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Abstract: TP53 plays critical roles in maintaining genome stability. Deleterious genetic variants
damage the function of TP53, causing genome instability and increased cancer risk. Of the large
quantity of genetic variants identified in TP53, however, many remain functionally unclassified
as variants of unknown significance (VUS) due to the lack of evidence. This is reflected by the
presence of 749 (42%) VUS of the 1785 germline variants collected in the ClinVar database. In this
study, we addressed the deleteriousness of TP53 missense VUS. Utilizing the protein structure-
based Ramachandran Plot-Molecular Dynamics Simulation (RPMDS) method that we developed, we
measured the effects of missense VUS on TP53 structural stability. Of the 340 missense VUS tested,
we observed deleterious evidence for 193 VUS, as reflected by the TP53 structural changes caused
by the VUS-substituted residues. We compared the results from RPMDS with those from other in
silico methods and observed higher specificity of RPMDS in classification of TP53 missense VUS
than these methods. Data from our current study address a long-standing challenge in classifying
the missense VUS in TP53, one of the most important tumor suppressor genes.

Keywords: TP53; VUS; deleterious; molecular dynamic simulations; ramachandran plot

1. Introduction

As one of the most important and studied tumor-suppressor genes, TP53 plays es-
sential roles in maintaining genome stability through controlling cell cycle, activating
DNA damage repair, and initiating apoptosis [1–3]. TP53 is also one of the most muta-
ble tumor suppressor genes, affecting nearly all types of cancer [4]. While the majority
of TP53 variation is somatic, germline variation also frequently occurs and causes early
development of multiple types of cancer, as represented by the Li-Fraumeni syndrome [5].
Efforts made in TP53 germline variation studies have greatly enhanced our understanding
of the mechanisms of tumorigenesis and have promoted the treatment, prognosis, and
prevention of cancer.

Since TP53 was identified four decades ago, 2177 TP53 germline variants have been
identified so far, including the 553 distinct TP53 germline variants from the International
Agency of Research on Cancer (IARC) TP53 database (https://p53.iarc.fr, accessed on
6 June 2021) and the 1785 distinct TP53 germline variants from the ClinVar database
(https://www.ncbi.nlm.nih.gov/clinvar/, accessed on 18 June 2021). Unlike the frameshift
or nonsense variants that commonly occur in many other tumor suppressors, germline
variation in TP53 is mostly missense variant, causing single amino acid substitution, and is
located mostly within the DNA binding domain (DBD) of TP53. Although the pathogenicity
of many hot-spot TP53 germline variants, such as R175H, G245S, R248Q, R273C, R273H,
and R282W [6], have been well determined, the function of the majority of TP53 germline
missense variants remains unknown due to the lack of functional evidence. Determination
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of the pathogenicity for the unclassified TP53 missense variants remains an obstacle in
translating the rich knowledge of TP53 in tumorigenesis into clinical cancer applications.
This is also a common challenge in many cancer predisposition genes [7–9].

Protein structure has been widely used to study gene function [10,11] and has also
been used to study the relationship between TP53 variation and TP53 function [12]. We
recently developed a protein-structure-based method, named Ramachandran Plot Molec-
ular Dynamics Simulation (RPMDS), to study the effects of genetic variation on gene
function [13]. In this method, the Ramachandran plot measures the influences of missense
variants on TP53 secondary structure, and molecular dynamics simulation (MDS) simulates
the dynamic effects of the variation on TP53 structural stability. By referring to the infor-
mation from the known pathogenic, known benign/likely benign variants (herein referred
as benign variants), and wild type alleles, RPMDS provides a quantitative measurement
for the impact of missense variants on TP53 structural stability and uses the information
to identify the deleterious missense variants. Testing of the RPMDS method in a group of
TP53 missense VUS showed satisfactory results [13].

In the current study, we performed a comprehensive analysis for all 340 TP53 missense
VUS present in the TP53 DNA binding domain by using the RPMDS method. We were
able to provide physical evidence for the deleteriousness of 193 VUS based on their impact
on TP53 structure.

2. Results
2.1. Construction of Mutant Protein Structures

From the ClinVar database, we identified a total of 443 missense variants located within
the TP53 DNA binding domain, including 80 known pathogenic, 23 known benign/likely
benign, and 340 VUS (Supplementary Table S1). Of the 443 variants, 146 (33%) were also
recorded in the International Agency for Research on Cancer (IARC) TP53 database [14].
The TP53 DNA binding domain structure (PDB ID:2OCJ, 94–313 residues, 2.05 Å resolu-
tion) [15] was used as the template to construct TP53 mutant structures for each of the
443 missense variants. We compared the G245S-, R273C-, and R273H-based TP53 mu-
tant structures with the experimentally determined TP53 crystal structures PDB ID:7DHY
(97–289 residues), PDB ID: 4IBQ (87–288 residues), and PDB: 4IBS (96–288 residues), and
we observed 99.48%, 99.48%, and 99.48% identity, respectively. The results show high
reliability of the constructed mutant structures.

2.2. Identification of Deleterious Variants

We first used the data generated from the wild-type (WT) alleles, known pathogenic
and benign variants, as the trained data to set the cut-off value for the deleterious vari-
ants, by following the process described in detail in our previous publication [13]. Briefly,
the density deviation of the 80 known pathogenic variants was plotted against the nor-
mal and lognormal distribution curves for Anderson-Darling and Kolmogorov-Smirnov
goodness-of-fit tests [16,17] (Figure 1A,B). Here, “structural deviation” was defined as the
Ramachandran plot difference between the pathogenic and the trained data, of which the
trained data contained the average benign variants and WT Ramachandran density plots.
A significant deviation with a mean of 3.22 was obtained, with a scale sigma of 0.299 and
upper and lower 95% boundaries between 3.158 and 3.491. The lower 95% boundary of
the mean was set as the cut-off for the variants with deviation ≥ 3.158 to be classified as
“deleterious”, and those <3.158 were classified as the “undefined” (no structure change
doesn’t rule out deleterious effects). The deviation number was converted to a percentage
to show the deviation rate from the WT. The Mann-Whitney test showed that the benign
and pathogenic data were significantly different, with a Z score of 2.27 and p-value of
0.0223 [18] (Figure 1C).
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Figure 1. Goodness-of-fit test for 23 benign/likely benign and 80 pathogenic TP53 variants. (A) Normal and lognormal 
distribution curves of the known benign/likely benign (cyan) and pathogenic variants (orange). The curve fits better in 
lognormal distribution (red) than in normal distribution (black) for both benign and pathogenic variants. (B) Statistics test. 
(C) Mann-Whitney test for comparing benign and pathogenic data. 

Under the cut-off of 3.312, 47 of the 80 known pathogenic variants were classified as 
deleterious variants, with upper and lower 95% boundaries between 3.175 and 3.904 (23.9–
49.6%) structural deviation from the trained data (Supplementary Table S2). The well-
known pathogenic variants, including R175H, Y220C, G245S, R248Q, R273C, and R282W, 
had the highest structural deviation (39.3–49.6%) from the WT structure. The deleterious 
nature was well demonstrated by their destructive effects in the TP53 structure compared 
with the WT TP53 structure (Figure 2).  

Figure 1. Goodness-of-fit test for 23 benign/likely benign and 80 pathogenic TP53 variants. (A) Normal and lognormal
distribution curves of the known benign/likely benign (cyan) and pathogenic variants (orange). The curve fits better in
lognormal distribution (red) than in normal distribution (black) for both benign and pathogenic variants. (B) Statistics test.
(C) Mann-Whitney test for comparing benign and pathogenic data.

Under the cut-off of 3.312, 47 of the 80 known pathogenic variants were classified
as deleterious variants, with upper and lower 95% boundaries between 3.175 and 3.904
(23.9–49.6%) structural deviation from the trained data (Supplementary Table S2). The
well-known pathogenic variants, including R175H, Y220C, G245S, R248Q, R273C, and
R282W, had the highest structural deviation (39.3–49.6%) from the WT structure. The
deleterious nature was well demonstrated by their destructive effects in the TP53 structure
compared with the WT TP53 structure (Figure 2).

Under the deviation cut-off, 193 of the 340 missense VUS were classified as deleterious
VUS, of which Y107D, M169V, R249S, T253N, and I255S had the highest structural deviation
(>35%) (Supplementary Table S3).



Int. J. Mol. Sci. 2021, 22, 11345 4 of 13
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Examples of structural impact of known pathogenic variants classified by RPMDS. The 
known pathogenic variants of R175H, Y220C, G245S, R248Q, R273C, and R282W had a structural 
derivation of 43.7–49.9% from the WT TP53 structure, indicating their deleterious nature by de-
structing the TP53 structure. The structures of mutant TP53 and WT TP53 extracted from the last 10 
ns of simulations were overlaid to reveal structural changes. Orange: α-helix; blue: β sheet; grey: the 
secondary structure linkers. 

Under the deviation cut-off, 193 of the 340 missense VUS were classified as deleteri-
ous VUS, of which Y107D, M169V, R249S, T253N, and I255S had the highest structural 
deviation (>35%) (Supplementary Table S3). 

2.3. Features of Deleterious VUS 
We performed the following analysis for the classified 193 deleterious VUS variants: 

1. Deviation distribution. The range of deviation was 3.158–3.878 (23.5–48.3%) (Figure 
3). This range was similar to that of known pathogenic variants, except for the top 
3—R273C, Y220C, R175H (49.6, 47.4, 45.6%)—as they were highly destructive for the 
TP53 structure (Figure 2). For benign variants, 6 out of 23 benign variants were above 
the deleterious structure limits (>23.5%). Here, the Q165K had a structure deviation 
of 35.7% and was an outlier within the benign variants. The variants below the cutoff 
line were classified as “unknown”, as certain pathogenic variants may have minimal 
impact on structure stability [19]; therefore, their overall structure scaffolds can be 

Figure 2. Examples of structural impact of known pathogenic variants classified by RPMDS. The
known pathogenic variants of R175H, Y220C, G245S, R248Q, R273C, and R282W had a structural
derivation of 43.7–49.9% from the WT TP53 structure, indicating their deleterious nature by destruct-
ing the TP53 structure. The structures of mutant TP53 and WT TP53 extracted from the last 10 ns
of simulations were overlaid to reveal structural changes. Orange: α-helix; blue: β sheet; grey: the
secondary structure linkers.

2.3. Features of Deleterious VUS

We performed the following analysis for the classified 193 deleterious VUS variants:

1. Deviation distribution. The range of deviation was 3.158–3.878 (23.5–48.3%) (Figure 3).
This range was similar to that of known pathogenic variants, except for the
top 3—R273C, Y220C, R175H (49.6, 47.4, 45.6%)—as they were highly destructive
for the TP53 structure (Figure 2). For benign variants, 6 out of 23 benign variants
were above the deleterious structure limits (>23.5%). Here, the Q165K had a structure
deviation of 35.7% and was an outlier within the benign variants. The variants below
the cutoff line were classified as “unknown”, as certain pathogenic variants may have
minimal impact on structure stability [19]; therefore, their overall structure scaffolds
can be comparable to benign variants. Overall, the results justified the use of the
deviation from known pathogenic variants as the reference to classify the missense
VUS.

2. Spatial change of the substituted residues. The Ramachandran plot (RP) showed
the spatial differences of the substituted residues from the wildtype residues, and
the root-mean-square-deviation (RMSD) plot also showed the altered position of
the substituted residues from the wildtype residues in the global TP53 structure
(Figure 4A–C). For example, in S99F, F in RP showed its torsional angle in reflecting
the rigidity of the fluctuation, and F in RMSD also showed its larger fluctuation,
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revealing its instability in the local environment; in G154R, R in RP showed its
torsional angle fluctuation deviated from the wildtype G, and R in RMSD showed its
large fluctuation, reflecting its instability in its local environment; in H214P, P in RP
showed its torsional angle substantially fluctuated from the wildtype residue H, and
the lower RMSD showed its high stability in TP53.

3. Distribution in TP53 secondary structure. The deleterious VUS variants were dis-
tributed across the entire DNA binding domain, of which 44 were in the regions
with few known pathogenic variants, including entire β sheets, loop 1 and loop 2,
and all linkers; for the regions overlapped with the known pathogenic variants, the
deleterious VUS variants were distributed more widely than the known pathogenic
variants (Figure 5). The results indicate that RPMDS provides high sensitivity to
detect deleterious missense VUS variants.

4. Impact on TP53 local structure. The Ramachandran density plots showed that the dele-
terious VUS variants caused more local structural change, whereas known pathogenic
variants caused more global structural change (Figure 6A). Taking Y107D, M169V,
R249S, T253N, and I255S as examples (Figure 6B): in Y107D, the change of residue
caused greater flexibility in the β strand (residues 108–114 (β1) and 204–208 (β6));
this was reflected by the diminishing peak in the Ramachandran density plot: an α
helix loop was formed between residues 165–172, and this was not observed in WT;
in M169V, the flexible structure was reflected by the diminished peaks at P-II and the
β sheet region in the Ramachandran density plot. The extra α-helix bend was formed
at residues 117–121 and 168–170, and α-helix 1 (177–181) was more structurally stable
than the WT α-helix 1 (H1); with its high deviation of 3.770 (43.4%), R249S misfolded
the TP53 structure globally, and the Ramachandran plot revealed a spike at the P-II
region, while the β sheet region was diminished; in T253N, greater flexibility of β
strand S4 and shortened β strand S8 (residues 156–161 and 230–236, respectively)
reflected the diminished peak of the Ramachandran density plot; the residues 165–172
showed a stable structural formation, and this was not detected in the WT; in I255S,
the Ramachandran density plot revealed the dissipated peak at the β sheet and P-II
spiral regions; higher flexibility was present at the linker residues (244–246) and
α-helix 2 (H2) (285–286), and S10 β strand (271–274) was extended by 2 residues.
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Figure 3. Deviation distribution between known benign, known deleterious pathogenic and classified
deleterious missense VUS variants, showing the similar range of structural deviation between the
two types of deleterious variants. The variants above and below the orange line were classified
as “deleterious” and “unknown”, respectively. Black: known benign; Red: known deleterious
pathogenic; Blue: classified deleterious missense VUS.
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Figure 4. Spatial change of the substituted residues by missense VUS variants. (A) Superimposed variant protein structure;
(B) Ramachandran scatter plot of the WT residue (black) and the substituted residue (red); (C) RMSD plot of the substituted
residue (red) relative to the global protein structure. The substituted residues (red) fluctuated at different positions in
comparison to the WT residues (black), implying the substituted residues caused different spatial coordination. See detailed
description in Results.
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Figure 5. Distribution of deleterious VUS variants along TP53 secondary structure. The deleterious missense VUS variants were distributed across all β sheets, loop 1 and loop 2, and
all linkers where a few known pathogenic variants were present. blue: β sheet; red: α helix; yellow: loops; grey: linkers; lollipop in blue: known pathogenic variants; lollipop in red:
deleterious missense VUS variants.
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Figure 6. Impact of missense VUS on TP53 local structure. (A) Ramachandran density plot for missense VUS M169V, 
N239T, R249S, I255S, and P278R. The β strand regions (ϕ, ψ = (−130, 140)) for Y107D, M169V, R249S, T253N, and I255S 
were notably diminished, and the PII-spirals (ϕ, ψ = (−45, +135)) for R249S were intensified in comparison to the wildtype. 
The color change from red to blue represented the density from high to low, respectively. (B) Graphical illustration for 
local structural changes in Y107D, M169V, R249S, T253N, and I225S. WT residue positions were shown only for Y107D 
with the residues 108–114, 165–172, and 204–208. R249S showed global misfolded structure of TP53. Blue: β strand; orange: 
α helix; grey: linker joint; cyan: additional structural features. 
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interpretation (Table 1). The 3 VUS re-classified as pathogenic (c.695T>A, I232N; c.706TG, 
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of RPMDS for deleterious variant classification. ClinVar re-classified 14 VUS as “conflict” 
implying that new deleterious evidence (although it may not be sufficient) had been ac-
cumulated for these VUS since their previous VUS classification. RPMDS provided struc-
ture-based evidence to support their deleterious effects. 

  

Figure 6. Impact of missense VUS on TP53 local structure. (A) Ramachandran density plot for missense VUS M169V, N239T,
R249S, I255S, and P278R. The β strand regions (φ, ψ = (−130, 140)) for Y107D, M169V, R249S, T253N, and I255S were
notably diminished, and the PII-spirals (φ, ψ = (−45, +135)) for R249S were intensified in comparison to the wildtype. The
color change from red to blue represented the density from high to low, respectively. (B) Graphical illustration for local
structural changes in Y107D, M169V, R249S, T253N, and I225S. WT residue positions were shown only for Y107D with the
residues 108–114, 165–172, and 204–208. R249S showed global misfolded structure of TP53. Blue: β strand; orange: α helix;
grey: linker joint; cyan: additional structural features.

2.4. Comparison with Other In Silico Methods

The ClinVar database periodically updates its classification for VUS variants based on
new evidence. The 340 missense VUS variants used in our study were from the ClinVar
database, accessed on 9 April 2020. By comparing the 340 missense VUS variants with
the latest release of ClinVar VUS information, accessed on 17 May 2021, we identified
17 updated VUS classifications, of which 3 were re-classified as pathogenic and 14 as
conflict interpretation (Table 1). The 3 VUS re-classified as pathogenic (c.695T>A, I232N;
c.706TG, Y236D; c.794T>A, L265Q) were all classified as deleterious by our study; of the
14 VUS reclassified as conflict interpretation, 9 were classified as deleterious and 5 were
classified as undefined by our study. The fact that RPMDS reached a similar classification
for the 3 ClinVar re-classified VUS variants (I232N, Y236D, L265Q) demonstrates high
specificity of RPMDS for deleterious variant classification. ClinVar re-classified 14 VUS as
“conflict” implying that new deleterious evidence (although it may not be sufficient) had
been accumulated for these VUS since their previous VUS classification. RPMDS provided
structure-based evidence to support their deleterious effects.

We also compared the classification of the 340 missense VUS between RPMDS and 10
commonly used in silico methods, including Polyphen2_HDIV, Polyphen2_HVAR, SIFT,
M-CAP, MutationTaster, LRT, PROVEAN, FATHMM, MetaSVM, and MetaLR (Table 1B,
Supplementary Table S4). For the “deleterious” classification, RPMDS had the lowest rate,
56.8%, among all methods, of which FATHMM, MetaSVM, and MetaLR made 100% of
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deleterious classifications. The pattern was reversed for the “undefined” classification,
where RPMDS was the highest, 43.2%, among all methods; FATHMM, MetaSVM, and
MetaLR made none of “undefined” classifications. The results show that RPMDS provided
the highest restriction in identifying the deleterious missense VUS as compared to other in
silico methods.

Table 1. Comparison of RPMDS-based missense VUS classification with other methods.

(A) Comparison with Updated ClinVar Classification

Variant ClinVar Classification RPMDS Classification

Nucleotide Amino Acid Original New

c.706T>G Y236D VUS Pathogenic Deleterious
c.695T>A I232N VUS Pathogenic Deleterious
c.794T>A L265Q VUS Pathogenic Deleterious
c.413C>T A138V VUS Conflict Deleterious
c.422G>T C141F VUS Conflict Deleterious
c.434T>C L145P VUS Conflict Deleterious
c.526T>A C176S VUS Conflict Deleterious
c.556G>A D186N VUS Conflict Deleterious
c.581T>G L194R VUS Conflict Deleterious
c.626G>A R209K VUS Conflict Deleterious
c.814G>A V272M VUS Conflict Deleterious
c.931A>C N311H VUS Conflict Deleterious
c.431A>T Q144L VUS Conflict Undefined
c.452C>G P151R VUS Conflict Undefined
c.658T>C Y220H VUS Conflict Undefined
c.730G>T G244C VUS Conflict Undefined
c.928A>G N310D VUS Conflict Undefined

(B) Comparison with Different In Silico Methods in Classifying 340 Missense VUS

Methods Classification

Deleterious * Rate (%) Undefined ** Rate (%)

RPMDS 193 56.8 147 43.2
Polyphen2_HVAR_pred 202 59.4 138 40.6
Polyphen2_HDIV_pred 217 62.9 123 37.1

PROVEAN_pred 233 68.5 107 31.5
LRT_pred 242 71.2 98 28.8
SIFT_pred 268 78.8 72 21.2

MutationTaster_pred 287 84.4 53 15.6
M-CAP_pred 335 98.5 5 1.5

FATHMM_pred 340 100 0 0
MetaSVM_pred 340 100 0 0
MetaLR_pred 340 100 0 0

* These are named as Deleterious: Polyphen2_HDIV/Polyphen2_HVAR: Probably damaging and Possibly damaging; MutationTaster: Disease
causing. ** These are named as Undefined: SIFT/FATHMM/MetaSVM/MetaLR/M-CAP: Tolerate; Polyphen2_HDIV/Polyphen2_HVAR: Benign;
LRT/PROVEAN/FATHMM: Neutral; MutationTaster: Polymorphism.

3. Discussion

For the genetic variants identified, those causing substantial damaging consequences,
such as large insertion/deletions that interrupt gene structure and the nonsense variants
that create/mutate stop codon, can be easily identified as deleterious. However, it is
difficult to judge the damaging impact for the missense variants, as they only cause
single amino acid substitution, without obvious disruption of the overall protein structure.
However, it has been well noticed that “common cancer mutants exhibit a variety of distinct
local structural changes, while the overall structural scaffold is largely preserved” [19].
This is well reflected by the presence of abundant missense VUS variants in many cancer
predisposition genes. Our analysis showed that, of the 92,563 variants from the 136 genes
in the nine DNA damage repair pathways (ClinVar database, accessed 12 June 2021),



Int. J. Mol. Sci. 2021, 22, 11345 10 of 13

43,831 (47.4%) were VUS variants, of which 37,631 (85.9%) were missense VUS variants
(Supplementary Table S5).

The challenge in missense VUS classification is the lack of evidence for its potential
deleterious or benign impact. The presence of abundant missense VUS data suggests
that it is impractical to fulfil the classification task by relying solely on experiment-based
approaches, such as high-throughput genome editing methods, due to the cost restrictions,
no matter how promising the approaches can be [20,21], or the classical bench-based
methods due to their limited throughput capacity [22]. Instead, in silico approach has
been highly regarded as a promising option to fulfil the task, due to its high-throughput
capacity and low-cost nature. Continuous efforts have been made in this direction, as
reflected by the many in silico methods developed thus far for variant classification, which
have been designed by adapting different principles, including familial segregation [23],
evolution conservation [24], statistics [25], computation [26], and experiment [27], or a
combination of these principles [28–38]. While a decades’ application of these methods has
demonstrated the power of each method in variant classification, their inherited limitation
is also obvious, as described in the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology (ACMG/AMP) guidelines, which specified
that “most tools also tend to have low specificity, resulting in over-prediction of missense
changes as deleterious and are not as reliable at predicting missense variants with a
milder effect” [39]. Multiple factors can contribute to the situation, including (1) different
methods were designed using different principles. As such, a uniformed conclusion
would not be expected, even for the same variants; (2) the “black box” effects for methods
combining different principles. In contrast to expectations, it has been well determined that
combination of different principles into one package does not necessarily function better
than each individual method based on a single principle [40]. Testing new principles, such
as machine-learning [41], is warranted to determine if they could improve the weaknesses
of lower specificity and over-prediction of deleteriousness in the current in silico methods
for variant classification.

Our design of RPMDS for missense VUS classification is based on the following
considerations: (1) The system seeks evidence from only one phenotype, that is, the impact
of variants on protein structure. This preference takes the advantage of existing well-
determined protein structures for many cancer-related genes; (2) A missense VUS variant
that is able to disturb the protein structure is likely deleterious, although not all deleterious
variants disturb the protein structure.; (3) RP can precisely measure the impact of missense
VUS variants on the protein secondary structure.; (4) MDS can measure the dynamic
impact of missense VUS variants on the macroscopic properties of the protein structure. By
using the protein structure as the only indication, RPMDS addresses the deleteriousness of
missense VUS variants from an anchor very different from the principles used in existing
in silico methods. The fact that RPMDS provides the lowest rate of deleterious prediction
than these by other in silico methods indicates that RPMDS largely improves the over-
prediction problem inherited in current in silico methods. Furthermore, the results from
RPMDS are interpretable, as they are quantitative, visible, measurable, and reproducible,
as reflected by their impact on the protein structure. With its high-throughput capacity,
the use of the well-determined protein structure as the reference, and the use of known
pathogenic and benign variants from the same gene as the training materials, RPMDS
provides a promising new means for missense VUS variant classification, as demonstrated
by our current study. While the definition of “deleterious” is more biological in nature
and not equivalent to the more clinically oriented “pathogenic” definition, it does provide
suggestive functional evidence for the potential pathogenic significance, as reflected by its
disturbance of the protein structure. Integration of the evidence from other aspects will
promote firm classification of missense VUS into either pathogenic or benign variants.

In summary, our study provides evidence for the deleteriousness of 193 TP53 missense
VUS based on their impact on TP53 structural stability.
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4. Materials and Methods
4.1. Source of Missense VUS Variants

We used the ClinVar database as the source for TP53 missense VUS variants because
it provides VUS classification following ACMG/AMG guidelines [39]. The annotation
information of genome position, base change, and coding change for each missense VUS
was directly adapted from ClinVar (accessed on 9 April 2020).

4.2. Molecular Dynamics Simulation (MDS)

WT TP53 DBD crystal structure (PDB ID:2OCJ) was used as the template in the
study [15]. The structure for each missense mutant TP53 was built using UCSF Chimera
software and Modeller package ((University of California San Francisco, CA, USA) [42,43],
following the procedures, in which the WT residue was substituted with the variant-
changed residue in the template crystal structure and the variant residue orientation was
chosen based on the highest probability/lowest energy. Each mutant TP53 DBD structure
was simulated using GROMACS molecular dynamics software, version 2020 (University of
Groningen, Netherlands) [44]. AMBER03 was chosen to model the protein complex and the
zinc ion. The protein structure was situated in a 10 × 10 × 10 nm simulation box, solvated
with SPC/E water, and neutralized with Cl− ions. Each mutant structure consisting of
SPC/E water and a single TP53 DBD contained ~99,000 atoms. The system was optimized
with a steep descent algorithm for a 1 ns equilibration run at 298 K and 1 bar in the NPT
ensemble using a Berendsen thermostat and barostat, and simulated for a 40 ns production
run at 298 K and 1 bar in the NPT ensemble using a V-rescale thermostat and Parrinello-
Rahman barostat [45]. The Verlet velocity algorithm was employed to integrate Newton’s
equation of motion, with a time step of 2 fs. The Particle Mesh Ewald method was used to
treat the long-range electrostatic interactions, with the cut-off distance set at 1.0 nm [46].
The LINC algorithm was applied to constrain the hydrogen bond at equilibrium lengths,
and the trajectory frame of MD was saved every 30 ps [47].

4.3. Ramachandran Plot (RP)

The Ramachandran plot for each variant was generated from the MDS trajectory
following the procedures [13]. Briefly, the torsional angle position by MDS was retained
for each residue in the protein throughout the simulation. The Ramachandran plot was
transformed into a density graph using Kernel density estimation, with a grid dimension
of 32 × 32 to quantify the scatter plot. The average density of WT TP53 alleles, Benign (B)
and Likely Benign (LB) variants was used as the training data, and standard deviation for
each grid point was calculated. Missense VUS and Pathogenic (P) variants were compared
to the training data and marked as significant “density deviation” if they were beyond the
standard deviations.
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