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Fenofibrate Reduces Mortality and Precludes
Neurological Deficits in Survivors in Murine Model of
Japanese Encephalitis Viral Infection
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Abstract

Background: Japanese encephalitis (JE), the most common form of viral encephalitis occurs periodically in endemic areas
leading to high mortality and neurological deficits in survivors. It is caused by a flavivirus, Japanese encephalitis virus (JEV),
which is transmitted to humans through mosquitoes. No effective cure exists for reducing mortality and morbidity caused
by JEV infection, which is primarily due to excessive inflammatory response. Fenofibrate, a peroxisome proliferator-activated
receptor-o. (PPARa) agonist is known to resolve inflammation by repressing nuclear factor-kB (NF-kB) and enhancing
transcription of anti-oxidant and anti-inflammatory genes. In addition, fenofibrate also up-regulates a class of proteins,
cytochrome P4504Fs (Cyp4fs), which are involved in detoxification of the potent pro-inflammatory eicosanoid, leukotriene
B, (LTB,) to 20-hydroxy LTB,.

Methodology/Principal Findings: The neuroprotective effect of fenofibrate was examined using in vitro (BV-2 microglial
cell line) and in vivo (BALB/c mice) models of JEV infection. Mice were treated with fenofibrate for 2 or 4 days prior to JEV
exposure. Pretreatment with fenofibrate for 4 but not 2 days reduced mortality by 80% and brain LTB, levels decreased
concomitantly with the induction of Cyp4f15 and 4f18, which catalyze detoxification of LTB, through hydroxylation.
Expression of cytokines and chemokine decreased significantly as did microglial activation and replication of the JEV virus.

Conclusions/Significance: Fenofibrate confers neuroprotection against Japanese encephalitis, in vivo, in mouse model of
JEV infection. Thus, fenofibrate, a PPARa agonist that is commonly used as a hypolipidemic drug could potentially be used
for prophylaxis during JE epidemics to reduce mortality and morbidity.
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Introduction response [6,7]. Thus, JEV infection in CNS is characterized by
extensive recruitment of microglia followed by release of pro-
inflammatory molecules that are the prime mediators of
neuropathological changes associated with JE [8].

JEV, a flavivirus causes acute encephalopathy in children
[1,2,3]. A large geographical area including India, China, Japan
and most of South East Asia are afflicted by Japanese
encephalopathy (JE). The incidence of JE in endemic areas of
Asia 1s nearly 50,000 cases per year. High mortality, representing
over 20% has been reported. The clinical manifestations of
infection include fever, headache, vomiting, signs of meningeal

Inflammatory response in JE acts as a double-edged sword
where it protects from initial damage and is involved in repair
process leading to neuroprotection. However, extensive microglial
activation acts as a driving force resulting in irreversible damage.

oo . > . The activated microglia release excessive amounts of cytokines
irritation, and'altered consciousness [4]JEV infection thus, targets (TNF-0, I1-6, TL-1B ectc), chemokines (MCP-1, MIPx eic.),
the CNS leading to high mortality. In survivors, the morbidity is

high due to lingering neurological and/or psychiatric deficits in a
large proportion of patients [5]. Current therapeutic interventions
for JE are symptomatic and no cure is available.

The principle cells, which respond to JEV infection are the
microglia in the CNS. Microglia are known to be involved in the
immune surveillance of the brain. They are the immune effector
cells and undergo extensive morphological changes from resting to
activated state following JEV challenge. Morphological changes
are accompanied by extensive proliferation and chemotaxis
resulting in release of mediators that trigger massive inflammatory

eicosanoids including leukotrienes, particularly leukotriene B,
(LTB4) and prostaglandins [9,10]. A complex interplay exists
between eicosanoids including leukotrienes, prostaglandins pro-
duced from arachidonic acid on one hand and cytokines/
chemokines on the other [11,12]. Thus, limiting the extensive
microgliosis accompanying JE could potentially halt the progres-
sion of events leading to mortality and morbidity caused by JEV
infection.

Peroxisome proliferator-activated receptor-ot (PPAR) is one of
the members of nuclear receptor PPAR family and is a modulator
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of inflammation [13,14]. Fenofibrate is an agonist of PPARo and
leads to its activation promoting the expression of neuroprotective
genes, which trigger both anti-oxidant and anti-inflammatory
response [15,16]. It increases the transcription of a number of
genes such as Cu/Zn*" superoxide dismutase (SOD), glutathione
peroxidase (GPx), glutathione reductase (GR), glutathione-S-
transferase (GST), catalase and interferes at the transcriptional
level with nuclear factor-kB (NF-kB), signal transducers and
activators of transcription (STATs), activator protein 1 (AP1),
nuclear factor of activated T cells (NFAT) signaling pathways
[17,18,19,20]. PPARa activation by fenofibrate confers neuropro-
tection in various CNS disorders such as traumatic brain injury
and Parkinson’s disease [18,20]. In addition, we have recently
shown that fenofibrate also induces another family of ant-
inflammatory genes, namely the Cyp4fs that are involved in the
metabolism of potent pro-inflammatory eicosanoid, L'TB, to the
non-toxic 20-hydroxy LTB,. The induction of Cyp4fs results in
increased metabolism of the inflammatory prompt LTB, and
confers neuroprotection against LPS mediated damage [21]. Thus,
induction of Cyp4fs by fenofibrate in brain plays an important role
in regulating the inflammatory response. In the present study we
examined the neuroprotective effect of fenofibrate using both in
vitro and in vivo models of JEV infection and demonstrate the
significant neuroprotection offered by fenofibrate through reduc-
tion of inflammation and viral replication.

Methods and Materials

Statement for animal ethics

Animal experiments were carried out on adult BALB/c mice,
(4-6 weeks old, 16-20 g) procured from National Brain Research
Centre (NBRC). All animal experiments were carried out
according to institutional guidelines for the use and care of
animals. Animal experiments were approved by the institutional
animal ethical review board, named “Institutional Animal and
Ethics Committee of National Brain Research Centre”. The
animal experiment protocol approval number is NBRC/IAEC/
2007/36. Handling of animals was done according to the
guidelines of Committee for the Purpose of Control and
Supervision of Experiments on Animals (CPCSEA), Ministry of
Environment and Forests, Government of India. Animals had
access to pelleted diet and water, ad libitum.

Materials

Antibody to Iba-1 was procured from Wako Pure Chemical
Industries Ltd. (Osaka, Japan). Antigen unmasking solution,
conjugated secondary antibody, Vectastain-ABC Elite kit and
Nova Red substrate kit were purchased from Vector laboratories
(Burlingame, CA). Cell culture products and Lipofectamine™
were obtained from Gibco BRL (Invitrogen, Carlsbad, CA). TRI
reagent and bromochloropropane (BCP) were purchased from
Molecular Research Centre (Cincinnati, OH, USA). Single-
stranded cDNA synthesis kit and SYBR Green supermix were
purchased from Applied Biosystems (Foster city, CA 94404 USA).
Fenofibrate was obtained from Sigma Chemical Company (St.
Louis, MO). Cytokine bead array (CBA) mouse inflammation kit
was obtained from BD Biosciences (USA). The Assay designs™™
leukotriene B4 enzyme immunoassay kit was procured from
Stressgen (Michigan; USA). Microslides (superfrost plus) were
obtained from VWR International (USA). All other chemicals or
reagents were of analytical grade and were obtained from Sigma
Aldrich, Merck or Qualigens (India).
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Treatment schedule

BALB/c mice were injected with the JEV strain, GP78 (3-
10° pfu in phosphate buffered saline; intravenously) as described
previously [7]. Control animals received phosphate buffered saline
(PBS). For examining the neuroprotective effect of fenofibrate,
animals were divided into four groups. Two groups received
vehicle for 2 or 4 days followed by intravenous injection of PBS or
JEV on the fourth day, 1 hr after the vehicle. Treatment with
vehicle was continued for another 9 days post-injection in both
groups. The remaining two groups received fenofibrate (100 mg/
kg body weight; subcutaneous) for 2 or 4 days followed by
intravenous injection of JEV or PBS, 1 hr after fenofibrate on the
fourth day. The fenofibrate treatment in these two groups was
continued for another 9 days post-injection. For mortality study,
animals were divided into four groups with 15 animals each and
the survival of animals in each group was recorded up to 10 days
post-infection. For biochemical analysis, animals were divided into
four groups with 6 animals each, sacrificed on the sixth day post-
injection and the cortex was dissected out. All efforts were made to
minimize suffering, to reduce the number of animals used, and to
utilize alternatives to in vivo techniques where available.

Behavioral Scoring

Animals infected with virus developed mild symptoms after 4
days, which worsened progressively and most animals died on 9™
day post-infection. Symptoms of JE included pilo-erection,
restriction of movements, poor pain response, stooping posture,
whole body tremor, body stiffening, and hind limb paralysis. The
severity of infection was analyzed by scoring the animals for the
progression of symptoms. The scoring done was as follows: Score
0=No restriction in movement, no pilo-erection, no body
stiffening and no hind limb paralysis; Score 1=No restriction
in movement, no body stiffening, no hind limb paralysis but pilo-
erection and slowless in movement were observed; Score 2=No
restriction in movement, no body stiffening, no hind limb paralysis
but pilo-erection, slowless in movement, slight hind limb extension, and
stooping posture were observed; Score 3 = Restriction in movement, pilo-
erection, mild body stiffening, slight body jerks, slight hind limb extension but
no hind limb paralysis were observed; Score 4= Restriction in
movement, pilo-erection, body stiffening, hind limb paralysts, occasional tremor;
Score 5 = Restriction in movement, pilo-erection, body stiffening, hind limb
paralysis, tremor, which were followed by the animals succumbing to death.
For recording limb clasping reflex, mice were lifted by tail and the
ability of the animals to extend the hind limbs was recorded. All
other neurological parameters were recorded visually and the total
score was calculated on the basis of the appearance of the

symptoms.

Immunohistochemistry

Animals were perfused transcardially with buffered paraformal-
dehyde (4% w/v), 24 hr after the last dose, the brain was dissected
out and processed for immunohistochemistry. Brains were
sectioned on a cryostat and immunohistochemistry was done as
described earlier [21]. Serial coronal sections (30 um thick) were
cut throughout the entire cortex and hippocampus. Cryosections
were mounted on microslides and air-dried. The sections were
washed with tris-buffered saline (I'BS) and quenched with 3%
hydrogen peroxide (v/v) for 20 min. Sections were then washed
with TBS and subjected to heat induced epitope retrieval using
antigen unmasking solution as per the manufacturer’s protocol.
Sections were washed and blocked with TBS containing 3% (v/v)
normal goat serum, 2% BSA (w/v) and 0.1% Triton X (v/v) for
2 hr at room temperature. The cryosections were then washed and
incubated overnight with the primary antibody to Iba-1 at 4°C.
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The sections were washed and incubated serially with biotinylated
anti-rabbit antibody and avidin-biotin conjugated horseradish
peroxidase while ensuring that the sections were washed well
between incubations. Immunostaining was visualized following
development with the peroxidase substrate, Nova Red. Sections
were dehydrated by exposure to increasing gradient of alcohol and
finally in xylene and cover-slipped using DPX (a mixture of
distyrene, a plasticizer, and xylene) as the mounting medium.
Images were captured using Leica DMRXA2 microscope. Non-
mmmune IgG was used in place of immune serum as negative
control for immunohistochemistry. For quantitation of microglia,
sections were immunostained with Iba-1 antibody. Every 4th
section and a total of 20 sections were used for stereological
assessment from each animal. Stereological analysis was done by
determining number of Ibal-activated microglia in the cortex per
square millimeter using IM50 software (Leica).

Processing of tissue for biochemical analysis

The animals were decapitated and the cortex was dissected out.
Cortex was homogenized in potassium phosphate buffer contain-
ing 0.25 M sucrose and protease inhibitor cocktail. The
homogenate was centrifuged at 100,000x g for 1 hr to obtain
the cytosol. Protein concentration was estimated by dye binding
method [22]. Cytosol was used for cytokine profiling, estimation of
leukotriene By (LTB,) levels and plaque assay to quantify viral
replication.

Cell-culture experiments

BV-2, murine microglial cells, which exhibit both phenotypic
and functional properties of reactive microglial cells were grown
in DMEM supplemented with 10% FBS, streptomycin and
penicillin. BV-2 cells were treated with fenofibrate (40 pg/ml)
1 hr prior to exposure with JE virus. Cells were then exposed to
live virus (multiplicity of infection=35) for 1 hr [6]. Unbound
virus was removed by gentle washing with PBS and fenofibrate
treatment was continued for 24 hr. The supernatant was used

Table 1. LIST OF PRIMERS USED FOR QRT-PCR.

Fenofibrate and JEV Infection

for quantifying cytokines and chemokine using cytokine bead
array, LTB, assay by ELISA and plaque assay for viral
replication.

Estimation of cytokines, chemokine and LTB,

Cytosol prepared from the mouse brain cortex was used for
quantitation of cytokines and chemokine levels using cytokine
bead array (CBA, mouse inflammation kit). The assay was
performed according to the manufacturer’s instructions and
analyzed on the FACS Calibur machine (Becton Dickinson).
Following acquisition of data, BD™ CBA Analysis Software that
allows the calculation of cytokine concentrations in unknown
samples was used for quantitation [23]. LTB, levels were
quantitated in mouse brain cytosol and cell culture supernatant
using the Assay DesignsTM Leukotriene By enzyme immunoassay
kit according to manufacturer’s instructions.

RNA isolation and quantitative real time-PCR

Total RNA was isolated from BV-2 cells or mouse brain cortex
of mice using TRI reagent [24]. Random hexamers were used for
cDNA synthesis using High-Capacity cDNA Reverse Transcrip-
tion Kit. Real-time PCR was performed on ABI 7500 sequence
detection system using Power SYBR Green PCR Master Mix
according to the manufacturer’s instructions. All reactions were
carried out in triplicate and negative control without the template
was also included. 18S rRNA was used as an internal control for
normalization. Data was analyzed using the comparative threshold
cycle (AACt) method. The RNA levels of each gene were
normalized to the respective 18S levels. Following normalization,
relative mRNA values were normalized using one of the genes or
treatment conditions. Dissociation curves were generated to check
for the specificity of primers. The relative efficiency of each PCR
reaction was calculated from the respective standard curve. The
sequence of the primers used for quantitative real time-PCR,
amplicon size, slope and relative efficiencies of each reaction is
mentioned in Table 1.

GENE PRIMER SEQUENCE SIZE SLOPE EFFICIENCY
Cyp4f13 Forward 5’ CATCTTGGATTCTAGCCCGAA 3’ 74 bp —3.23
Reverse 5" GAAGCAACGAAGGCGACTG 3’ 104%
Cyp4f14 Forward 5" ACTGGCTTATGGGTCACGTG 3’ 74 bp —3.31
Reverse 5" ACCCACCAAACGAGTCAATTC 3’ 101%
Cyp4f15 Forward 5" CATGACATGGCTGGGTCCTA 3’ 78 bp —3.34
Reverse 5' GAGGCATTGAGAACAGATCGA 3’ 99%
Cyp4f16 Forward 5 CCTTGCCTGGACTTACTCATT 3’ 132 bp —3.36
Reverse 5" GTAACCAGCTGCATGCCTTC 3’ 102%
Cyp4f18 Forward 5" AGAGCCTGGTGCGAACCTT 3’ 73 bp —3.32
Reverse 5" TGGAATATGCGGATGACTGG 3’ 100%
TNF-o Forward 5’ ATGGCCCAGACCCTCACACTCA 3’ 184 bp —3.22
Reverse 5" ACAACCCATCGGCTGGCACCA 3’ 104%
IL-6 Forward 5" ACCTGCTGGTGTGTGACGTTC 3’ 179 bp -3.27
Reverse 5" GTCGTTGCTTGGTTCTCCTTGTAC 3’ 102%
MCP-1 Forward 5’ GCTGTAG GTCACCAAGCTCAA 3’ 150 bp —3.33
Reverse 5" TGAAGACCTTAGGGCAGATGCAG 3’ 100%
IL-1B Forward 5" ACCTGCTGGTGTGTGACGTTC 3’ 179 bp —3.28
Reverse 5" GTCGTTGCTTGGTTCTCCTTGTAC 3’ 102%
GP-78 Forward 5" TTGACAATCATGGCAAACGA 3’ 200 bp -3.32
Reverse 5' CCCAACTTGCGCTGAATAAT 3’ 100%

doi:10.1371/journal.pone.0035427.t001
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Assay of virus replication

Virus titration was performed to confirm the presence or
absence of live virus in the supernatant collected from BV-2 cells
or cytosol prepared from mouse brain cortex. Plaque formation on
monolayer of porcine stable kidney cells (PS) was monitored for
quantifying the viral titre. PS cells were seeded in six well plates to
form semi-confluent monolayer and then inoculated with 10 fold
serial dilutions of cell culture supernatant or mouse brain cytosol.
Serial dilutions were made in MEM containing 1% fetal calf
serum and incubated for 1 hr at 37°C with occasional shaking.
The inoculum was removed by aspiration and the monolayers
were overlaid with MEM containing 4% fetal calf serum, 1% low-
melting point agarose and a cocktail of antibiotic-antimycotic
solution containing penicillin, streptomycin and amphotericin B.
Plates were incubated at 37°C for 3—4 days until plaques became
visible. The cells were fixed with 10% paraformaldehyde and
plaques were quantified following staining with 0.1% crystal violet

[25].
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Data analysis and Statistics

Statistical Analysis of the data was performed using Sigma Stat
3.5 software and Sigma Plot 10.0 for generating graphs.
Significance was assessed using One-Way Analysis of Variance
followed by post-hoc tests (Student-Newmann Keul’s or Bonferroni)
for multiple comparisons and Student’s ‘¢ test for comparison
between two groups. Values of p<<0.05 were taken to be statistically
significant. Data is represented as mean * standard deviation.

Results

Fenofibrate abrogates the JEV mediated microglial
activation and release of inflammatory mediators in BV-2
cells

In order to assess the role of Cyp4fs in attenuating the massive
inflammatory response induced by JEV infection, we first used a
cell culture approach. JEV infection of BV-2, the mouse derived
microglial cells triggered massive inflammatory response as seen by

-]
s B2
? =]

LTB4 (pg/ml)
2 &

o
1

6800 z
51007

3400+

1700

Cc F J F+J

250

2004 -I-

150

1004

—*
\u
_|

o

Cc F J F+J

Figure 1. Inflammatory response to Japanese encephalitis virus (JEV), in vitro, is abrogated by fenofibrate. BV-2 cells were treated with
vehicle (C), fenofibrate (Feno, F), JEV (J) or both fenofibrate and JEV (Feno+JEV, F+J). (A) Fenofibrate attenuates the morphological changes induced
by JEV in BV-2 cells as seen in the phase contrast images. Treatment of BV-2 cells with fenofibrate markedly reduced the levels of LTB, (B), IL-6, MCP-1
and TNF-a (C,D) released into the medium after JEV infection. Conversely, protective cytokine IL-10 production was increased in fenofibrate (D)
pretreated cells compared to JEV alone (n=6 per group, *and #p<0.05). Fenofibrate alone results in decreased levels of LTB, (inset in B) and

cytokines and chemokine (C,D).
doi:10.1371/journal.pone.0035427.9001
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the morphological changes (Figure 1A) and release of pro-
inflammatory mediators, particularly LTB, (Figure 1B), cytokines
and chemokine (IL-6, MCP-1, TNF-o; Figures 1C and 1D) in the
medium and significant reduction of the protective cytokine, IT1-10
levels (Figure 1D). Pretreatment with fenofibrate, an inducer of
Cyp4fs attenuated JEV mediated release of LTB,, cytokines and
chemokine (IL-6, MCP-1, TNF-a; Figures 1B,1C and 1D).
Interestingly, fenofibrate alone inhibited the release of constitutive
LTB, (inset in Figure 1B), and cytokines and chemokine (IL-6,
MCP-1, TNF-a; Figures 1C and 1D).

A

Fenofibrate and JEV Infection

Induction of Cyp4fs by fenofibrate attenuates
inflammatory response

In order to ascertain whether the protective effect conferred by
fenofibrate is through the induction of Cyp4fs, we quantitated the
levels of Cyp4fs in BV-2 cells. BV-2 constitutively expresses
Cyp4fl3, 414, 4115, 4f16 and 4{18 (Figure 2A). Treatment with
fenofibrate for 24 hr resulted in substantial induction of Cyp4{13,
Cyp4fl4, Cyp4fl5 and Cyp4fl8, while Cyp4fl6 was unaltered
(Figure 2B). Though all Cyp4fs are expressed in BV-2 cells we
focused on Cyp4fl4, Cyp4fl5 and Cyp4fl8 as they metabolize
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Figure 2. Induction of Cyp4fs by fenofibrate, in vitro, in BV-2 cells. (A) Constitutive expression of Cyp4fs in BV-2 cells. mRNA levels of all
Cyp4fs are expressed relative to Cyp4f15. (B) Fenofibrate induced the expression of Cyp4f13, 14, 15 and 18, however the levels of Cyp4f16 were
unaltered. (C) There was a significant decrease in the expression of Cyp4f15 following JEV infection. The levels of Cyp4f14 and 18 were unchanged.
Pretreatment with fenofibrate however, attenuated JEV mediated inhibition of Cyp4f15. The mRNA levels in B, C are expressed relative to controls

(n=6 per group, *and #p<0.05).
doi:10.1371/journal.pone.0035427.g002
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Iba-1, which was performed using normal rabbit IgG. (E) Pretreatment with fenofibrate decreased the JEV mediated increase in LTB, levels in the
cortex. Data is represented as (C) vehicle control, (F) fenofibrate, (J) JEV, (F+J) fenofibrate+JEV treated mouse brain cortex (n=6 per group, *and
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doi:10.1371/journal.pone.0035427.9003
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LTB,4 to 20-hydroxy LTB, efficiently while Cyp4f13 and 16 are
poor metabolizers [21]. Expression of Cyp4fl5 decreased
substantially whereas of Cyp4f14 and Cyp4f18 were unchanged
following JEV infection in BV-2 cells (Figure 2C). However,
following fenofibrate pretreatment there was a significant increase
in the levels of Cyp4f14, Cyp4fl5 and Cyp4f18 compared to JEV
alone (Figure 2C). Thus, fenofibrate may provide protection
against JEV-mediated inflammatory response by inducing the
expression of Cyp4fs particularly Cyp4fl15 that was down-
regulated during JEV infection so as to enable the efficient
detoxification of LTB,.

Fenofibrate confers protection against JEV infection, in
vivo in mice

We then examined the effect of fenofibrate in vivo, using a
murine model of JEV infection, which is characterized by
neurological deficits potentially resulting from the massive
inflammatory response. Fenofibrate pretreatment provided ex-
traordinary protection against JEV induced mortality, wherein
mortality was decreased by 80% (Figure 3A). The onset and
progression of neurological symptoms evident by the behavioral
scores, abnormal limb-clasping reflexes and behavioral deficits
induced by JEV infection were not seen in fenofibrate treated mice
(Figure 3B). Fenofibrate substantially reduced JEV-mediated
massive inflammatory response seen as decrease in number of
activated microglia (Figures 3C and 3D). The attenuation of
inflammatory response was also evident by decrease in levels of
pro-inflammatory prompts, such as LTB, (Figure 3E), cytokines
and chemokine levels in the cortex (Figures 4A and 4B) and

A

40 60
TNF-o # #
(72}
° "]
*
> 30
] 0.8
-_ i XX - 40
Lo RS R
[ :.:.:
= 0.4 Pele? el
o204 15 b52S
L OC] ... .‘
155 ooot
Q 39 £33
154 0%
> 0.0 - KX PSS 20
- et RO -
=] vpese Sate!
10 KX tede
ote,
L) %o [0S
2 Tede 0]
oe% oot
* KX [0 ]
0 — e ——m P25 Lo
C F J F+J C F J F+J
20 45
#
*
= 15
r -30
- =¥
[=] B¢ [
= 15 otedd
o 10 RN odede
15 olede
o K5 £33
=3 15 oledd
= [5] PO -15
L] >
o | ot ool
a S K £
15253 Lol
150503 Lol
’. - L OCE
* >4 o
0 — e [ —_— . R 0
C F J F+J C F J F+J

Fenofibrate and JEV Infection

concomitant increase in the protective cytokine, IL-10 levels
(Figure 4B). Interestingly, fenofibrate alone decreased the number
of microglia (inset in Figure 3D), levels of LTB, (inset in Figure 3E),
cytokines and chemokine (insets in Figures 4A and 4B) suggesting
the regulation of constitutive inflammmatory response by Cyp4fs,
in a manner similar to that seen, in vitro, in BV-2 cells.

Induction of Cyp4fs by fenofibrate attenuates JEV

induced toxicity

In cortex of BALB/c mice, Cyp4fl5 is constitutively the most
abundantly expressed enzyme of the Cyp4f family, Cyp4{13 and
Cyp4f14 are expressed at levels higher than Cyp4f16 and Cyp4£18
(Figure 5A). Cyp4f14, Cyp4f15 and Cyp4f18 are the most effective
metabolizers of LTB,. In vivo, fenofibrate induced expression of
Cyp4fl5 and 18 while others remained unchanged (Figure 5B),
unlike in BV-2 cells where all the Cyp4fs were induced with the
exception of Cyp4fl6. In mice, JEV infection alone significantly
decreased the expression of Cyp4fl5, which was abolished by
pretreatment with fenofibrate. Pretreatment with fenofibrate
further enhanced the increase in the levels of Cyp4f18 seen with
JEV alone. Cyp4f14 levels were unaffected by JEV or fenofibrate
(Figure 5C). It is likely that induction of Cyp4fl5 and 18 by
fenofibrate, which hydroxylate LTB, efficiently could potentially
contribute to the resolution of inflammation in the JEV infected
mice (Figure 5C).

Fenofibrate reduces viral replication
BV-2 cells act as viral reservoirs supporting the replication and
extrusion of JEV into the extracellular medium [26]. Pretreatment

15 20
MCP-1
L]
S
15
o
[ K]
< P
= Sode!
o3egt |10
(4 PR
° ..’.‘
4 o390
2 o3
- ottt
[} Sote! -5
-_— o3t
[] Tee
4 PR
....'
= O
PO Lo
Cc J F+J
28
#
c * 21
L]
e,
o B
s ek 14
bS]
> o
2 RS
) PSS
> & * .4 7
505 e -
n b“..1 .’.“
BSOS ogede
* B £
e 39
B25S £525]
PSS 255
ool 5]
0- PO Lo

C F J FHJ

Figure 4. Fenofibrate attenuates the massive inflammatory response seen in JEV infection. The inflammatory response to JEV challenge
was attenuated by fenofibrate as depicted by significant reduction in mRNA expression (A) and protein levels (B) of cytokines (TNF-a, IL-6, IL-1p) and
chemokine (MCP-1) compared to JEV alone. Conversely, protective cytokine IL-10 (B) production was increased in fenofibrate treated mice compared
to JEV alone. Insets in A,B show the decrease in cytokines and chemokine after fenofibrate treatment alone. Data is represented as (C) vehicle control,
(F) fenofibrate, (J) JEV, (F+J) fenofibrate+JEV treated mouse brain cortex. mRNA levels in A,B for all treatments are expressed relative to controls (n=6

per group, *and #p<<0.05).
doi:10.1371/journal.pone.0035427.9g004
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with fenofibrate for 4 days significantly decreased the viral titers in
the culture medium from BV-2 cells infected with JEV (Figure 6A).
mRNA levels of GP78, the viral coat protein also decreased
significantly in the cells (Figure 6C, inset depicts the mRINA levels
of GP78 between control and fenofibrate). In vivo, the viral titre
was significantly lower in cytosol (Figure 6B) prepared from cortex
of mice pretreated with fenofibrate for 4 days prior to JEV, as was

@ PLoS ONE | www.plosone.org

the mRNA of GP78 (Figure 6D, inset depicts the mRNA levels of
GP78 between control and fenofibrate).

Pretreatment with fenofibrate for 2 days does not confer
protection against JEV infection

Prior exposure to fenofibrate for 2 days prior to JEV infection
did not reduce mortality, the viral titers or the inflammatory
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response following JEV challenge (Figures 7A, 7B and 7C,
respectively). Incidentally, pretreatment with fenofibrate for 2
days did not induce Cyp4fs and we did not find increase in
Cyp4f15 and Cyp4£18 levels, which was evident following 4 days
of pretreatment with fenofibrate (Figure 8A). Further, 2 days of
fenofibrate exposure did not restore the substantial decrease
observed in the expression of Cyp4fl5 following JEV challenge
(Figure 8B).

Discussion

In the current study we demonstrate that fenofibrate, a well-
known hypolipidemic drug when administered 4 days prior to JEV
infection reduces mortality by 80% in a murine model of JEV
infection and prevents neurological deficits in the surviving mice.
Thus, fenofibrate could potentially be used as a prophylactic drug
in endemic areas when clusters of JEV infections are seen in
children, for example in the monsoon season.

Fenofibrate has been used in children for treating hyperlipide-
mia associated with Niemann-Pick disease, to improve insulin
sensitivity and mitochondrial function following burn injury and as

@ PLoS ONE | www.plosone.org

anti-angiogenic agent in children with brain tumors among others
[27,28,29]. One of the side effects of the use of fenofibrate in adults
is thabdomyolosis, which is characterized by myalgia, weakness,
dark urine and is a cause for acute renal failure [30,31,32,33,34].
However, while the use of fenofibrate in children has been
described, there is no report of the occurrence of rhabdomyolosis
[35]. Fenofibrate is known to cross BBB [18] and its administra-
tion 4 days prior to and 10 days post infection, which was
necessary for the therapeutic effect did not cause any weight loss.
In earlier studies also the neuroprotective effect of fenofibrate
could be seen in apoE null mice only after 14 days of treatment
prior to onset of cerebral ischemia [18].

PPARo is a member of ligand activated nuclear receptor family,
which includes PPAR /3 and PPARY. Upon activation, they form
heterodimer with retinoid X receptor (RXR) and activate
transcription through peroxisome proliferator response elements
(PPREs) in the promoter region of target genes [36,37].
Fenofibrate is a well known PPARo agonist and mediates its
action as a hypolipidemic agent by regulating the expression of a
variety of modulators of lipid metabolism, such as apoA-I, apoA-II
and lipoprotein lipase [38,39,40]. Fenofibrate also induces the
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expression of genes such as Cu/Zn®" superoxide dismutase,
glutathione peroxidase, glutathione reductase, glutathione-S-
transferase and catalase in the brain and can thus, act as an
effective anti-oxidant [20,41,42]. The mechanism underlying its
anti-inflammatory effects, however are not clearly understood. It is
known to interfere with NF-kB signaling by inducing expression of
IxkBor [43,44]. In addition LTB,, the potent pro-inflammatory
molecule that initiates, sustains and amplifies inflammation has
been shown to be a ligand for PPARa. L'TB, through its action as
PPARo agonist can enhance its metabolism, thus diminishing the
inflammatory response [45]. However, when the production of
LTB, is overwhelming then more potent agonist of PPARa may
help enhance the metabolism of LTB; thus reducing the
inflammatory response.

Cytochrome P450 (Cyp), a superfamily of heme proteins is
involved in the metabolism of xenobiotics and endogenous
compounds. Cytochrome P4504F (Cyp4f) subfamily includes 7
functional enzymes in humans, 4 in rat and 5 in mice [46,47].
Recombinant Cyp4fl4, Cyp4fl5 and Cyp4fl18 are the most
effective members of Cyp4f sub-family for L'TB; metabolism,
while Cyp4fl13 and 16 are poor metabolizers [21]. Recently, we
demonstrated that the neuroprotective action of fenofibrate in a
murine model of LPS mediated neuro-inflammation occurred
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through its ability to induce selective Cyp4fs that effectively
hydroxylated LTB, [21]. Therefore, we examined the levels of
Cypfs, particularly Cyp4f14, 15 and 18 in the murine model of
JEV infection. Cyp4f15 and 4£18 are induced by fenofibrate while
4f13, 14 and 16 are unchanged (Figure 5B). Surprisingly, following
JEV infection, Cyp4fl5 is significantly down-regulated whereas
4118 levels are increased in mouse brain (Figure 5C). However,
prior administration of fenofibrate enhances the levels of 4f15 and
18, thus potentially increasing the metabolism of LTB, to 20-
hydroxy LTB4 and a corresponding decrease in the levels of
cytokines and chemokine. Interestingly we found that JEV
infection per se decreases the levels of Cyp4£15 in a manner quite
distinctive from the effects of LPS wherein 4f15 was induced [21].
The mechanism underlying this distinctive effect of JEV infection
is yet to be understood.

Fenofibrate is known to inhibit the replication of Herpes
simplex virus Type 1 and human immunodeficiency virus. The
antiviral activity of fenofibrate is associated with the activation of
PPAR« receptors [48,49]. Therefore, we examined the potential
of fenofibrate to inhibit JEV replication and found a profound
reduction in the viral titers both in vitro and in vivo when
fenofibrate was administered 4 days prior to JEV challenge
(Figure 6). To elucidate its mode of action, fenofibrate was also
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doi:10.1371/journal.pone.0035427.g008

administered 2 days prior to JEV infection and found that it had
no effect on the mortality, inflammatory response or viral
replication quite unlike the dramatic protective effects seen when
it was administered 4 days prior to JEV infection. Interestingly,
this treatment paradigm also did not have any inducing effect on
the Cyp4fs unlike the 4 days treatment with fenofibrate. Thus, the
induction of Cyp4fl5 observed after 4 days of fenofibrate
pretreatment correlates with the neuroprotective effect seen,
while shorter pretreatment which has no effect on Cyp4fs does
not have any effect on the neurotoxicity seen after JEV infection.
Therefore, it seems plausible that induction of critical genes
including Cyp4fs through activation of PPARa is required for the
anti-viral and anti-inflammatory effects seen following fenofibrate
treatment. Nevertheless, the substantial anti-viral effect of
fenofibrate demonstrated in this study is of significance and
points to its potential therapeutic role in controlling JEV
infection.

One might question the usefulness of prophylaxis of drug if
vaccination against JEV is possible. The inactivated mouse-brain
derived, inactivated cell culture derived and live attenuated cell-
culture derived are the three types of JE vaccines used for
immunization. However, their use is limited in terms of

@ PLoS ONE | www.plosone.org
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availability, cost and safety [50,51,52,53,54,55]. In view of this,
use of prophylatic drugs with good safety profile may be more
effective in dealing with epidemic-like situation in endemic areas.

In conclusion, we hereby demonstrate the effectiveness of
fenofibrate administered prior to JEV infection to reduce mortality
and prevent neurological dysfunction in survivors in murine model
of JE. Given the prevalence of this infection in endemic areas, the
high mortality and morbidity that it causes among children and
the lack of effective curative therapies, fenofibrate with its well
established safety profile could offer an inexpensive, safe and
effective prophylactic therapy for JEV infection.
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