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Cancer is a major worldwide public health issue, responsible for millions of deaths every
year. Cancer cases and deaths are expected to increase rapidly with population growth,
age, and lifestyle behaviors that increase cancer risk. Long-term chemotherapy results in
acquired drug resistance. Traditional treatment methods have limitations and cannot
effectively treat distal metastatic cancers. Application of nanocarriers in multi-
chemotherapy must be promoted. With research progress, the shortcomings of
traditional nanocarriers have gradually become evident. Carrier-free nanodrugs with
desirable bioactivity have attracted considerable attention. In this review, we provide
an overview of recent reports on several carrier-free nanodrug delivery systems based on
phytochemicals. This review focuses on the advantages of carrier-free nanodrugs, and
provides new insights for establishment of ideal cancer treatment nanosystems.
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INTRODUCTION

Cancer is a major worldwide public health issue, causing millions of deaths every year (Siegel
et al., 2021). Cancer cases and deaths are expected to increase rapidly with population growth, age
growth, and lifestyle behaviors that increase cancer risk (Torre et al., 2016). It is estimated that by
2040, the global cancer burden will nearly double (29–37 million), which will have a significant
impact on lower middle-income countries (More et al., 2021). Scientists and doctors have made
great research efforts to develop efficient and powerful cancer therapies, including surgery, drug
therapy, and radiotherapy (Hashizume and Tsugawa, 2004; Pérez-Herrero and Fernández-
Medarde, 2015; Allen et al., 2017). These treatments have their own advantages and
disadvantages. Surgical treatment is the first choice for local solid tumors, but its limitations
with distal metastatic tumors are obvious (Klein, 2020). With radiotherapy, healthy cells become
target cells and are destroyed, resulting in drastic changes in the internal cell environment. Thus,
antitumor drugs with curative effects on solid tumors and distant metastases are irreplaceable in
cancer treatment. Currently available commercial antitumor drugs can be classified as synthetic
drugs or natural drugs. Synthetic drugs are usually the only choice for cancer chemotherapy, but
there are problems with drug safety, toxicity, and side effects (Chang et al., 2011). According to
the mechanism of action, commonly used chemotherapeutic drugs can be divided into several
categories including antimetabolites, alkylating agents, and mitotic spindle inhibitors (Tiwari,
2012; Singh et al., 2018). Gemcitabine (GEM) is a first-line chemotherapeutic drug for pancreatic
cancer. However, its curative effect is unsatisfactory. GEM has a short blood circulation time and
is dispersed into normal tissues, leading to severe side effects such as nausea and
myelosuppression. Moreover, poor uptake, short half-life, and low bioavailability of gem cells
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require frequent high-dose administration, resulting in severe
systemic toxicity (Li et al., 2020c; Takemoto et al., 2020).

Multidrug resistance (MDR) is the main refractory to
chemotherapy, defined as the resistance of cancer cells to
multiple chemotherapeutic drugs with different structures and
mechanisms of action (Li et al., 2017). This obstacle is particularly
important because the treatment window for most anticancer
drugs is relatively narrow, with a small difference between the
dose required to achieve a therapeutic effect and to cause toxicity
(Assaraf et al., 2019). MDR can be caused by several mechanisms:
decreased uptake of water-soluble drugs; changes in cells that
affect the ability of cytotoxic drugs to kill cells, including changes
in cell-cycle checkpoints and blocks, an increase in DNA damage
repair, a decrease in apoptosis, and changes in drug metabolism;
sequestration of anticancer drugs in lysosomes and in
intracellular organelles and intercellular vesicles (Szakacs et al.,
2006; Li et al., 2016). MDR is responsible for over 90% of deaths in
cancer patients receiving traditional chemotherapeutics or novel
targeted drugs (Bukowski et al., 2020). According to the
biochemical changes in malignant cells, the mechanism of
cellular resistance can be divided into non-classical MDR
phenotypes and transport-based classical MDR phenotypes
(Stavrovskaya, 2000). Non-classical MDR describes non-
transport-based mechanisms and includes altered enzyme
activity of glutathione S-transferase (GST) and topoisomerase,
which can decrease the cytotoxic activity of drugs and changes in
the balance of proteins involved in apoptosis (Kartal-Yandim
et al., 2016). The classical mechanism targets anticancer drug
transport across the cell membrane by increasing the activity of
efflux pumps such as adenosine triphosphate (ATP)-binding
cassette (ABC) transporters (Liu et al., 2020) to increase the
efflux of anticancer drugs through membrane-embedded drug
transporters. Membrane-embedded drug transporters are usually
overexpressed in cancer cells; recent studies have found that they
can be regulated by endogenous cytokines (Kumar and Jaitak,
2019). Although recent studies have explored autophagy to hijack
MDR cancer cells in anticancer treatment, the mechanism of the
relationship between autophagy and MDR has not been fully
studied (Li et al., 2017). Thus, the trend is to use safe natural drugs
with tumor growth inhibitory activity that target a variety of
cellular pathways in cancer cells with no toxicity to normal cells.

For thousands of years, traditional herbal medicines have
provided natural treatment of cancer and many diseases; the
discovery of antitumor drugs mainly results from screening of
natural products and their analogues (Chang et al., 2011;
Salminen et al., 2018). In recent decades, botanical drugs have
been widely used in cancer treatment, providing an alternative to
traditional treatment with no harmful effects. Although
phytochemicals have demonstrated great potential as
anticancer agents, many problems remain to be considered.
Oral administration of plant preparations may have a first-
pass effect and eventually degrade. For example, although
curcumin has shown good prospects for cancer treatment, its
clinical development is limited due to its low bioavailability and
low aqueous solubility. In clinical trials, orally administered
curcumin (8 g/day) is rapidly converted into metabolites,
resulting in a low level of free curcumin in plasma (<2.5 ng/

ml) (Giordano and Tommonaro, 2019). The emergence of drug
resistance involving multiple mechanisms is the main obstacle to
successful clinical application of phytochemicals as therapeutic
cancer drugs. Another obstacle to the use of phytochemicals in
clinical practice is the development of MDR (Rizwanullah et al.,
2018). The disadvantages of plant compounds such as low
aqueous solubility, poor cell permeability, hepatic disposition,
narrow therapeutic index, and rapid absorption in normal tissues
limit their application (Siddiqui and Mukhtar, 2010). To meet
these challenges, the scientific community has turned to the
delivery of phytochemicals based on nanodrugs as they can
improve water solubility and bioavailability, target specific
tumor cell tissues, improve cell uptake, reduce phytochemical
dosage, and achieve a stable therapeutic phytochemical level
(Dombe and Shirote, 2021; Kim et al., 2021). Although
nanotechnology-based drug delivery systems have great
potential in cancer treatment, there are still many issues,
including low drug encapsulation efficiency and cumulative
deposition of nanomaterials in vivo. Carrier components
usually account for the majority of these nanosystems (Ding
et al., 2020). The drug-loading efficiency of anticancer drugs is
still very low, and long-term toxicity remains unclear. Use of a
large number of carrier drugs to achieve an effective dose leads to
low drug-loading and high carrier uptake (Ma et al., 2014;
Karaosmanoglu et al., 2021).

Carrier-free nanodrugs used for drug delivery are mainly self-
assembled by prodrugs, pure drugs, or amphiphilic drug-drug
conjugates. They generally have low systemic toxicity, high drug-
loading capability, stimulus-sensitive features, and synergistic
therapeutic efficacy (Mei et al., 2022). Recent studies have
shown that phytochemicals can form carrier-free nanodrugs
through self-assembly. Self-assembly technology can overcome
the limitations of phytochemicals in application (Sun et al., 2019;
Li et al., 2020a). Phytochemical self-assembled nanodrugs have
the following advantages: no carrier; less toxicity and side effects;
good drug-loading capacity and pharmacokinetics; MDR
inhibition; therapeutic synergy. As an emerging field, research
is still in progress. Based on the great progress of carrier-free
nanodrugs in cancer treatment, most recent reviews have
summarized the preparation, application, and significant
antitumor efficiency of carrier-free nanodrugs as a
combination of therapeutic agents with different antitumor
mechanisms. Carrier-free drugs based on plant compounds
have received less attention. In this review, carrier-free drug
design based on natural products is summarized to provide a
coherent overview and clear direction for the rational design of
carrier-free nanodrugs.

THE PREPARATION OF CARRIER-FREE
NANODRUGS

Compared with the traditional nanodrug delivery systems, the
preparation method of the carrier-free nanodrugs is a simpler
process, uses less or no organic solvents are introduced in the
preparation process. It is generally divided into in vitro and in
vivo self-assembly strategies. In vitro self-assembly strategies
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include top-down method, reverse solvent precipitation method
and template assisted method (Zhang et al., 2015; Gigliobianco
et al., 2018). The carrier free nanodrugs prepared by in vitro self-
assembly strategy can have higher drug loading, longer blood
circulation time or more effective absorption. Compared with the
in vitro self-assembly strategy, the in vivo self-assembly strategy
utilizes small molecules reaching the target triggered by tumor
specific stimulation, which is easier to operate and does not
require any high energy consuming machines or other
assembly processes (Mei et al., 2022).

Carrier-free drug delivery systems can be rapidly established
and used in cancer treatment because of the various attractions of
carrier free drug delivery systems; first, Controllable structure,
which can protect drugs and improve tumor accumulation;
second, increase the drug loading; third, reduce the side effects
caused by the carrier; last, simple preparation and administration
of drugs (Qin et al., 2017; Shim et al., 2019). The assembly process
is a spontaneous behavior of molecules in solvents, which follows
the principle of minimum energy. Its essence is intermolecular
force. Therefore, compounds that can form non covalent bond
force between molecules can usually produce self-assembly. Drug
or phytochemical molecules could self-assemble into
nanoparticles under the dynamic control of noncovalent
bonds, such as hydrogen bond, π-π interaction, van der Waals
force, charge transfer effect, dipole-dipoles and hydrophobic
interactions (Whitesides and Grzybowski, 2002; Rybtchinski,
2011; Gao et al., 2016; Yang et al., 2019). When molecules are
combined by hydrogen bond, single or multiple hydrogen bond
can be formed. Generally, the stronger the multiplicity of
hydrogen bond, the stronger the binding energy and stability
between molecules. Different organic molecules, such as

biocompatible polymeric chains or endogenous molecules,
have been used as self-assembly inducers by covalent linkage
to drugs. The drug and the self-assembly inducer can be directly
attached or can be connected by a linker, which can be stable in
serum but able to release the drug intracellularly (Fumagalli et al.,
2016).

CARRIER-FREE NANODRUGS BASED ON
CURCUMIN

Curcumin (Cur) (Figure 1A) is a phenolic metabolite isolated
from Curcuma logna (turmeric), known as diferuloylmethane
(Ashrafizadeh et al., 2020; Salehi et al., 2020). The IUPAC name
of curcumin is (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione, with a chemical formula of
C21H20O6 and a molecular weight of 368.38 (Giordano and
Tommonaro, 2019). Cur has demonstrated excellent
pharmacological activities, including anti-inflammatory,
antioxidant, antitumor, anti-analgesic, neuroprotective,
hepatoprotective, and cardioprotective activities (Shabgah
et al., 2021). A review of relevant literature confirmed that
Cur may have a negative effect on the development,
expansion, migration, and invasion of cancer cells (Hu et al.,
2018; Pricci et al., 2020; Termini et al., 2020). Similar to other
natural plant-derived compounds, curcumin has poor
bioavailability, and requires the assistance of a nanodrug
delivery system.

Sun et al. (Sun et al., 2019) designed a carrier-free nanodrug
(Cur-NDs) based on Cur using the reprecipitation method. The
process is based on the strong interaction between Cur molecules

FIGURE 1 | Structure of several phytochemicals. (A) Curcumin, (B) Paclitaxel, (C) Ursolic Acid, and (D) Camptothecin.
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(hydrophobic interactions and P-P stacking), allowing formation
of stable nanoparticles with sizes of 60–80 nm and retaining the
bioactive groups of Cur. Compared with free Cur, Cur-NDs
exhibited obvious optical properties and light-sensitive drug-
release behavior, resulting in an increase in ROS and
photodynamic therapy on breast cancer cells. In addition,
apoptosis during Cur-based photodynamic therapy is
accompanied by ROS-mediated activation of the JNK/caspase-
3 signaling pathway. In addition to self-assembly of Cur
molecules, Cheng et al. (Cheng et al., 2020) designed carrier-
free nanoparticles based on a curcumin-erlotinib conjugate
(EPC), with a size of approximately 105 nm and a
hydrodynamic size of 146.3 nm with a PDI of 0.157.
Compared with free Cur and erlotinib, EPCs have stronger
cytotoxicity and better anti-migration and anti-invasion effects
on BxPC-3 pancreatic cancer cells. Benefiting from both passive
and active tumor-targeting effects, EPCs effectively reduced the
growth of pancreatic tumors and extended the median survival
time of tumor-bearing mice from 22 to 68 days. Camptothecin
(CPT) is an alkaloid with potent antitumor activity first found in
plants. CPT analogs (irinotecan and topotecan) have been
approved by the FDA for cancer treatment. A recent study
designed a self-assembled ion pair complex, ICN, based on
Cur and irinotecan (Guo et al., 2021). This unique
nanoparticle overcomes the hydrophobicity of Cur, and
enhances the antitumor efficacy of irinotecan by integrating a
variety of treatments. Liu et al. (Liu et al., 2021) prepared an
irinotecan hydrochloride-Cur nanosystem (SICN) in the early
stage by a simple precipitation method. SICN NPs had good
water solubility and were easily soluble in water and acidic water.
The particle sizes of SICN in water and acid water were 61.5 ±
0.22 nm and 50 ± 0.24 nm, respectively. This particle size has little
difference in different environments, it could be inferred that
SICN are not vulnerable to acidic environment in solid tumors.
The results of flow cytometry and zebrafish fluorescence imaging
showed that the uptake of SICN was significantly higher than that
of free Cur, and the excretion rate was lower. In vitro cell
experiments showed that SICN NPs were more toxic than
single components, while HGC-27 cells had more absorption
and higher toxicity to NPs under slightly acidic conditions.

CARRIER-FREE NANODRUGS BASED ON
PACLITAXEL

Paclitaxel (Ptx, trade name Taxol) is a well-known anticancer
agent with a unique mechanism of action (Figure 1B). It is
considered to be one of the most successful natural anticancer
drugs (Zhu and Chen, 2019). It was approved by the US Food and
Drug Administration (FDA) in 1992 for treatment of advanced
ovarian cancer (Swain et al., 1995). However, as an aromatic
anticancer drug that is usually insoluble in physiological
solutions, severely hindering bioavailability, it requires the
assistance of a drug-delivery system (Yang et al., 2021).

A recent study reported co-loaded self-assembled nanofibers
(P/T-NFs) based on Ptx and tetrandrine (Tet) (Li et al., 2020b).
Ptx-SA-RGD obtained by combining Ptx and the tumor-specific

peptide arginine-glycine aspartate peptide (RGD) with succinic
acid (SA) as a linker was used as a highly effective drug-loaded
nanofiber, and encapsulated in P-NFs. Novel P/T-NFs were
obtained, mainly formulated through π-π stacking and
hydrophobic interactions. In vitro studies have shown that the
increased cytotoxicity of P/T-NFs in cancer cells is attributed to
an increased level of intracellular ROS, lower expression of
p-JAK2 and p-STAT3, and promotion of mitochondrial
apoptosis. In vivo studies have also confirmed the superior
antitumor effect of P/T-NFs, but the mechanism must be
further explored. Wang et al. (Wang et al., 2020a) used the
antitumor activity and self-assembly characteristics of Ptx and
ursolic acid (UA) in nano-preparations (UA-Ptx) by self-
assembly. UA-Ptx can effectively prolong the plasma half-life
of paclitaxel and ursolic acid and prevent the rapid leakage of
drugs in the body. UA-Ptx nanoparticles exhibit the excellent
anticancer activity of Ptx, and retain the antitumor and liver-
protective effects of UA, with a good synergistic effect. In
addition, a novel carrier-free drug delivery system (DDS)
assembled from a drug chemical gene conjugate was designed
using fluorescent dithiomaleamide (DTM) as a linker to combine
two Ptx molecules with floxuridine (FdU)-integrated antisense
oligonucleotides (known as a chemogene) (Zhu et al., 2020). This
Ptx chemical gene conjugate can be self-assembled into spherical
nucleic acid (SNA)-like micellar nanoparticles as carrier-free
DDS. It can effectively inhibit the expression of
P-glycoprotein, and then release FDU and Ptx to exert a
synergistic antitumor effect. Ptx chemical gene conjugates may
help reverse MDR in cancer.

CARRIER-FREE NANODRUGS BASED ON
URSOLIC ACID

UA, or 3-β-hydroxy-urs-12-en-28-oic acid (Figure 1C) is a
pentacyclic triterpene acid that is abundant in most plants
(Yin et al., 2018). Many studies have reported the potential of
UA in cancer prevention and treatment; it has great impact in
remodeling the tumor microenvironment and can play a direct
role in cell proliferation, apoptosis, and cell cycle regulation
(Chan et al., 2019; Guo et al., 2019; Khwaza et al., 2020).
However, studies have reported that the average plasma
concentration of UA is very low, even at high doses,
indicating that the bioavailability of UA is low (Liao et al.,
2005; Yin et al., 2018).

Carrier-free nanoparticles based on UA-Methotrexate (MTX)
have been designed to target folate receptors; their synergistic
anticancer activity has been studied in vitro and in vivo (Lan et al.,
2021). The best preparation method for UA-MTX NPs is shown
in Table 1. Compared with free UA or MTX, the water solubility
of UA-MTX NPs was significantly improved. At pH � 5, the drug
release rate of UA-MTX NPs was increased, suggesting that UA-
MTX NPs can quickly release MTX in acidic tumor
microenvironment conditions. In MCF-7 cells, UA-MTX NPs
exhibit excellent folate receptor targeting. In MCF-7 cells
overexpressing folate receptors, the antiproliferative capacity of
UA-MTX NPs was greater than that of free drugs. In vivo, UA-
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MTX NPs exhibit good biosafety and can improve antitumor
efficacy through combined therapy. Song et al. (Song et al., 2014)
formulated UA nanocrystals using the antisolvent precipitation
method. The results showed that the UA nanocrystals had good
aqueous dispensability and could be completely dissolved in 0.5%
sodium dodecyl sulfate solution within 120 min. Moreover, the
nanocrystal characteristics remained unchanged for 49 days,
indicating great stability. Pi et al. (Pi et al., 2016) evaluated the
bioavailability of UA nanocrystals and found that it was
2.56 times greater than that of free UA (Shao et al., 2020). Fan
et al. (Fan et al., 2018) designed a carrier-free nanodrug through
self-assembly of UA molecules. The process was based on the
hydrogen bond and hydrophobic interactions between UA
molecules. The UA NPs were nearly spherical, with a diameter
of approximately 150 nm, and a drug-loading of up to 60%. UA
NPs exhibited greater antiproliferative activity, significantly
induced apoptosis, decreased expression of COX-2/VEGFR2/
VEGFA, increased the immunostimulatory activity of TNF-α,
IL-6, and IFN-β, and decreased the activity of STAT-3 in A549
cells in vitro.

CARRIER-FREE NANODRUGS BASED ON
CAMPTOTHECIN

CPT (Figure 1D) is a DNA topoisomerase I inhibitor from the
Chinese Camptotheca Acuminat tree, with excellent anticancer
activity in solid tumors including primary and metastatic colon
carcinoma, small-cell lung carcinoma, ovarian, breast, pancreatic,
and stomach cancers. Poisoning of DNA topoisomerase I is the
mechanism by which CPT interferes with tumor growth.
Although clinical use of CPT has had a significant impact on
cancer therapy, de novo or acquired clinical resistance to these
drugs is common (Beretta et al., 2013). CPT has low
bioavailability, poor water solubility, and significant side
effects after injection, hindering further clinical application.

Xu et al. (Xu et al., 2018) connected gemcitabine and CPT
through redox-sensitive disulfide bonds to prepare a carrier-free,
reduction-degradable Janus prodrug CPT-SS-GEM. CPT-SS-
GEM is amphiphilic and can be self-assembled into Janus
nano-prodrugs without any excipients in water. The rapid
drug release of nano-prodrugs is reduction-dependent. More
than 90% of natural CPT and GEM were released in a
mimicked tumor cell microenvironment (pH 6.5 PBS,
containing 2 Mm DTT) within a period of 3 h. Gao et al. (Gao
et al., 2020) connected CPT with Ptx through disulfide bonds to
prepare a self-assembled prodrug, PTX-S-S-CPT. PTX-S-S-CPT

exhibited good monodispersity, with a particle size of
approximately 200 nm. Due to the redox response with a
disulfide bond, the PTX-S-S-CPT prodrug NPs significantly
inhibited cancer cell growth, with no obvious toxicity to
healthy cells. Zhao et al. (Zhao et al., 2020) used CPT
derivatives, 7-ethyl-10-hydroxycamptothecin (SN38), and
chlorin e6 (Ce6) to co-assemble new carrier-free NPs (SN38/
Ce6 NPs) using a simple antisolvent precipitation method. SN38/
Ce6 NPs exhibited uniform morphology with a particle size of
approximately 150 nm and a zeta potential of approximately
−30 mV, good stability in aqueous solution and in a
lyophilized state, and high cellular uptake efficiency against
murine mammary carcinoma (4T1) cell lines. Wang et al.
(Wang et al., 2020b) constructed a new self-assembly based on
CPT and carbamoylmannose conjugates (CPT-Man). The self-
assembly of CPT-Man formed nanotube components in water
with dose-dependent and time-dependent cytotoxicity to MCF-7,
HeLa, and A549 cells. In MCF-7 cells, CPT-Man demonstrated
potent antitumor activity, with an IC50 value of 2.7 μM in 48 h,
an increase of 2.2 times compared with the activity of
CPT (6.1 μM).

CONCLUSION AND FUTURE OUTLOOKS

In this review, the latest progress in carrier-free nanodrugs based
on several anticancer phytochemicals was summarized. With
research advances, the advantages and versatility of carrier-free
nanodrug systems for cancer treatment are gradually becoming
evident. NPs based on a phytochemical self-assembly strategy use
bioactive natural drug components with self-assembly
characteristics as the carrier without introducing other
materials, improving drug delivery efficiency, exerting drug
efficacy, and reducing toxic and side effects. Self-assembled
NPs of different phytochemical molecules can play a
synergistic role in treatment for a variety of diseases. The
properties of hydrophobic drug molecules can be easily
adjusted by combining them with functional molecules to
prepare nanodrugs with improved functional properties.
Different self-assembly behaviors are observed based on the
strength and nature of non-covalent interactions such as van
der Waals forces, hydrogen bonds, and π-π stacking, resulting in
different nano-assembly sizes andmorphologies (Karaosmanoglu
et al., 2021). However, there are still some defects in carrier-free
NPs based on self-assembly of phytochemicals. Most current NPs
are limited to a combination of two drugs; there are few reports
on self-assembly of more drug molecules. In addition, the self-

TABLE 1 | Optimization of UA NPs and MTX-UA NPs (Lan et al., 2021).

Solvent Concentration
of UA (mM)

Methanol/water ratio MTX/UA ratio

Optimization Methanol 5 1:5 1:4
Size (nm) 179.3 167.5 143.2 152.6
PDI 0.198 0.114 0.115 0.164
Zeta potential (mV) — — — −48.2
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assembly force between phytochemicals is based mainly on
intermolecular forces; thus, the stability of NPs is poor.
Further, NPs should be tuned to optimize their key properties
including size, shape, and surface chemistry. Carrier-free drugs
have shown promising results in overcoming MDR. However, the
potential biological toxicity of carrier-free drugs has not been
clinically verified; much research is needed for confirmation. The
authors are optimistic that in the near future, carrier-free drugs
based on phytochemistry will find a place in treatment of drug-
resistant cancer.
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