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Abstract: An important aspect of using entropy-based models and proposed “synthetic languages”,
is the seemingly simple task of knowing how to identify the probabilistic symbols. If the system has
discrete features, then this task may be trivial; however, for observed analog behaviors described by
continuous values, this raises the question of how we should determine such symbols. This task of
symbolization extends the concept of scalar and vector quantization to consider explicit linguistic
properties. Unlike previous quantization algorithms where the aim is primarily data compression
and fidelity, the goal in this case is to produce a symbolic output sequence which incorporates some
linguistic properties and hence is useful in forming language-based models. Hence, in this paper, we
present methods for symbolization which take into account such properties in the form of probabilistic
constraints. In particular, we propose new symbolization algorithms which constrain the symbols
to have a Zipf–Mandelbrot–Li distribution which approximates the behavior of language elements.
We introduce a novel constrained EM algorithm which is shown to effectively learn to produce
symbols which approximate a Zipfian distribution. We demonstrate the efficacy of the proposed
approaches on some examples using real world data in different tasks, including the translation of
animal behavior into a possible human language understandable equivalent.

Keywords: information theoretic models; synthetic language; entropy; Zipf–Mandelbrot–Li law;
language models; behavior prediction

1. Introduction

Language is the primary way in which humans function intelligently in the world.
Without language, it is almost inconceivable that we as a species could survive. Language
is clearly far richer than mere words on a page or even spoken words. Almost every
observable dynamic system in the world can be considered as having its own language of
“words” that carry meaning. Put simply, we propose that “every system is language”.

In contrast to classical value-based models such as those employed in signal processing,
or even the concept of quantized models employing discrete values such as those found
in classifiers, we propose that the next phase of AI systems may be based on the concept
of synthetic languages. Such languages, we suggest, will provide the basis for AI to learn
to interact with the world in varying levels of complexity, but without the technical
challenges of infinite expressions [1] and building natural language processing systems
based on human language.

The concept of synthetic languages is that it is possible to derive a model to capture
meaning which is either emergent or assigned in natural systems. While this approach can
be understood for animal communications, we suggest that it may be useful in a wide range
of other domains. For example, instead of modeling systems based on hard classifications
based on some measured features, a synthetic language approach could be useful for
developing an understanding of meaning using behavioral models based on sequences of
probabilistic events. These events might be captured as simple language elements.
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This approach of synthetic language stems from earlier work we have done based
on entropy-based models. Normally, entropy requires a large number of samples to
estimate accurately [2]. However, we have previously developed an efficient algorithm
which permits entropy to be estimated with a small number of samples which has enabled
the development of simple entropy-based behavioral models. For example, an early
application has shown promising results, successfully detecting dementia in a control
group of patients by listening to their conversation using a simple synthetic language
consisting of 10 “synthetic words” derived from the inter-speech pause lengths [3].

The basis for this approach is the view that probabilistically framed behavioral events
derived from dynamical systems may be viewed as words within a synthetic language.
In contrast to human languages, we hypothesize the existence of synthetic languages
defined by small alphabet sizes, limited vocabulary, reduced linguistic complexity and
simplified meaning.

Yet, how can a systematic approach be developed which determines such synthetic
words? Usually the aim of human speech recognition is to form a probabilistic model which
enables short term bursts of speech audio to be classified as particular words. However,
with the approach being proposed here, we might consider meta-languages where other
speech elements, perhaps sighs, coughs, emotive elements, coded speech, specific articula-
tions or almost any behavioral phenomena can be considered as a synthetic language.

The challenge is that we are seeking to discover language elements from some input
signals, yet while we can know the ground truth of human language elements and hence
determine the veracity of any particular symbolization algorithm, this task is not straight-
forward for synthetic languages where we do not have access to a ground truth dataset.

Hence, while much of computational natural language processing relies significantly
on modeling complex probabilistic interactions between language elements resulting in
models such as hidden Markov models, and smoothing algorithms to capture the richness
and complexities of human language, in our synthetic language approach the aims are
considerably lower. However, even with the significantly reduced complexity, we have
found significant potential.

Consider one of the most basic questions of language—what are the language ele-
ments? Language can be viewed as observing one or more discrete random variables X of
a sequence X = X1, . . . , Xi, . . . , XK , Xi = x ∈ XM, that is, xi may take on one of M distinct
values, XM is a set from which the members of the sequence are drawn, and hence xi is in
this sense symbolic, where each value occurs with probability p(xi), i ∈ [1, M]. One of the
earliest methods of characterizing the probabilistic properties of symbolic sequences was
proposed by Shannon [4,5] who proposed the concept of entropy, which can be defined as

H0(X) = −
M

∑
i=1

p(xi) log2(p(xi)) (1)

Entropy methods have been applied to a wide range of applications, including lan-
guage description [6–8], recognition tasks [9–13], identification of disease markers through
human gene mapping [14,15], phylogenetic diversity measurement [16], population biol-
ogy [17] and drug discovery [18].

An important task in applying entropy methods and subsequently in deriving syn-
thetic languages is the seemingly simple task of knowing what the probabilistic events are.
If the system has discrete features, then this task may be trivial; however, for continuous-
valued analog observed behaviors, this raises the question of how we should determine
what the symbols are. For example, suppose we wish to convert the movement of a human
body into a synthetic language. How can the movements, gestures or even speech be
converted into appropriate symbols?

This symbolization task is related to the well known problem of scalar
quantization [19,20] and vector quantization [21,22] where the idea is to map a sequence
of continuous or discrete values to a symbolic digital sequence for the purpose of dig-
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ital communications. Usually the aim of this approach is data compression so that the
minimum storage or bandwidth is required to transmit a given message within some
fidelity constraints. Within this context, a range of algorithms have been derived to provide
quantization properties.

Earlier work using vector quantization has been proposed in conjunction with speech
recognition and speaker identification. A method of speaker identification was proposed
using a k-means algorithm to extract speech features and then vector quantization was
applied to the extracted features [23].

An example of learning a vector quantized latent representation with phonemic
output from human speech was demonstrated in [24]. The concept of combining vector
quantization with extraction of speaker-invariant linguistic features appears in applications
of voice conversion, where the aim is to convert the voice of a source speaker to that of a
target speaker without altering the linguistic content [25]. A typical approach here is to
performing spectral conversion between speakers, such as using a Gaussian mixture model
(GMM) of the joint probability density of source and target features or by identifying a
phonemic model to isolate some linguistic features and then perform a conversion, while
minimizing some error metric such as the frame by frame minimum mean square error.

A common aspect of these models is generally to isolate some linguistic features
and then perform to vector quantization. Extensions of this work include learning vector
quantization [26], with more recent extensions to deep learning [27], federated learning [28],
entropy-based constraints [29]. A neural autoencoder incorporating vector quantization
was demonstrated to learn phonemic representations [30]. A method for improving com-
pression on deep features using an entropy-optimized loss function for vector quantization
and entropy coding modules to jointly minimize the total coding cost was proposed in [31].

In the work we present here, our interest is rather different in its goals from vector
quantization and hence the algorithms we derive take a different direction. In particular,
while vector quantization approaches tend to be aimed at efficient communications with
minimum bit rates, we seek to discover algorithms which might uncover emergent language
primitives. For example, given a stream of continuous values, it is possible to find a set
of language elements which might be understood as letters or words. While it may be
expected that such language based coding representations will also provide a degree of
compression efficiency, this is not necessarily our primary goal.

The goal of symbolization can therefore be differentiated from quantization in that the
properties of determining language primitives may be very different from simply efficient
data compression or even fidelity of reconstruction. For example, these properties may
include metrics of robustness, intelligibility, identifiability, and learnability. In other words,
the properties, goals and functional aspects of language elements are considerably more
complex in nature than those used in vector quantization methods.

In this paper, we propose an information theoretic approach for learning the symbols
or letters within a synthetic language without any prior information. We demonstrate
the efficacy of the proposed approaches on some examples using real world data in quite
different tasks including the translation of the movement of a biological agent into a
potential human language equivalent.

2. Synthetic Language Symbols
2.1. Aspects of Symbolization

Consider a sequence of continuous or discrete valued inputs. How can we obtain a
corresponding sequence of symbols derived from this input? An M-level quantizer is a
function which maps the input into one of a range of values. A quantizer is said to be
optimum in the Lloyd-Max sense if it minimizes the average distortion for a fixed number
of levels M [19,32].

A symbolization algorithm converts any continuous-valued random variable in-
put u(t) to a discrete random variable X of a sequence X = X1, . . . , Xi, . . . , XK, where
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Xi = x ∈ XM. In this sense, xi can be viewed as a component in an alphabet or finite
nonempty set with symbolic members and dimensionality M.

Hence, a trivial example of symbolization is the M-level quantization by direct parti-
tioning of the input space. In this case, for some continuous random variable set u(t) then
we have an output {x(t)} where

x(t) = Xi : Ui ≤ u(t) ≤ Ui+1 ∀i, i = 0, . . . , M (2)

where the quantization levels {Ui} are bounded as U0 = inf(u(t)), UM = sup(u(t)), and
where {Ui} are chosen according to any desired strategy, for example Ui < Ui+1 ∀i, and
Ui ∼ Φ(µ, σ). This approach partitions the input space such that the greater the value of
the input the higher the symbolic code in the alphabet and where the partitions are dis-
tributed according to a cumulative normal distribution. This simple probabilistic algorithm
encompasses the full input space, and has been demonstrated to provide useful results.

However, while any arbitrary symbolization scheme can be applied, in the context of
extracting language elements it is reasonable to derive methods with preservation proper-
ties. Previously we have derived entropy estimation algorithms which include linguistic
properties such a orthographic constraints with Zipf–Mandelbrot–Li distribution [33]. Here
we consider symbolization using a similar concept of preserving linguistic properties. In the
first instance, we consider a symbolization method which introduces a Zipf–Mandelbrot–Li
constraint, ensuring the derived language symbols reflect Zipfian properties. We then intro-
duce a constraint which seeks to preserve a defined language intelligibility properties. This
approach can be further extended to consider properties such as preservation of prediction.

Another approach we propose is to systematically partition the input space according
to linguistic probabilistic principles so that the derived language approximates natural
language. A method of doing this to partition the input space such that each region has an
associated probability which approximates the expected natural language events.

The methods we present here can be compared to prior work such as universal
algorithms for classification and prediction [34]. In contrast to these prior approaches
however, there are some major differences. In particular, since our interest is in language,
the sequences we consider are non-ergodic [35,36]. However, universal classification
methods are usually associated with ergodic processes [37]. Hence, these differences lead
us to consider a very different approach than these prior works.

While not only technically different, this means language symbolization requires very
different approaches than those developed for ergodic universal classifiers. Our aim in
this paper is to present and explore some of these different approaches which we consider
further below.

2.2. Zipf–Mandelbrot–Li Symbolization

Given the task of symbolization, we seek to constrain the output symbols to properties
which might reflect some of the linguistic structure of the observed sequence. There are
clearly many ways in which this can be achieved and in this algorithm we propose a simple
approach of probabilistic constraint as a first step in this direction.

For natural language, described in terms of a sequence of probabilistic events, it has
been shown that Zipf’s law [38–43] describes the probability of information events that
can generally be ranked into monotonically decreasing order. This raises the question of
whether it possible to derive a symbolization algorithm which produces symbols which
follow a Zipfian law. The idea here is that since we are seeking an algorithm which will
symbolize the input to reflect language characteristics, then it is plausible that such an
algorithm will produce symbols which will approximate a Zipfian distribution. In this
section, we propose such a symbolization method.

We have previously proposed a new variation of the Zipf–Mandelbrot–Li (ZML)
law [2,39,44], which models the frequency rank r of a language element x ∈ ΣM+1 from an
alphabet of size M + 1. An advantage of this model is that it provides a discrete analytic
form with reasonable accuracy given only the rank and the alphabet size. Moreover, it has
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the further advantage that it can be extended to include linguistic properties to improve
the accuracy when compared against actual language data [33].

Hence, a symbolization process based on the ZML law can be obtained and a derivation
for this symbolization algorithm based on the original development in [39,45,46] is shown
in Appendix A. Using this approach, where a precise value of the ranked probability
is available or each rank, given alphabet size M, then given a partitioned input space,
the algorithm firstly enables the ordering of each partition in terms of its probabilistic
rank such that each partition corresponds the closest ZML probability. We then derive
an algorithm termed CDF-ZML to constrain the partition probabilities with probabilistic
characteristics approximating a ZML distribution.

An example of the CDF-ZML approach with the resulting partitioning is shown in
Figure 1, where it can be observed that the most probable symbol occurs initially, and is
then followed by successively smaller probabilities (indicated by the area under the curve).

Figure 1. The proposed CDF-ZML linguistic symbolization algorithm partitions the input space to
provide symbols which follow a Zipfian distribution. In this one dimensional example, the symbols
with highest rank are left-most and are followed by successively smaller probabilities as indicated
by the area under the curve. The symbols are defined by the occurrence of a continuous valued
input within a given partition. Hence each symbol has a corresponding probability defined by a
Zipfian–Mandelbrot–Li distribution.

In contrast to simple M-level quantization schemes, this approach to partitioning is
not designed to optimize some metric of data compression, but rather it is a nonlinear
partitioning of the input space to ensure the probability distribution of the data will follow
an approximately Zipfian law. Thus, it may be viewed as a first step in seeking to symbolize
an input sequence as language elements. Note that we cannot claim that the elements
do indeed form the basis for actual language elements, so this is to be regarded as a first,
but useful step. In human language terms, this could be potentially useful for example,
in the segmentation of audio speech signals into phonemic symbols [47]. Hence, it may be
similarly useful in applications of synthetic language to extract realistic language elements.

Clearly this approach can be further extended, however, to consider other language-
based symbolization methods. In the next section we consider another methodology which
examines a more sophisticated property of language and how they may be incorporated
into symbolization processes.

2.3. Maximum Intelligibility Symbolization

Intelligibility is an important communications property which has received consid-
erable interest [48–50]. Hence, a symbolization method which can potentially enhance
intelligibility may be useful for deriving language based symbols.

Are there any precedents of naturally occurring intelligibility maximization? In
other words, since we are interested in synthetic languages which are not restricted
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to human language, are there other examples of naturally occurring forms of language
or information transmission systems which seek to enhance a measure of intelligibil-
ity as a function of event probabilities? In fact there are such examples which occur in
natural biological processes.

Intelligibility optimization is observed in genetic recombination events during meiosis
where interference which reduces the probability of recombination events is a function of
chromosomal distance [51]. In this case, genes closer together encounter greater interference,
and hence undergo fewer crossing over events, while for genes that are far apart crossover
and non-crossover events will occur in equal frequency. Another way to view this is that
the greatest intelligibility of genetic crossing over occurs with distant genes.

Accordingly, in this section, we develop a symbolization algorithm which seeks to
optimize intelligibility. Note that there are various metrics for defining intelligibility, and so
the approach we propose here is not intended to be optimal in the widest sense possible,
other approaches are undoubtedly possible and may yield better results or be better suited
to particular tasks or languages.

Based on the concept that probabilistically similar events could be confused with
each other, especially in the presence of noise, intelligibility can be evidently defined as a
function of the distance between probabilistically similar events. In this case, the idea is
that the symbols which are closest in probabilistic ranking should be made as distant as
possible in input space. Hence, we can introduce a probability-weighted constraint λc to be
maximized such as

λc = ∑
τ,πr

ψπ(τ − πr)
2 (3)

where ψπ enables a continuously variable weighting to be applied to the probabilistic
lexicon of symbolic events with symbols with distance indices τ and πr.

This approach can be generalized in various ways to include optimization constraints
for features such as robustness, alphabet size or variance of the symbolic input range.
Hence, if we require a symbolization scheme which will provide improved performance
in the presence of noise, then it may be useful to consider constraints which take this
into account.

Here we propose a symbolization approach using a probabilistic divergence measure
as an intelligibility metric. The goal is that the symbolization algorithm will produce a
sequence of symbols which have a property of maximum intelligibility. The way we do
this is to ensure that nearby symbols are the least likely to occur together. This is somewhat
similar to the principle used in the typewriter QWERTY keyboard, where the idea was to
place keys together which are unlikely to be used in succession [52].

The proposed MaxIntel algorithm is aimed to producing a symbolization scheme
which arranges nearby symbol partitions, according to the value of the input, to maximize
probabilistic intelligibility. The derivation of the symbolization algorithm with maximum
intelligibility constraints is given in Appendix B.

A diagram of this intelligibility CDF indexing is shown in Figure 2.

Figure 2. A natural extension of the symbolization process is to optimize the intelligibility of the
observed sequence. The rank ordering process of the proposed intelligibility symbolization algorithm
is illustrated here.
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The performance of the proposed intelligibility constrained symbolization algorithm
is shown in Figure 3. In this case, partitioning is constrained to maximize a probabilistic
divergence measure between sequential unigrams which optimizes the probabilistically
framed intelligibility.

Figure 3. The performance of the proposed maximum intelligibility symbolization algorithm is
shown in this example. The lower red curve shows the intelligibility of regular symbolization, while
the upper green curve shows the intelligibility of the proposed algorithm as a function of probabilistic
symbol rank. In this case the alphabet size is M = 20.

3. Learning Synthetic Language Symbols
A Linguistic Constrained EM Symbolization Algorithm (LCEM)

In contrast to the constructive symbolization algorithms considered in the previous
section, here we propose an adaptive neural-style learning symbolization algorithm suitable
for symbolizing dynamical systems where the data are provided sequentially over time.
In particular, we present an adaptive algorithm which constrains the symbols to have a
linguistically framed probability distribution.

The approach we propose is a symbolization method based on the well known
Expectation-Maximization (EM) algorithm [53]. However, a problem with regular EM
symbolization is that there is no consideration given to language constraints which might
provide a more realistic symbolization with potential advantages.

Hence, we derive a probabilistically constrained EM algorithm which seeks to provide
synthetic primitives which conform to a Zipfian–Mandelbrot–Li distribution corresponding
to the expected distribution properties of a language alphabet. The derivation of the Lin-
guistic Constrained Expectation-Maximization (LCEM) algorithm is given in Appendix C.

The way in which the LCEM algorithm operates is that a set of the clusters are
initialized and then an entropic error is minimized progressively as a probabilistic constraint
by adapting the mean and variance of each cluster. In this manner, a new weighting for
each cluster is obtained which is a function of the likelihood and the entropic error. This
continues until the cluster probabilities converge as indicated by the entropy or other some
other criterion has been met, such as time to converge.

The convergence performance of the LCEM symbolization algorithm is shown in
Figure 4. In this case, the probabilistic surface of the clusters are shown during the
adaptive learning process. The convergence of the symbol probabilities can be observed to
converge to the ZML probability surface.
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Figure 4. The performance of the LCEM adaptive linguistic symbolization algorithm is shown. In this
case, the probabilistic surface of the clusters are shown as they adapt. After 30 steps, the convergence
of the cluster probabilities (meshed surface) can be observed to converge to the ZML probability
surface (shaded).

4. Example Results
4.1. Authorship Classification

In this section, we present some examples demonstrating the application of sym-
bolization. It should be noted that our intention is not to validate symbolization using
simulations, rather we simply present some potential applications which show that useful
results can be obtained. We leave it to the reader to explore the potential of the presented
methods further. The examples also show that symbolization by itself does not necessarily
solve a task, but it can be an important part of the overall approach in discovering potential
meaning when applied to real world systems. Hence, we can expect that symbolization
will be only part of a much more comprehensive model.

In this example, we pose the problem of detecting changing authorship of a novel
without any pretraining. This is not intended to be a difficult challenge; however, it is
included to demonstrate the concept of using symbols within an entropy-based model to
determine some characteristics of a system based on a sequence of input symbols.

For the purpose of the example, the text was filtered to remove all punctuation and
extra white space, and hence XM = [a, b, . . . , z, sp]. The text was then symbolized with
M = 5 based on the word-length with {s0(nk)} : n1 < 3, 4 ≤ n2 < 6, 7 ≤ n3 < 9, 10 ≤
n4 < 12, 13 ≤ n5.

In this case, the initial dataset consisted of the text from “The Adventures of Sherlock
Holmes”, which is a collection of twelve short stories by Arthur Conan Doyle, published
in 1892. This main text was interspersed with short segments from a classic children’s
story, “Green Eggs and Ham” by Dr. Seuss published in 1960. The full texts were symbolized
and the entropy was estimated using the efficient algorithm described in [33], applied to
non-overlapping windows of 500 symbols in length.

The way in which authors are detected is then based on measuring the short-term
entropy of the input text features. We do not necessarily know in advance what the
characteristics of the text will be; hence, simplified methods of measuring average word
lengths are not so helpful. Hence, in this case, by assigning a symbol to different word
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length ranges, the idea is that the entropy will characterize the probabilistic distribution of
the input features.

To detect the different authors, we can introduce a simple classification applied to
the entropy measurement. In this case, we use the standard deviation of entropy, but for
a higher dimensional example, a more sophisticated classification scheme could be used,
for example, a k-means classifier.

The results are shown in Figure 5 where it is evident that the different authors are
clearly identifiable in each instance by a significant drop in entropy when the different
author is detected. Clearly this simple demonstration could be extended to multiple
features using more complex classifiers; however, we do not do this here.

Figure 5. The proposed symbolization algorithm used in conjunction with a fast entropy estimation
model readily detects different authors as shown here. An entire novel is represented across the
horizontal axis.

4.2. Symbol Learning Using an LCEM Algorithm

The behavior of the proposed LCEM algorithm is considered in this section. A conve-
nient application to examine is a finite mixture model where the cluster probabilities are
constrained towards a ZML model. In this case, we consider a small synthetic alphabet
which has a set of M = 12 symbols.

The performance of the LCEM algorithm when applied to a sample multivariate
dataset for M = 12 is shown in Figure 6.

Figure 6. The entropy convergence behavior of the proposed linguistic constrained EM algorithm.
Here an example is shown of how the LCEM algorithm performs on a sample multivariate data set
for M = 12.
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Hence, the proposed LCEM algorithm is evidently successful in deriving a set of syn-
thetic symbols from a multivariate dataset with unknown distributions by adapting a mul-
tivariate finite mixture model. It can be observed that the convergence performance of the
proposed LCEM algorithm occurs within a small number of samples. Interestingly, since the
optimization is based on the likelihood but constrained against the entropic error, the gra-
dient surface is nonlinear, and hence we observe an irregular, non-smooth error curve.

It is of interest to examine the convergence of the cluster probabilities and an example
of the LCEM algorithm performance is shown in Figure 7 where the cluster probabilities
are compared to the theoretical ZML distribution.

Figure 7. An example of the LCEM algorithm performance in adapting the cluster probabilities (solid
line) as compared to the theoretical ZML distribution (dotted line) when near convergence.

4.3. Potential Translation of Animal Behavior into Human Language

This example is presented as a curious investigation into the potential applications of
symbolization and synthetic language. Our interest is in discovering ways of modeling and
understanding behavior using these methods, and so we certainly do not claim that this is
a definitive method of animal behavior into a human language form. However, we found
it somewhat interesting, even if speculative in the latter stage, and hence it is intended to
stimulate discussion and ideas rather than provide a definitive solution to this task.

In part, our application is motivated by the highly useful data collected by
Chakravarty [54] from triaxial accelerometers attached to wild Kalahari meerkats. The raw
time series data from one of the sensors over a time period of about 3 min are shown
in Figure 8.

Analysis of animal behavior has received considerable attention and recent work
based on an information theoretic approach includes an entropy analysis of behavior of
mice and monkeys using a two types of behavior [55]. A range of information theoretic
methods including relative entropy, mutual information and Kolmogorov complexity were
used to analyze the movements of various animals using binned trajectory data in [56].
An analysis of observed speed distributions of Pacific bluefin tuna was conducted using
relative entropy in [57]. The positional data between pairs of zebra fish were analyzed
using transfer entropy to model their social interactions in [58].

It is evident that information theoretic approach can yield a deeper understanding of
animal behavior. A common aspect of these and other prior works that we are aware of, are
that they are restricted to using entropy-based methods. In our case, we are considering the
possibility of extending this approach further by treating the symbols as elements within a
synthetic language. Hence, we are interested to raise the question of whether it is possible
to obtain an understanding of biological or other behaviors using a synthetic language
approach. To the best of our knowledge this approach has not been considered previously
in this way. Hence, this will be demonstrative and exploratory in nature, rather than a
definitive analysis.
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The first step in our example, is to symbolize the observed data. In contrast to most
entropy based techniques, a larger alphabet size of symbols can be readily accommodated
within the analysis; however, for the purpose of this case, we select a smaller number of
samples which ensures the input range is fully covered.

The CDF-ZML symbolization algorithm with a synthetic alphabet size of M = 5 was
applied to 10 s of meerkat behavioral data. A ZML distribution was generated according to
(A1)–(A9). The symbolic pdf output is shown in Figure 9.

Hence, the raw meerkat behavioral data are symbolized, where for convenience in
this example, we use letters to represent each symbol. Note that we could also consider
a richer set of input data as symbols. For example, using n-grams or frequency domain
transformed inputs, or a combination of these methods.

Observing a synthetic language requires determining letters, spaces and words. Hence,
symbolization provides the first stage in discovering the equivalent of letters in the observed
sequence. The next step is to determine spaces which in turn enables the discovery of
words. However, even this simple task is not necessarily so trivial.

Figure 8. Behavioral time series data obtained from a triaxial accelerometer attached to a wild
Kalahari meerkat recorded over about 3 min and sampled at 100 Hz.

In human language, it is generally found that the most frequent symbol is a space.
Following a similar approach, we found that it is useful to determine which symbol or
symbols separate words in the symbol sequence. In human speech or written language,
a space or pause is simply represented by a period of silence. However, in behavioral
dynamics, particularly when there is nearly constant movement, such a period of “silence”
does not necessarily have a corresponding behavioral characteristic of no movement.

In this context, we consider that the functional role of a space is essentially a “do-
nothing” operation. Hence, in an animal species which displays almost constant movement,
there are effectively six types of behaviors which we propose can constitute a functional
space. These correspond to forward and reverse directions in each of the three axes. The ac-
tual identification of these functional spaces is then found by measuring the movements in
each of these directions which occur with the highest frequency. Note that this does not
mean that the animal is actually doing nothing. It means that in terms of an information
theoretic perspective, the symbols have the highest relative probability of occurring and
therefore convey little “surprising” information.

As a first step, the entropy of the resulting symbolic sequence can be computed and is
shown in Figure 10. This reveals some structure in terms of low and high frequency periodic
behavior. Such periodic probabilistic behavior is to be expected in natural languages since it
may correspond to random, but predictably frequent words with different probabilities [59].
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Figure 9. Applying the CDF-ZML symbolization algorithm to the meerkat behavioral data provided
this symbolic pdf which is then used to symbolize the data.

A symbolic sequence obtained from the meerkat raw sensory data are shown
in Figure 11. For convenience, the symbols are represented by letters which enables
the visualization of the synthetic language words. In this case, the synthetic language
spaces are replaced by regular spaces, which enables the synthetic language words to
be viewed.

When viewing this sequence of symbols perhaps the first question that can be asked
is “how can this be understood”? The well known direct method is one approach for
determining the meaning of the words within languages [60]. This method relies on a
number of aspects; however, it principally requires some form of direct matching of real
world objects or tasks and the related words. Consequently this causes some disadvantages
including the difficulty of learning and the time required.

Figure 10. Entropy of the Kalahari meerkat movement when symbolized using the proposed
CDF-ZML algorithm. The quasi-periodic time series reveals structure in terms of low and high
frequency periodic behavior corresponding to the predictably frequent occurrence of words with
different probabilities.

Grammar translation is another approach for translating between languages and is
based on knowledge of the rules, grammar and meaning of words in both languages [61].
However, for the task of learning the meaning of a new synthetic language for which we
do not have an understanding of the language itself, this method is not likely to be useful.

One possible approach which may be useful for translating synthetic language is to
consider methods based of understanding the functional aspects of the language. The idea
of communicative-functional translation is to view translation as related to communication
between specific actors [62]. Hence, we suggest that a probabilistic functional translation
method might be of interest to consider in this case.
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Figure 11. Symbolic output from the Kalahari meerkat movement data obtained using CDF-ZML
symbolization algorithm. The symbols are represented as letters and the synthetic words are
clearly evident.

How can such probabilistic functionality be measured and adopted in such a potential
translation application? It is clearly not possible to use the probabilistic structure across a
large vocabulary, and universal structure is notoriously uncommon across languages [63].
However, we suggest that it may be possible to consider an approach of cross-lingual transfer
learning based on probabilistic structure of parts of speech (POS) [64,65].

It is evident that despite the existence of a large number of POS across various lan-
guages, and some disagreement about the definitions, there is strong evidence that a set
of coarse POS lexical categories exists across all languages in one form or another [66].
This indicates that while fine-grained relative cross-lingual POS probabilities may vary,
when linked to the same observed linguistic instantiations, the cross-lingual probabilities
of coarse POS categories are likely to be similar [67–69]. Therefore, while we have used
probabilistic POS rankings from an English language corpora in this example, since we are
using only coarse-grained categories, this means that the rankings might be expected to be
stable across languages.

There is some closeness of ranked probabilities between some POS categories and this
presents some degree of uncertainty in the results. One approach to consider this further
in future work would be to seek to introduce functional grammatical structure based on
probabilistic mappings. That is, in the present example we are only considering very simple
probabilistic rankings of coarse POS; however, a future approach might extend the concept
of probabilistic rankings to more complex linguistic properties as employed in current POS
tagging systems to disambiguate POS and reduce the uncertainty of the many possible
English-language translations [70,71].

Hence, as a next step in this investigation, we determined the probabilistic characteris-
tics of coarse-grained POS observed in English using the Brown Corpus. The normalized
ranked probabilities are shown in Figure 12 and the specific types of speech are shown in
Figure 13.

Figure 12. Normalized ranked probabilistic characteristics of parts of speech from the Brown Corpus.
This is used as a first step in our proposed translation approach based on cross-lingual transfer
learning based on probabilistic parts of speech.
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Figure 13. The specific parts of speech obtained from the experimentally determined ranked proba-
bilities of parts of speech from a range of corpora.

The synthetic words can be ranked according to probabilities and because the vocabu-
lary is limited, we map these to corresponding parts of speech in human language with the
same relative probabilistic rankings. This would not necessarily be easily done for large
vocabularies, but because the synthetic language under consideration has a small vocabu-
lary, we can readily form the mapping as shown in Figure 14. This approach assumes that
there exists the same POS in both languages which correspond according to probabilistic
ranking. However this appears to be a reasonable assumption when considering sets of
coarse syntactic POS categories which omit finer-grained lexical categories as we do in this
example [66,70–72].

Figure 14. The probabilistic rankings of the English language coarse syntactic parts of speech are
used to map the synthetic language words with the same rankings.

While the cross-lingual POS mapping gives some possible insight into the potential
meaning of the observed synthetic language, we thought it would be of interest to view a
form of potential high probability words corresponding to the sequence of observed POS.
Hence, we proposed the concept of visualizing what the sequence would potentially “look
like” if it were written in a human understandable form. Therefore the next step is not
intended to provide an accurate translation of the actual behavior, but rather as a means of
trying to view one possible narrative which could fit the observations.

Accordingly, we analyzed the Brown corpus to obtain the most frequent words corre-
sponding to each of the coarse syntactic POS categories. We then assigned each of these
most frequent words to the categories as shown in Figure 15. We do not claim that these
words are what is actually “spoken” by the behavior, but provides a novel way of seeking
to view a potential narrative for this example.

In this way, instead of viewing the synthetic words such as “BCD”, “AB”, etc., we
first map them to a coarse level syntactic POS. From this point, the POS are mapped to
recognizable human language words. Although admittedly speculative, this last stage
provides an interesting insight into how we might begin to understand the possible meaning
of unknown synthetic language texts.
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Figure 15. The synthetic language words can be mapped to potential parts of speech according to
their relative probabilities. Then a potential human language translation can be formed by associating
place-holder words with the synthetic language “words” corresponding to specific parts of speech.

The resulting output in human language is shown in Figure 16, where a simplistic,
but recognizable synthetic dialog can be seen emerging.

Figure 16. The synthetic language of the meerkat behavior is first translated into coarse syntactic POS
categories which omit finer-grained lexical categories. Then, using the most frequent probabilistically
ranked POS words as place-holders, we can then provide a possible, but speculative narrative.

Interestingly, although not shown in the results here, the behavior of the meerkat
can be viewed as doing nothing of interest for a period of time—almost like an extended
period of “silence” and then followed by a period of high activity. It is in this high activity
time that we show the output “translation” results. These last stage results are included as
a curiosity.

A next step from this point is to explore ways of ascertaining more reliable word
translations. For example, embedding ground truth by direct learning is one possibility,
though with distinct disadvantages as noted earlier. However, another more promising
approach appears to be extending the concept of communicative functional grammar,
which we can consider in terms of conditional probabilistic structures. However, these
topics are beyond the scope of this paper and will be explored in the future.

5. Conclusions

Many real world systems can be modeled by symbolic sequences which can be an-
alyzed in terms of entropy or synthetic language. Synthetic languages are defined in
terms of symbolic primitives based on probabilistic behavioral events. These events can be
viewed as symbolic primitives such as letters, words and spaces within a synthetic language
characterized by small alphabet sizes, limited word lengths and vocabulary, and reduced
linguistic complexity.

The process of symbolization in the context of language extends the concept of scalar
and vector quantization from data compression and fidelity to consider explicit linguistic
properties such as probabilistic distributions and intelligibility.

In contrast to human languages, where we know the language elements including
letters, words, functional grammars and meaning, for synthetic languages, even deter-
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mining what constitutes a letter or word is not trivial. In this paper we propose algo-
rithms for symbolization which take into account such linguistic properties. We propose
a symbolization algorithm which constrains the symbols to have a Zipf–Mandelbrot–Li
distribution which approximates the behavior of language elements forms the basis of
some linguistic properties.

A significant property for language is effective communication across a medium
with noise. Hence, we propose a symbolization method which optimizes a measure of
intelligibility. We further introduce a linguistic constrained EM algorithm which is shown
to effectively learn to produce symbols which approximate a Zipfian distribution.

We demonstrate the efficacy of the proposed approaches on some examples using
real world data in different tasks, including authorship classification and an application of
the linguistic constrained EM algorithm. Finally we consider a novel model of synthetic
language translation based on communicative-functional translation with probabilistic
syntactic parts of speech. In this case, we analyze behavioral data recorded from Kalahari
meerkats using the symbolization methods proposed in the paper. Although not intended
to provide an accurate or authentic translation, this example was used to demonstrate a
possible approach to translating unknown data in terms of synthetic language into a human
understandable narrative.

The main contributions of this work were to introduce new symbolization algorithms
which extend earlier quantization approaches to include linguistic properties. This is a
necessary step for using entropy based methods or synthetic language approaches when
the input data are continuous and no apparent symbols exists in the measured data. We
presented various examples of using the symbolization algorithms to real world data which
demonstrate how it may be effectively applied to analyzing such systems.
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Appendix A. Derivation of Zipf–Mandelbrot–Li Probabilistic
Symbolization Algorithm

The approach we consider here is to derive an algorithm which partitions an input
space, which may be continuously valued, such that for some input sequence, the output
will be constrained to a particular probabilistic distribution. The constraint we use is a
well-known Zipfian distribution which is frequently observed in language primitives.

In previous work we have proposed a new variation of the Zipf–Mandelbrot–Li (ZML)
law [2,39,44]. The advantage of this model is that it provides a discrete analytic form with
reasonable accuracy given only the rank and the alphabet size. Moreover, it has the further
advantage that it can be extended to include linguistic properties to improve the accuracy
when compared against actual language data [33].

https://www.nltk.org/book/ch02. html
https://doi-org.ezproxy.library.uq.edu.au/10.5061/dryad.7q294p8
https://doi-org.ezproxy.library.uq.edu.au/10.5061/dryad.7q294p8
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The symbolization process based on the ZML law can be derived as follows. Firstly
we describe the formulation of the ZML law. For any random word of length L, given by
vk(L) = {ws, x1, . . . , xL, ws}, k = 1, . . . , ML the frequency of occurrence is determined as

pi(L) =
λ

(M + 1)L+2 i = 1, . . . , ML (A1)

where the model uses the frequency rank r of a language element x ∈ ΣM+1 from an
alphabet of size M + 1. Li showed that λ can be determined as [39]:

∞

∑
L=1

ML pi(L) = 1 (A2)

∞

∑
L=1

ML λ

(M + 1)L+2 =
λM

(M + 1)2 (A3)

λ =
(M + 1)2

M
(A4)

which leads to
pi(L) =

1

M(M + 1)L i = 1, . . . , ML (A5)

Now, defining the rank of a given word vk(L) as r(L), the probability of occurrence of
a given word in terms of rank can be defined as [45,46]:

p(r) =
γ

(r + β)α (A6)

This allows the model to be determined as γ′ = γ/κ, p(r) = γ′/(r + β)α, where the
model parameters can be found as [39]:

α =
log2(M + 1)

log2(M)

β =
M

M + 1

γ =
Mα−1

(M− 1)α
(A7)

Hence, the probabilities of the distribution can be determined as

p(r) =
Mα−1

[(M− 1)(r + β)]α
(A8)

where
M

∑
i=1

p(i) = 1,
∞

∑
i=1

γ

(r + β)α = κ (A9)

This means that for a given alphabet size M, and for each rank, a precise value of the
ranked probability is available. This will be useful in our discrete probability mass estimate
for each event in a symbolic alphabet as shown below.

Given a partitioned input space, the first step we can take is to nominate the proba-
bilistic rank of each partition. While the depiction in Figure 1 shows a partitioning strategy
which has the highest rank left-most, the actual partitioning could be in any rank order.

Hence, we require a strategy for selecting the indices of the partition that correspond
the closest ZML probability. Therefore, we define the set of required ZML indices as {πr}
r = 0, . . . , M and { p̂U(Ui)} as the initial set of probabilities associated with the partitioned
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input space, and where {pz(r)} is the set of probabilities according to (A7)–(A9). Then we
can obtain the required set of indices according to the simple criteria

πrk =

 1 if k = arg min
i

(
|pz(r)− p̂U(Ui)|

)
0 otherwise

(A10)

where k = i such that |pz(r)− p̂U(Ui)| is minimized among all values of p̂U(Ui), for a
given pz(r).

Hence πrk can be found by a simple search procedure in O
(
n2) time to determine the

set of partition ranges with probabilities { p̂U(πr)} that most closely corresponds to the
ZML model {pz(r)} defined by (A7)–(A9).

Clearly, while this is a useful step, it is of interest to be able to partition the input
space directly to obtain regions which correspond arbitrarily closely to a ZML distribution.
Hence, the next step in the process of symbolization is to determine a direct partitioning
algorithm. We describe a method for doing this below.

One possible approach which we term the CDF-ZML method, is to partition the
input space into a set with probabilistic characteristics { p̂U(πr)}, using kernel density
estimation [73] or a direct cdf estimation algorithm [74]. From the cdf it is possible to
directly partition the input space according to { p̂U(πr)}.

Using a simple brute force approach, let F̂(u) be the estimated cdf of the input space,
then stepping through the range of the cdf, for each uj, find F̂(uj).

Subsequently we define

p̃(uj) = F̂(uj)− F̂U(πr) (A11)

where
{

F̂U(πr)
}

is the cdf of the corresponding ZML distribution { p̂U(πr)}, and hence
the set { p̃(uπ)} can be readily determined.

Therefore, this is a simple algorithm which can be used to partition an input space,
enabling a memoryless symbolization of an input sequence, where the distribution is
constrained to be characterized by a defined Zipf–Mandelbrot–Li distribution.

Appendix B. Derivation of Intelligibility Maximization (MaxIntel) Algorithm

Language sequences are known to be rich in their expressive capability and can be
defined in terms of various statistical properties. Another aspect of language is that it has
features of intelligibility, which enable the input to have greater likelihood of recognition
under conditions of noise.

Here we present an algorithm which seeks to maximize the intelligibility of a sequence
through an appropriate partitioning scheme. The idea is that we place the partitions in
such a way that the partitions nearest to each other have the least probability of occurring.

We proceed with the derivation of the algorithm as follows. For a sequence of symbols
{sτ} with probabilities { p̃(τ)}, for any given symbol sτ with probability p̃(τ), then the
subsequent partition is defined to correspond to a symbol sω where the symbol index ω is
determined as:

ω = arg max
τ

χ(τ; θ) (A12)

Then an intelligibility measure χ(τ; θ) is defined as

χ(τ; θ) =
1
M

M

∑
τ

d(τ) (A13)

d(τ) = α(τ)( p̃(τ)− p̃(τ − 1))2 (A14)

α(τ) = g(p̃(τ)) (A15)

where p̃(τ) is the set of probabilities of all symbolic elements.
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Next, we introduce a scaling factor g(p̃(τ)) which can be defined in terms of measures
such as Jeffreys entropy or relative entropy.

It is necessary to normalize the probability differences. Hence, a simplified probability
normalization we choose is

g(p̃(τ)) =
1
2
( p̃(τ) + p̃(τ − 1))2 (A16)

which ensures that the probability differences will be normalized by the mean value of the
probability bounds.

This allows us to then derive a symbolization algorithm by an ordering method which
maximizes intelligibility. We proceed to determine this using the following method.

Let G be a connected graph of the probability indices for probabilities { p̃(τ)}. A
symbolization algorithm can order the probabilistic regions of an input space in any
sequence, and hence is unordered. The Wiener index W(G) is the sum of the distances
between all unordered pairs of distinct vertices [75,76] and hence

W(G) = ∑
{τ,π}⊆V(G)

dG(τ, πr) (A17)

where dG(τ − πr) is distance between vertices. In the present discussion, we consider
unimodal probability distributions and hence their corresponding indices. However, this
approach can be readily extended to multimodal systems in which case a natural extension
to vertices is provided. For our purposes, we consider the unimodal case and hence restrict
our discussion to indices in a linear probability distribution { p̃(τ)}. τ and πr, that is,
the minimum number of edges on a (τ, πr)-path in G.

Now, since the distance is measured in terms of probabilities, we define

dG(τ, π) = α(τ, π)( p̃(τ)− p̃(π))2 (A18)

where V(G) is the vertex set and n(G) = |V(G)| is the order of G. The maximum intelligi-
bility χm(G) can be defined as a function of the eccentricity eG(τ) of a vertex τ which is the
distance of a vertex a maximal distance from τ, hence

χm(G; θ) =
1

M− 1

M−1

∑
τ

eG(τ, θ) (A19)

eG(τ, θ) = max
πr⊂V(G)

dG(τ, πr) (A20)

and
θ(τ) = arg max

πr⊂V(G)
dG(τ, πr) (A21)

Consider the incremental change in intelligibility χm(G; θz) for a probability set corre-
sponding to the ZML model {pz(r)} defined by (A7)–(A9), of size M = k, pz(r) < pz(r + 1)
∀r, we have, for k = 2, θz(1; M) = 2, the index of the maximal distance between vertices i
and r is given by

θz(i, r; M) = arg max
k

[dz(i, k)] r = 2, . . . , M; i = r− 1 (A22)

where we define
dZ(τ, π) = α(τ, π)( p̃(τ)− p̃z(π))2 (A23)

Then
θz(1, r = k; M) = M, k = 2 (A24)

Furthermore, hence
nz(G; k) = [1, M, 2, uk] (A25)
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where uk is the remainder ordered set. Then, defining the maximal probabilistic distance
between vertices τ and π in an ordered set { p̃(τ)} of size M as

d̂Z(τ, π; M) = α(τ, π)( p̃(θz)− p̃z(π))2 (A26)

Then we have for τ = 1, π = 2

θz(1, 2; M) = arg max
k

[dz(k, k + 1)]

= arg max
k

{
d̂z(k, M− j; M)

}
j = 0, . . . , M− 1 (A27)

= M

and since we have populated p̃(τ = 2)⇒ i = M, then we have for τ = k, π = k + 1

θz(k, k + 1; M) = arg max
k

[dz(k, k + 1)]

= arg max
k

{
d̂z(k, M− j; M)

}
j = k− 1, . . . , M− (k− 2)/2 (A28)

= max(M− j) (k even)

and by induction, for i = k + 1, r = k + 2

θz(k, r = k + 1; M) = arg max
k

[dz(k, k + 1)]

= arg max
k

{
d̂z(k, M− j; M)

}
j = k− 1, . . . , M− (k− 1)/2 (A29)

= min(M− j) (k odd)

and hence nz(G) can be obtained. Hence, an algorithm which optimizes this intelligibility
measure for unigrams is given by

χe(2k) = pz(k) k = 0, . . . , M/2

χo(2k− 1) = pz(M− k) k = 1, . . . , M/2 (A30)

Hence, the resulting algorithm permits the partitioning of the input space into re-
gions which will ensure maximal intelligibility by ensuring the distance between similarly
probable events is as large as possible.

Appendix C. Derivation of LCEM Symbolization Algorithm

The EM algorithm is a well known method of clustering data. Here we propose
a probabilistic constrained EM algorithm which seeks to provide synthetic primitives
which conform to a Zipfian–Mandelbrot–Li distribution corresponding to the expected
distribution properties of a language alphabet.

Consider an iid d-dimensional random vector x ∈ Rd which can be approximated by
a multivariate mixture model. This can be described by

p̃M(xi|θ) =
K

∑
k=1

αk p̃k(xi|zi = k, θk) (A31)

where zi is a latent, random K-dimensional indicator vector identifying the mixture compo-
nent generating xi where

1{zi=k}=

{
1 if zi = k
0 otherwise

(A32)
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For a Gaussian mixture distribution, {αk} is the set of mixing coefficients satisfying
αk ≥ 0 and ∑K

k=1 αk = 1 with mixture components are defined as

p̃k(xi|θk) ∼ N(xi|θk) (A33)

with mean values µ ∈ Rd and symmetric, positive definite covariance matrix Σ ∈ Rdxd

and θi = [µi, Σi]. Hence p̃k(xi|θk) can be defined in terms of the d-dimensional multivariate
normal distribution, where

p̃k(xi|θk) =
1√

|Σk|(2π)d
exp

(
−1

2
(xi − µk)

TΣ−1
k (xi − µk)

)
(A34)

Note that the components can be any parametric density function which need not have
the same functional form. To fit a mixture model, we may define the likelihood function

l(θ) =
N

∑
i=1

log p̃M(xi|θ) (A35)

=
N

∑
i=1

log

(
K

∑
k=1

αk p̃k(xi|zi = k, θk)

)
; (A36)

however, finding a maximum likelihood estimate of θ may be difficult. In fact, due to the
hidden variables {zi}, there may be no closed form solution to determine the parameters
θ. Hence, a convenient solution to this problem is the EM algorithm, where although
maximizing l(θ) might be difficult or impossible, this approach provides an iterative
method of repeatedly constructing a lower-bound on l(θ) and then optimizing the lower
bound using Jensen’s inequality. Hence, this approach performs a local maximization of
the log likelihood.

The E-step of the EM algorithm computes the membership weight of data point xi in
component k with parameters θk, for i ∈ [1, N] data points, is defined as

wik =
αk p̃k(xi|zi = k, θk)

K
∑

m=1
αm p̃m(xi|zm = k, θm)

k = 1, . . . , K (A37)

Having obtained the membership weights, the M-step is used to calculate a new set of
parameter values. The sum of the membership weights calculated in (A37) can be used to
determine the number of points contributing to each component can be now determined as

αk(t + 1) =
Nk
N

k = 1, . . . , K (A38)

where

Nk =
N

∑
i=1

wik (A39)

Hence, new estimates of the parameters can be obtained as follows. For the Gaussian
mixture model, we have

µk(t + 1) =
(

1
Nk

) N

∑
i=1ik

xiwik k = 1, . . . , K (A40)

and the updated estimate for the covariances is

Σk(t + 1) =
(

1
Nk

) N

∑
i=1ik

wik(xi − µk(t + 1))(xi − µk(t + 1))T (A41)
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Now, a support region can be placed on each mixture to provide a set of probabilities.
Hence, for a Gaussian mixture model with adaptive support regions, we introduce the
model, parametrized as

p̃M(x|ϕ) =
K

∑
k=1

αk p̃k(xi|zi = k, ϕk) (A42)

where ϕi = [µi, µ̂i, Σi, Σ̂i], and a probabilistic bound is associated with each compo-
nent and is defined by the hyper-volume with edges {αi}, {µi ± µ̂i}, {Σi + Σ̂i} resulting
in probabilities

p(xk|ϕk) =

µj+µ̂j∫
· · ·

∫
µj−µ̂jk

p̃k(xk|zk = 1, ϕk) j = 1, . . . , d (A43)

which can be computed using adaptive quadrature transformations for bivariate and
trivariate distributions developed by Drezner and Genz [77–79] and for higher dimensions
a Genz-Bretz quasi-Monte Carlo integration can be used [80,81].

Now, by assigning each data point to a particular region, either fully or in part,
coverage is obtained for the full input space, while conveniently developing a probability
that can be assigned to the symbol represented by data points appearing in this space. This
overcomes the need for a full tessellation approach adopted previously, since the full input
space is implicit in the model. The probabilities can be readily assigned in the latter case by
various approaches such as a Bayesian model, a winner-take-all model, or simply by direct
use of the mixture weights and the derived probabilities. The choice of which approach to
use can be anticipated to be determined by the application.

Here, the proposed linguistic constrained EM (LCEM) algorithm efficiently extends
(A37)–(A41) to determine the sorted probabilities associated with each cluster, aligned to a
theoretical probability distribution defined by (A1)–(A9), where:

eH(x|M, ϕ) = Hz(M)− H0(x|ϕ) (A44)

where:

H0(x|ϕ) = −
M

∑
i=1

ps(xi|ϕi) log2 ps(xi|ϕi) (A45)

and the probabilities ps(xi|ϕi) are the rank ordered probabilities

ps(xi|ϕi) =
M⋂

k=1

p(xk|ϕk) (A46)

Hence, we introduce constrained EM update equations such that for the Gaussian
mixture model, we have

µk(t + 1) =
(

1
Nk

) N

∑
i=1ik

xiwik (A47)

where

µk(t + 1) =
{

µk(t + 1) if t < Nb
µk(t + 1) + η(ς, t)e(x|M, ϕ) otherwise

(A48)

and

Σk(t + 1) =
(

1
Nk

) N

∑
i=1ik

wik(xi − µk(t + 1))(xi − µk(t + 1))T (A49)
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with

Σk(t + 1) =
{

Σk(t + 1) if t < Nb
Σk(t + 1) + η(ς, t)e(x|M, ϕ) otherwise

(A50)

where η(ς, t) is an adaptive learning rate defined as

η(ς, t) =

{
ε if t < NL

ε exp
(
−ρt
Nr

)
otherwise

with learning rate ε, decay constant ρ, adaptive learning delay NL over t = 1, . . . , Nr.
In the LCEM algorithm, the clusters are initialized over Nb points, and then the entropic

error is minimized progressively as a constraint by adapting the mean and variance of each
cluster. In this manner, a new weighting for each cluster is obtained which is a function of
the likelihood and the entropic error. This continues until the cluster probabilities converge
as indicated by the entropy, or other some other criterion has been met, such as time
to converge.

The proposed algorithm is suitable for an online approach where not all of the data
are available at once. The LCEM algorithm introduces a novel constraint of seeking to
ensure the symbolization process outputs symbols which conform to a Zipf–Mandelbrot–Li
distribution. This approach can be extended to introduce further constraints which would
improve the expected performance in terms of linguistic feature characterization.
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