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Mechanism of  Action of  OnabotulinumtoxinA in Chronic 
Migraine: A Narrative Review

Rami Burstein, PhD; Andrew M. Blumenfeld, MD; Stephen D. Silberstein, MD; Aubrey Manack Adams, PhD; 
Mitchell F. Brin, MD

Objective.—To review the literature on the mechanism of action of onabotulinumtoxinA in chronic migraine.
Background.—OnabotulinumtoxinA is a chronic migraine preventive treatment that significantly reduces headache frequency. 

The traditional mechanism described for onabotulinumtoxinA – reducing muscle contractions – is insufficient to explain its  
efficacy in migraine, which is primarily a sensory neurological disease.

Methods.—A narrative literature review on the mechanism of action of onabotulinumtoxinA in chronic migraine.
Results.—Following injection into tissues, onabotulinumtoxinA inhibits soluble N-ethylmaleimide-sensitive fusion attachment 

protein receptor (SNARE)-mediated vesicle trafficking by cleaving one of its essential proteins, soluble N-ethylmaleimide-sensitive 
fusion attachment protein (SNAP-25), which occurs in both motor and sensory nerves. OnabotulinumtoxinA inhibits regulated 
exocytosis of motor and sensory neurochemicals and proteins, as well as membrane insertion of peripheral receptors that convey 
pain from the periphery to the brain, because both processes are SNARE dependent. OnabotulinumtoxinA can decrease exocy-
tosis of pro-inflammatory and excitatory neurotransmitters and neuropeptides such as substance P, calcitonin gene-related peptide, 
and glutamate from primary afferent fibers that transmit nociceptive pain and participate in the development of peripheral and 
central sensitization. OnabotulinumtoxinA also decreases the insertion of pain-sensitive ion channels such as transient receptor 
potential cation channel subfamily V member 1 (TRPV1) into the membranes of nociceptive neurons; this is likely enhanced in 
the sensitized neuron. For chronic migraine prevention, onabotulinumtoxinA is injected into 31-39 sites in 7 muscles of the head 
and neck. Sensory nerve endings of neurons whose cell bodies are located in trigeminal and cervical ganglia are distributed 
throughout the injected muscles, and are overactive in people with migraine. Through inhibition of these sensory nerve endings, 
onabotulinumtoxinA reduces the number of pain signals that reach the brain and consequently prevents activation and sensitiza-
tion of central neurons postulated to be involved in migraine chronification.

Conclusion.—OnabotulinumtoxinA likely acts via sensory mechanisms to treat chronic migraine.
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Abbreviations: �BoNTA botulinum toxin type A, CGRP calcitonin gene-related peptide, CNS central nervous system, FGFR3  
fibroblast growth factor receptor 3, NAPs neurotoxin-associated proteins, NO nitric oxide, P2X3 purinergic 
receptor P2X ligand-gated ion channel 3, PACAP 38 pituitary adenylate cyclase-activating peptide-38, PSG 
polysialoganglioside, SNAP-25 soluble N-ethylmaleimide-sensitive fusion attachment protein, SNARE soluble 
N-ethylmaleimide-sensitive fusion attachment protein receptor, SV2 synaptic vesicle protein 2, TRPA1 transient 
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receptor potential cation channel subfamily A member 1, TRPV1 transient receptor potential cation channel 
subfamily V member 1

(Headache 2020;60:1259-1272)

INTRODUCTION
Botulinum neurotoxin type A (BoNTA) is a potent 

inhibitor of muscle contraction that acts by preventing 
the release of acetylcholine at the neuromuscular junc-
tion. This property led to the development of an injectable 
formulation, commonly referred to as BOTOX (onabot-
ulinumtoxinA), for the treatment of ocular conditions 
characterized by focal muscle overactivity, particularly 
blepharospasm and strabismus.1,2 Subsequently, the clin-
ical use expanded and onabotulinumtoxinA became a 
first-line treatment for cervical dystonia and a treatment 
for upper and lower limb spasticity in adults3 and pedi-
atrics. In clinical trials, treatment of cervical dystonia4-6 
and spasticity7-9 with onabotulinumtoxinA reduced both 
muscle contractions and pain. The clinical use of onabot-
ulinumtoxinA expanded to other conditions that involve 
abnormal muscle contractions.10 In the early 1990s, some 
patients described improvement in their migraine follow-
ing treatment of facial lines with onabotulinumtoxinA.11 
Since migraine is primarily a sensory disease, these reports 
raised the possibility that onabotulinumtoxinA had an 
ability to block activation of nociceptive pathways. The 
literature on onabotulinumtoxinA has largely focused on 
its mechanism of action at the neuromuscular junction, 
and there is a gap in understanding how it may affect the 
sensory system as well.12 Thus, this narrative literature 
review aims to summarize our current understanding of 
the mechanism of action for onabotulinumtoxinA for the 
treatment of chronic migraine.

In 2010, 2 double-blind placebo-controlled tri-
als confirmed onabotulinumtoxinA’s effectiveness 
for the prevention of headaches in chronic migraine  

patients. In these trials, a migraine-specific injection 
paradigm (155-195 U, 31-39 injection sites in head and 
neck muscles, which correspond to areas innervated by 
sensory nerves) resulted in significant reduction of head-
ache and migraine days per month compared to placebo 
(Table 1).13 These results led to the regulatory approval 
for chronic migraine in 2010, and lent credence to the 
idea that onabotulinumtoxinA treatment could modu-
late sensory neurons,14 which is the focus of this review.

ONABOTULINUMTOXINA MECHANISM 
OVERVIEW

OnabotulinumtoxinA contains 900-kDa BoNTA 
protein complex consisting of the 150-kDa botulinum 
neurotoxin and several nontoxic, neurotoxin-associ-
ated proteins (NAPs). The NAPs are thought to play 
a role in the pharmacologic actions of the neurotoxin, 
including structural stability of the neurotoxin,15 pro-
tection from proteolysis,16 and/or binding kinetics.17 
OnabotulinumtoxinA acts on peripheral nerve termi-
nals to interfere with specific events in the synaptic vesi-
cle cycle. Briefly, at nerve terminals, synaptic vesicles 
undergo fusion to the cell membrane and are recycled. 
Vesicles containing neurotransmitters and neuropeptides 
destined for synaptic release undergo docking, priming, 
and fusion with the neuronal membrane.18 These steps 
require the crucial formation of the protein assembly 
SNARE complex (soluble N-ethylmaleimide-sensitive 
fusion-attachment protein receptor) (Fig. 1, top panel).19 
Vesicular contents include small molecules in small syn-
aptic vesicles (eg, acetylcholine and glutamate), or neu-
ropeptides in large dense core vesicles (eg, calcitonin 
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gene-related peptide [CGRP], pituitary adenylate cy-
clase activating peptide 38 [PACAP 38], and Substance 
P). Large dense core vesicle cargo include proteins and 
receptors (eg, transient receptor potential cation channel 
subfamily V member 1 [TRPV1], transient receptor po-
tential cation channel subfamily A member 1 [TRPA1], 
purinergic receptor P2X ligand-gated ion channel 3 
[P2X3], etc.) whose insertion into the lipid bilayer of 
the synaptic membrane is critical for proper pain signal-
ing.20,21 In some cases, vesicles fuse with the nerve termi-
nal membrane through constitutive exocytosis,22 which is 
a housekeeping function. In other cases, fusion of syn-
aptic vesicles with nerve terminal membrane is SNARE 
mediated. SNARE ability to regulate exocytosis is most 
commonly associated with electrical activity in the nerve. 
Synaptic vesicles that have fully fused with the membrane 
then undergo recycling and the process begins again.

The intraneuronal target for onabotulinum-
toxinA is SNAP-25 (synaptosomal-associated pro-
tein-25 kDa), one of the SNARE proteins critical for 
vesicular fusion. Following injection, onabotulinum-
toxinA is distributed to the extracellular space. When 
the neurotoxin encounters nerve terminals23 the heavy 
chain of the botulinum neurotoxin binds with relatively 
low affinity to a polysialoganglioside (PSG), including 
GT1b (KD ~200  nM)24-26 (Fig. 1, bottom panel). A 
second receptor with greater affinity, synaptic vesicle 
protein 2 (SV2) (KD ~100 nM),27-31 is a vesicle protein 

that is exposed to the extracellular space during vesic-
ular fusion.32 The heavy chain potentially binds to a 
higher-affinity receptor, fibroblast growth factor recep-
tor 3 (FGFR3) (KD ~15 nM33).

OnabotulinumtoxinA, bound to the receptors, is 
endocytosed, and once it enters the endosome, the light 
chain dissociates from the heavy chain and translocates 
into the intracellular cytosol where it specifically cleaves 
SNAP-25.32 The light chain’s proteolytic cleavage of this 
essential component of the SNARE protein complex 
prevents the fusion of the synaptic vesicle to the inner 
surface of the cellular membrane. Impacted synaptic 
vesicles can neither release their contents into the syn-
aptic cleft, nor deliver receptors or ion channels carried 
as cargo (eg, TRPV1, P2X3) into neuronal membranes. 
This latter effect is illustrated by onabotulinumtoxinA 
interfering with trafficking of thermoTRP channels.22 
The downstream inhibitory effects depend on the target 
organ, whether it be nociceptors, motor, or autonomic 
nerves innervating skeletal or smooth muscle, or glands.

In the nerve terminal, the light chain endopeptidase 
escapes immediate degradation via specific interactions 
on the presynaptic terminal including the presence of a 
dileucine motif,34 interactions with membrane-bound 
septins,35 and specific deubiquinating enzymes,36 and 
consequently, maintains persistent proteolytic cleavage 
of SNAP-25. OnabotulinumtoxinA-cleaved SNAP-25 
can still form stable, although nonfunctional SNARE 

Table 1.—Efficacy of  OnabotulinumtoxinA in the Treatment of  Chronic Migraine†

Variable‡
OnabotulinumtoxinA 

(n = 688) Placebo (n = 696)
Mean Intergroup Difference 
(95% Confidence Interval) P Value

Frequency of headache days§
Baseline 19.9 19.8 0.1 .498
Change from baseline −8.4 −6.6 −1.8 (−2.52, −1.13) <.001¶

Frequency of migraine/probable migraine days
Baseline 19.1 18.9 0.2 .328
Change from baseline −8.2 −6.2 −2.0 (−2.67, −1.27) <.001¶

Total headache impact test-6 score
Baseline 65.5 65.4 0.1 .638
Change from baseline −4.8 −2.4 −2.4 (−3.11, −1.72) <.001††

†Pooled results from 2 double-blind, randomized, controlled trials in which subjects were injected at baseline and 3 months.13,112

‡Assessed at primary endpoint of 6 months.
§Primary efficacy variable.
¶Analysis of covariance.
††Wilcoxon rank-sum test.
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complexes within neurons. These faulty complexes can 
have a relatively prolonged life within the synaptic ter-
minal37,38 After exposure to BoNTA, cleaved SNAP-25 
persisted beyond the latest timepoint, 80 days, in cul-
tured spinal cord cells.39 Together, these mechanisms 
(sustained proteolytic activity and prolonged faulty 
SNARE complexes) likely contribute to the long- 
acting, nerve/tissue-target–dependent effects of onabot-
ulinumtoxinA. However, because the neuronal types 
studied in these preclinical experiments are not neces-
sarily representative of mature motor nerves, and the 
experimental conditions diverge from the clinical situa-
tion, the translatability of the results to the clinical sit-
uation is unclear. Nevertheless, clinically, the effects of 

onabotulinumtoxinA last approximately 3 to 4 months 
in motor nerves40,41 and 6 to 9 months in autonomic 
nerves.42,43 The onabotulinumtoxinA light chain is ulti-
mately ubiquinated36 and neurotransmission is restored.44 
During recovery, the presence of sprouts in motor neu-
rons45 and their paucity in autonomic nerves46 may also 
contribute to duration in specific nerve/tissue targets.

RATIONALE FOR ONABOTULINUMTOXINA 
FOR CHRONIC MIGRAINE TREATMENT

Sensory effects of onabotulinumtoxinA in mi-
graine are supported by findings from preclinical stud-
ies, which established that BoNTA inhibits the release 
of neuropeptides such as substance P48,49 and CGRP50 

Fig. 1.—Mechanism of onabotulinumtoxinA at the synapse. The top panel shows fusion of large dense core synaptic vesicles with 
the nerve terminal membrane in the absence of onabotulinumtoxinA. By step 4, neurotransmitters contained in the synaptic vesicles 
are released into the synapse and receptors/ion channels are inserted into the nerve terminal membrane. The bottom panel shows the 
steps of onabotulinumtoxinA action at nerve terminals. The end result is that synaptic vesicles cannot fuse with the nerve terminal 
membrane, preventing release of neurotransmitters at the synapse, and inhibiting insertion of receptors/ion channels into the nerve 
terminal membrane. 
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from primary sensory (first order) neurons. Sensory ef-
fects of onabotulinumtoxinA are also demonstrated in 
the formalin pain model, in which subcutaneous injec-
tion of onabotulinumtoxinA dose dependently inhibits 
the delayed pain response to formalin without affecting 
the acute pain response and without inducing muscle 
weakness.51 In clinical studies, there were early sugges-
tions of a dissociation between pain and muscle relaxa-
tion in cervical dystonia, with some studies reporting 
more prevalent improvements in pain than muscle con-
tractions.5,6 Additionally, a spasticity study that spe-
cifically examined the relationship between pain and 
muscle tone found only a weak correlation between 
them, consistent with the notion that onabotulinum-
toxinA-associated improvements in muscle tone and 
pain are separate dimensions.47 OnabotulinumtoxinA 
has also shown benefits in the treatment of other pain 
disorders, including painful diabetic neuropathy, a pri-
mary sensory disorder.52 The combination of these 
findings provides a clinical basis for understanding 
the sensory effects of onabotulinumtoxinA in chronic 
migraine and are further confirmed in the laboratory 
studies described in the subsequent section.

MIGRAINE PATHOPHYSIOLOGY AND 
ONABOTULINUMTOXINA MECHANISMS 
OF ACTION IN CHRONIC MIGRAINE 
PREVENTION

OnabotulinumtoxinA Inhibits Neurotransmitter and 
Neuropeptide Release.—The initiation of migraine pain 
occurs at the periphery when nociceptive neurons that 
innervate the dura and potentially the pia mater become 
active and release vasoactive and pro-inflammatory 
neuropeptides and neurotransmitters that further irri-
tate them and mediate their prolonged activation.58 The 
vasodilatory neuropeptides CGRP and PACAP-38, as 
well as the neurotransmitter nitric oxide (NO), are potent 
vasodilators involved in migraine pathophysiology.59-65

At the synaptic cleft, onabotulinumtoxinA atten-
uates the release of neuropeptides and neurotransmit-
ters that activate and modulate receptors that have been 
implicated in migraine pathophysiology.48,50,66-69 This 
is supported by preclinical findings that show that on-
abotulinumtoxinA inhibits the release of glutamate,51 
substance P,49 and CGRP50 from primary sensory 
(ie, first-order neurons in dorsal root and trigeminal 

ganglia) nerve terminals.51 Regarding CGRP, recent re-
views of its role in the headache phase of migraine70-72 
and the rationale behind the successful prevention of 
migraine with drugs that reduce its presence in the 
periphery73 support the possibility that a part of on-
abotulinumtoxinA’s mechanism of action in migraine 
prevention may involve the reduction of CGRP release 
from peripheral nerve terminals of meningeal and tri-
geminal nociceptors. Two lines of evidence support 
this possibility. The first is in vitro animal experiments 
showing that onabotulinumtoxinA inhibits the release 
of CGRP from sensory neurons.50,74 The second is a 
clinical study showing that onabotulinumtoxinA re-
duces interictal CGRP plasma levels in chronic mi-
graine patients who are deemed treatment responders 
but not those deemed treatment nonresponders.75

In cases in which chronic migraine is associated with 
chronic muscle tenderness, occipital allodynia,56,76,77 
and altered expression of genes related to inflamma-
tion in the calvarial periosteum,56,76,77 extracranial 
injection of onabotulinumtoxinA may exert its effects 
through direct action on extracranial nerves (Fig. 2). 
However, extracranial injection of onabotulinumtox-
inA also has a clear path to intracranial nerves,55,78 
which may account for its effects on migraine head-
aches that originate intracranially. Functional evidence 
for these intracranial-to-extracranial and extracrani-
al-to-intracranial pathways comes from the finding 
that extracranial administration of onabotulinumtox-
inA inhibits responses of C- but not Aδ-fibers to stim-
ulation of their intracranial meningeal receptive fields 
with ligands of TRPV1 and TRPA1 channels.57

The mechanism by which injection of onabot-
ulinumtoxinA into extracranial muscles can affect 
intracranial neurons is still under investigation, and 
several possibilities exist, including effects of onabot-
ulinumtoxinA on collateral branches of trigeminal 
axons that cross from the inside to the outside78,79 or 
cervical axons that cross from the outside to inside55 
of the skull via suture lines, emissary canals, and fis-
sures, as demonstrated in rats55,78,79 and humans79,80 
(Fig. 2). The mechanisms by which injections of  
onabotulinumtoxinA reduce activation along periph-
eral and central pathways, such as those that mediate 
migraine headache, include (1) increased threshold for 
nociceptive activation by reducing circulating levels of 
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neuropeptides (eg, CGRP) and neurotransmitters;75,81 
(2) decreased TRPV1-immunoreactive neurons in the 
trigeminal ganglion following peripheral injections 
into the face;82 (3) reduced activation of dorsal horn 

neurons83,84 and expression of NO synthase in the cen-
tral nervous system (CNS) after injections of onabot-
ulinumtoxinA into the intraplantar fascia and relevant 
muscles, respectively;85 and (4) reduced numbers of 

Fig. 2.—Neuroanatomy relevant to onabotulinumtoxinA injections sites. (A) Nerves originating from the trigeminal ganglion innervate 
intracranial structures and extend extracranially through cranial sutures. Spinal nerves originating from cervical dorsal root ganglia 2 
and 3 innervate pericranial muscles and extend intracranially through cranial sutures, emissary canals, and fissures. (B) Extracranial 
injection sites correspond to anatomical region of extracranial nerves, many of which are adjacent to cranial sutures, emissary canals, 
and fissures. 
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dendrites and synapses in central sensory processes, as 
exemplified in the hypoglossal nucleus after injection 
of onabotulinumtoxinA into the tongue,86 which were 
also associated with changes in nucleolar and cell body 
shape. Given recent evidence against transsynaptic 
transfer of onabotulinumtoxinA,87,88 it is now believed 
that central sensitization, synaptic plasticity, and other 
CNS effects attributed to onabotulinumtoxinA are sec-
ondary to the decreased peripheral input.89

OnabotulinumtoxinA Inhibits Ion Channel Inser-
tion into Synaptic Membranes.—Migraine headache 
is commonly associated with throbbing and increased 
headache intensity caused by mild elevation in intra-
cranial pressure due to coughing, sneezing, or bending 
over.90-93 These symptoms are believed to result from 
sensitization of nerve endings of first-order sensory 
neurons – a functional switch involving upregulation of 
pain-related ion channels on nociceptive nerve termi-
nals and cell bodies, including TRPA1, TRPV1, and 
sodium channels. Repeated stimulation of trigeminal 
nerve endings and their eventual sensitization can lead 
to the development of central sensitization, ongoing 
pain, allodynia (pain caused by stimuli that do not nor-
mally evoke pain), and hyperalgesia (increased sensitiv-
ity to pain).94,95

The effects of onabotulinumtoxinA on ionic chan-
nels expression in nociceptors have not been directly 
tested in people with migraine because the involved 
nerves are located in head and neck areas that are not 
readily accessible to biopsies. However, in patients with 
overactive bladder, onabotulinumtoxinA is injected di-
rectly into bladder muscle and submucosal area, which, 
given patients’ consent, may be sampled for study. 
Epithelial cells in the urinary bladder express TRPV1 
and P2X3 receptors, which are believed to be involved 
in conveying sensory information such as the urge to 
urinate.96,97 In suburothelial tissue obtained from pa-
tients with detrusor overactivity (a condition of over-
active bladder), onabotulinumtoxinA significantly 
decreased and normalized the pretreatment elevated 
TRPV1 and P2X3 levels, and improved both clinical 
and urodynamic measures.97 The decrease in P2X3 re-
ceptors and, to a lesser extent, TRPV1 receptors after 
onabotulinumtoxinA treatment were significantly cor-
related with improvements in sensations of urgency, 

but not with changes in maximum detrusor pressure or 
the volume at which patients felt they could no longer 
delay urination. Along this line, in a capsaicin human 
pain model, subcutaneous administration of onabot-
ulinumtoxinA to the forehead reduced capsaicin-in-
duced pain intensity and duration, most likely through 
downregulation of TRPV1 receptors on unmyelinated 
c-fiber nociceptors,98 and in a population of female 
patients with chronic migraine, a polymorphism in the 
TRPV1 gene was associated with a greater likelihood 
of response to onabotulinumtoxinA.99

Selectivity of OnabotulinumtoxinA Effects.—The 
inhibitory effects of  onabotulinumtoxinA on 
SNARE-mediated processes are not observed in all 
neurons. Outside the context of  migraine, onabotuli-
numtoxinA does not give rise to local anesthesia,100 
suggesting that it does not interact with large-diameter 
myelinated axons carrying tactile information from the 
skin to the spinal cord. In the context of  migraine, 
where the headache phase depends on activity in un-
myelinated C- and thinly myelinated Aδ-fibers in the 
dura, onabotulinumtoxinA appears to selectively in-
hibit activation and sensitization of the unmyelinat-
ed C- but not thinly myelinated Aδ-fibers,101 as well 
as their activation by mustard oil and capsaicin57 or 
cortical spreading depolarization/depression.102 The 
latter result is supported by the effectiveness of  
onabotulinumtoxinA in treating chronic migraine 
patients both with and without aura103 (the former 
presumably related to cortical spreading depolariza-
tion/depression). As far as selectivity is concerned, a 
recent preclinical study found that another migraine 
medication, humanized CGRP monoclonal antibod-
ies, inhibits Aδ- but not C-type neurons in the trigem-
inal ganglion.104 These preclinical findings as well as 
emerging clinical experience105-107 suggest the inter-
esting possibility that a combination treatment that 
blocks both the C- (onabotulinumtoxinA) and the Aδ- 
(CGRP monoclonal antibodies and CGRP receptor 
antagonists) meningeal nociceptors may be more effec-
tive than a monotherapy that blocks only one of these 
pathways. While these animal-based selectivities await 
additional confirmation in humans, the enigma of how 
onabotulinumtoxinA exerts its selective effects on dif-
ferent classes of  sensory neurons remains unanswered.
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RATIONALE FOR ONABOTULINUMTOXINA 
INJECTION PARADIGM FOR CHRONIC 
MIGRAINE

For chronic migraine prevention, onabotulinum-
toxinA is injected into 31-39 sites in 7 muscles of the 
head and neck.53 The injection sites correlate closely 
with the sensory innervation of the face, scalp, and 
cervical region. These include the supratrochlear and 
supraorbital nerves, which travel through the corruga-
tor, procerus, and frontalis muscles; the auriculotem-
poral and zygomaticotemporal nerves; the greater and 
lesser occipital nerves traveling along the occipitofron-
talis complex to innervate the adjacent scalp; the third 
occipital nerve traveling through the cervical paraspi-
nal muscles; and the supraclavicular nerves traveling 
through the trapezius (Fig. 2). Following intramuscu-
lar injection, onabotulinumtoxinA diffuses within the 
tissue to affect nerves within a circumscribed region.108

The primary role of trigeminal and cervical neu-
rons in migraine54-56 and the inhibition of SNARE-
mediated processes by onabotulinumtoxinA are 
consistent with an inhibitory action of onabotulinum-
toxinA on these nerves. SNARE-mediated processes in 
these nerve terminals include the vesicular release of 
inflammatory and nociceptive neuropeptides and neu-
rotransmitters and the insertion of pain-encoding re-
ceptors into the membrane of unmyelinated c-fibers.57

The aforementioned sensory effects of onabot-
ulinumtoxinA suggest that it may also be useful for 
episodic migraine. Although several of the early ran-
domized, controlled studies in episodic migraine 
showed an efficacy signal,109,110 they did not use the 
PREEMPT paradigm (ie, 31-39 injection sites in head 
and neck muscles) that was demonstrated to be effective 
in chronic migraine phase 3 studies. Thus, the efficacy 
and safety of onabotulinumtoxinA in episodic migraine 
has not been fully explored. Real-world evidence using 
the PREEMPT paradigm has demonstrated clinical 
benefit in patients with episodic migraine.111

CONCLUSIONS
Mechanism of Action in the Synapse.—Although 

onabotulinumtoxinA is primarily known for its in-
hibition of  muscle contraction, it is an effective 
treatment for the prevention of  chronic migraine – 
a sensory neurological disease. The common basis 

for these clinical outcomes is onabotulinumtoxinA 
inhibition of  SNARE-mediated vesicle trafficking, 
which occurs in both motor and sensory nerves. On-
abotulinumtoxinA inhibits regulated exocytosis of 
motor and sensory neurochemicals and proteins, as 
well as membrane insertion of  peripheral receptors 
that convey pain from the periphery to the brain in 
pathological conditions such as chronic migraine 
because both processes are SNARE dependent  
(Fig. 1). OnabotulinumtoxinA can decrease exocyto-
sis of  pro-inflammatory and excitatory neurotrans-
mitters and neuropeptides such as substance P, 
CGRP, and glutamate from primary afferent fibers 
that transmit nociceptive pain and participate in the 
development of  peripheral and central sensitization. 
OnabotulinumtoxinA also decreases the insertion of 
pain-sensitive ion channels such as TRPV1 into the 
membranes of  nociceptive neurons. Prolonged acti-
vation of  sensory neurons is likely to increase inser-
tion of  TRPV1 channels into the membrane. In vivo 
studies have demonstrated that treatment reduced 
sensory neuron excitability and sensitization, consis-
tent with increasing the pain threshold for migraine.

Mechanism of Action in Migraine.—The main 
sensory input to the face and head comes from the 
trigeminal nerve, which innervates muscles, menin-
ges, and other tissues, with contributions from cer-
vical and occipital nerves. Numerous pericranial in-
jections of  onabotulinumtoxinA are likely needed to 
target the vast projection regions of  trigeminal and 
cervical nerves, in order to attenuate their overall in-
put to central neurons, which appear to become sen-
sitized and perpetuate chronic migraine when acti-
vated repeatedly or continuously by pain signals they 
receive from the periphery (Fig. 2). Through this 
antidromic influence, onabotulinumtoxinA injected 
into the periphery can reduce the number of  pain sig-
nals that travel along sensory nerves from the dura 
to the spinal trigeminal nucleus, which indirectly pre-
vents the development of  hyperexcitability of  spinal, 
brainstem, thalamic, and cortical neurons involved in 
migraine pathophysiology.

Beyond Headache.—Investigations into the mech-
anism of onabotulinumtoxinA action in chronic mi-
graine and other conditions with prominent sensory 
components (eg, overactive bladder) have broadened 
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our understanding of its therapeutic benefit. In con-
templating which, if  any, other diseases may benefit 
from onabotulinumtoxinA treatment, it will be import-
ant to consider and be guided by the extent to which 
SNARE-mediated processes play a role in pathology.
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