%) 

Race/ethnicity     

White non-Hispanic (NH) 5707 (68.6%) 26490 (63.6%) 27818 (66.9%) 27654 (66.5%) 

Hispanic 835 (10.0%) 4851 (11.7%) 4430 (10.6%) 4452 (10.7%) 

Black NH 1235 (14.8%) 6244 (15.0%) 6455 (15.5%) 6538 (15.7%) 

Asian NH 136 (1.6%) 883 (2.1%) 921 (2.2%) 953 (2.3%) 

Other race NH 54 (0.6%) 314 (0.8%) 267 (0.6%) 292 (0.7%) 

Comorbidities Prior to COVID Index Date     

Chronic Lung Disease 2404 (28.9%) 5717 (13.7%) 6956 (16.7%) 6816 (16.4%) 

Complicated Diabetes 1210 (14.5%) 3582 (8.6%) 4377 (10.5%) 4336 (10.4%) 

Congestive Heart Failure 573 (6.9%) 1530 (3.7%) 2007 (4.8%) 1910 (4.6%) 

Hypertension 3365 (40.4%) 10894 (26.2%) 13528 (32.5%) 13698 (32.9%) 

Kidney Disease 1262 (15.2%) 3616 (8.7%) 4503 (10.8%) 4388 (10.5%) 

Obesity 4691 (56.4%) 16575 (39.8%) 19588 (47.1%) 19430 (46.7%) 

Uncomplicated Diabetes 1708 (20.5%) 5547 (13.3%) 6642 (16.0%) 6751 (16.2%) 

Characteristics during Acute COVID Phase     

COVID-associated Hospitalization 3100 (37.3%) 6165 (14.8%) 6306 (15.2%) 6162 (14.8%) 

COVID-associated ED Visit 1564 (18.8%) 6468 (15.5%) 6060 (14.6%) 5865 (14.1%) 

Hospitalization stay (Mean [SD]) 5.6 (15.3) 1.1 (6.1) 1.1 (5.3) 1.0 (4.8) 

COVID treatment     

Corticosteroidsa 2025 (24.3%) 3054 (7.3%) 2991 (7.2%) 2807 (6.7%) 

Remdesivira 1409 (16.9%) 1913 (4.6%) 1794 (4.3%) 1631 (3.9%) 

Vasopressorsa 601 (7.2%) 682 (1.6%) 703 (1.7%) 720 (1.7%) 

ECMOa 66 (0.8%) 35 (0.1%) 24 (0.1%) <20 

Mechanical Ventilationa 615 (7.4%) 450 (1.1%) 398 (1.0%) 404 (1.0%) 

AKI during COVID-associated Hospitalization 664 (8.0%) 1016 (2.4%) 1084 (2.6%) 1026 (2.5%) 

Sepsis during COVID-associated Hospitalization 614 (7.4%) 823 (2.0%) 835 (2.0%) 770 (1.9%) 
aOnly captured for individuals hospitalized for COVID-19  bThe restricted samples (Methods 2 and 3) lose 3 cases due to not having 
sufficient controls (<5 available controls). Comorbidities shown in this Table are selected. A comprehensive stratification by comorbidities 
is in the Supplement. 
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Table 2 Comparison of Feature Importance for PASC Models defined by U09.9 or long-COVID clinic 
visit and unrestricted controls (Top 15 positive and negative features) 
 

Features 
Logistic 
Regression XGBoost 

Random 
Forest 

Mean 
Rank  

Hospitalization Extended Stay (31+ days) 2 1 4 2.33 
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COVID-associated Hospitalization 4 4 1 3.00 

Age 40-49 6 8 7 7.00 

Age 50-59 5 14 6 8.33 

Hospitalization Long Stay (8-30 days) 8 2 18 9.33 

Female 22 13 2 12.33 

Depression 19 10 15 14.67 

Age 60-69 7 28 10 15.00 

COVID Treatment: Mechanical Ventilation 21 5 24 16.67 

COVID Treatment: Remdesivir 26 6 20 17.33 

Chronic Lung Disease 16 38 9 21.00 

COVID-associated ED Visit 36 7 25 22.67 

Obesity 37 15 27 26.33 

Systemic Corticosteroids 24 34 22 26.67 

Malignant Cancer 54 21 12 29.00 

COVID Diagnosis during COVID-associated 
Hospitalization 11 3 5 6.33 
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Age 18-29 ref. 9 11 10.00 

Male ref. 19 3 11.00 

Age 70-79 10 35 16 20.33 

Substance Abuse 14 16 37 22.33 

Tobacco Smoker 23 11 34 22.67 

Cardiomyopathies 32 22 17 23.67 

Age 30-39 12 53 8 24.33 

Metastatic Solid Tumor Cancers 13 18 45 25.33 

Psychosis 9 23 44 25.33 

Uncomplicated Diabetes 45 20 13 26.00 

Myocardial Infarction 33 32 19 28.00 
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Age 80-89 20 12 56 29.33 

Dementia 38 29 26 31.00 

Race/Ethnicity: Black NH 28 42 29 33.00 

Table legend: This Table shows the top 15 features associated with increased risk and top 15 features 
associated with decreased risk. Complete models are shown in the Supplement. Unrestricted sample, 
U09.9 or long-COVID clinic visit target (see text). Grouped by median direction (increased/decreased) 
and ordered by mean rank. Model rank calculated based on 
sklearn.inspection.permutation_importance() (XGB/RF) or absolute ordered size of coefficient (LR). 
Mean rank is based on the rank of each model that had the variable in the model. Mint color indicates 
features associated with increased risk. Salmon color indicates features associated with decreased risk. 
An uncolored cell indicates that that feature was the reference group for the logistic regression model. 
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Table 3 Comparison of Feature Importance for PASC Models defined by U09.9 or long-COVID clinic 
visit and unrestricted controls (Top 15 positive and negative features) with SDoH variables included 
 

features 

Logistic 
Regression 
SDOH 

XGBoost 
SDOH 

Random 
Forest 
SDOH 

Mean 
Rank  

Hospitalization Extended Stay (31+ days) 2 1 19 7.33 
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COVID-associated Hospitalization 4 2 22 9.33 

Age 40-49 6 16 8 10.00 

Age 50-59 5 11 15 10.33 

Hospitalization Long Stay (8-30 days) 8 4 23 11.67 

Households with Income below poverty: low (<11%) ref. 19 5 12.00 

MDs per 1000 residents: High (>3.61%) 30 8 6 14.67 

COVID Treatment: Mechanical Ventilation 22 5 27 18.00 

Depression 19 17 31 22.33 

Female 24 42 1 22.33 

Age 60-69 7 49 17 24.33 

MDs per 1000 residents: medium (1.91-3.61%) 36 34 4 24.67 

Obesity 39 13 30 27.33 

Chronic Lung Disease 17 53 16 28.67 

COVID-associated ED Visit 42 9 40 30.33 

MDs per 1000 residents: Low (<1.91%) ref. 7 10 8.50 
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College Degree low (<19%) ref. 18 7 12.50 

COVID Diagnosis during COVID-associated Hospitalization 11 3 26 13.33 

Age 18-29 ref. 10 20 15.00 

Male ref. 33 2 17.50 

Age 30-39 12 38 11 20.33 

College Degree medium (19-25%) 50 12 3 21.67 

Public health Insurance for ages 19-64: Low (<13%) ref. 31 13 22.00 

Substance Abuse 15 15 38 22.67 

Psychosis 9 26 45 26.67 

Tobacco Smoker 26 14 40 26.67 

Age 80-89 20 25 43 29.33 
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Households with Income below poverty: high (>15%) 57 21 12 30.00 

Metastatic Solid Tumor Cancers 18 24 51 31.00 

Age 70-79 10 60 24 31.33 

Table legend: This Table shows the Top 15 features associated with increased risk and top 15 features 
associated with decreased risk. Complete models are shown in the Supplement. Not restricted sample, 
U09.9 or long-COVID clinic visit target (see text). Grouped by median direction (increased/decreased) 
and ordered by mean rank. Model rank calculated based on 
sklearn.inspection.permutation_importance() (XGB/RF) or absolute ordered size of coefficient (LR). 
Mean rank is based on the rank of each model that had the variable in the model. Mint color indicates 
features associated with increased risk. Salmon color indicates features associated with decreased risk. 
An uncolored cell indicates that that feature was the reference group for the logistic regression model. 
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