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Sliding window haplotype approaches
overcome single SNP analysis limitations in
identifying genes for meat tenderness in
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Abstract

Background: Traditional single nucleotide polymorphism (SNP) genome-wide association analysis (GWAA) can be
inefficient because single SNPs provide limited genetic information about genomic regions. On the other hand,
using haplotypes in the statistical analysis may increase the extent of linkage disequilibrium (LD) between
haplotypes and causal variants and may also potentially capture epistastic interactions between variants within a
haplotyped locus, providing an increase in the power and robustness of the association studies. We performed
GWAA (413,355 SNP markers) using haplotypes based on variable-sized sliding windows and compared the results
to a single-SNP GWAA using Warner-Bratzler shear force measured in the longissimus thorasis muscle of 3161 Nelore
bulls to ascertain the optimal window size for identifying the genomic regions that influence meat tenderness.

Results: The GWAA using single SNPs identified eight variants influencing meat tenderness on BTA 3, 4, 9, 10 and
11. However, thirty-three putative meat tenderness QTL were detected on BTA 1, 3, 4, 5, 8, 9, 10, 11, 15, 17, 18, 24,
25, 26 and 29 using variable-sized sliding haplotype windows. Analyses using sliding window haplotypes of 3, 5, 7,
9 and 11 SNPs identified 57, 61, 42, 39, and 21% of all thirty-three putative QTL regions, respectively; however, the
analyses using the 3 and 5 SNP haplotypes, cumulatively detected 88% of the putative QTL. The genes associated
with variation in meat tenderness participate in myogenesis, neurogenesis, lipid and fatty acid metabolism and
skeletal muscle structure or composition processes.

Conclusions: GWAA using haplotypes based on variable-sized sliding windows allowed the detection of more QTL
than traditional single-SNP GWAA. Analyses using smaller haplotypes (3 and 5 SNPs) detected a higher proportion
of the putative QTL.
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Background
Following the completion of the first draft bovine reference
genome assembly, a high-density single nucleotide poly-
morphism (SNP) genotyping assay was developed [1], en-
abling genome-wide association analyses (GWAA), which
are useful in understanding the underlying biology of traits
[2, 3]. Several GWAA have identified SNP associated with

meat tenderness in cattle [4–7], which is one of the most
important attributes impacting consumer satisfaction and
the price of beef [8]. Moreover, meat tenderness is the
most important trait requiring improvement in Nelore cat-
tle in order to increase beef quality and ensure consumer
acceptability. However, studies have shown that the trad-
itional single-SNP GWAA can be inefficient because
single-SNPs provide limited information about the content
of flanking genomic regions [9, 10]. On the other hand,
using haplotypes in the statistical analysis may increase the
extent of linkage disequilibrium (LD) between haplotypes
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and causal variants and also potentially capture epistastic
interactions between variants within a haplotyped locus,
providing increased power and robustness for association
studies [10–16].
The use of haplotypes in GWAA analysis has not been

widely exploited because there is no consensus on how
many adjacent SNPs should be haplotyped, or on what is
the best methodology for the definition and analysis of
the haplotype blocks [17]. Different criteria have been
proposed, but the most widely used approach is based
on the extent of LD between markers as described by
[18], which combines SNPs into haplotype blocks in
genomic regions of high LD, i.e., with low evidence for
recombination. However, the use of this approach can
result in “orphan” SNPs that fall outside of predefined
LD blocks, leading to a loss in ability to dissect genetic
variation in these regions in the association analysis [14].
Thus, haplotype block approaches may not be the most
efficient approach for association studies [19]. An alter-
native strategy for performing haplotype-based associ-
ation analyses is based on overlapping sliding windows,
in which several neighboring contiguous SNPs are in-
cluded in a haplotype analysis, spanning the entire gen-
ome regardless of the extent of LD between the markers
[10, 14, 20]. This approach has been shown to be more
powerful than single-SNP and LD block–based haplo-
type analyses, particularly in genomic regions with
high recombination and low LD [10, 21, 22]. Further-
more, according to [10], the use of sliding window
haplotype analysis increases the likelihood of QTL
detection and identification of the genomic regions
harboring the causal variants.
We performed a GWAA using haplotypes defined by

variable-sized sliding windows and compared the results
to single-SNP GWAA to ascertain the optimal window
size for identifying QTL regions that influence meat
tenderness in Nelore cattle. The results of this study
provide a better understanding of the genetic basis of
meat tenderness in zebu cattle.

Methods
Animals
The 3161 Nelore bulls used in this study were born
between 2008 and 2013 and were sourced from three
different animal breeding programs. These animals
were raised on pasture, finished in a feedlot for ap-
proximately 90 days, and then slaughtered in commer-
cial slaughterhouses at a mean age of 691 ± 102 days.
Contemporary groups (CG) were defined by the com-
bination of farm of origin, year of birth, management
group as long-yearlings and month and year of slaugh-
ter. The animals belonged to 116 CG with at least
three animals per group.

Phenotypic and genotypic data
The animals were slaughtered in commercial slaughter
houses and the carcasses were identified by tags and
chilled for 24 to 48 h post-mortem. Steaks of 2.54 cm
thickness were then collected from the longissimus thor-
acis muscle between the 12th and 13th ribs from the left
half of the carcasses. The steaks were vacuum sealed and
aged in a cold chamber for 150 h at 1 °C and then were
frozen at − 20 °C. Next, the steaks were cooked in an
oven to an internal temperature of 71 °C as proposed by
[23]. Warner-Bratzler shear force (WBSF), a mechanical
measurement of tenderness, was measured 24 h after
cooking using a Salter shearing device (G-R Electric,
Manhattan, KS). Eight 1.27 mm meat cores were ob-
tained from each sample and the average shear force of
the eight cores was used in analysis. The mean WBSF
for the 3161 Nelore bulls was 5.9 ± 1.80 kg varying from
1.6 kg to 11.9 kg.
Using a DNeasy Blood & Tissue Kit (Qiagen GmbH,

Hilden, Germany), tissues from the longissimus thoracis
muscle were used to extract DNA according to the man-
ufacturer’s instructions. Genotyping was performed by
high-density BeadArray technology (777 K) using the
Illumina (San Diego, CA) BovineHD Infinium Assay®
with an Illumina HiScan System® for 1405 animals and
the 1756 remaining animals were genotyped with a
lower density bead array (GGP75Ki). Genotypes were
imputed to the content of the BovineHD assay and
phased using FImpute software [24] including available
pedigree information. The average imputation accuracy
from GGP75Ki to Illumina® BovineHD was 98.93%, as
reported by [25]. Samples for which the genotype call
rate was less than 90% and SNP markers with a call rate
of less than 95%, or that had a minor allele frequency of
less than 5%, or Hardy Weinberg Equilibrium test statis-
tic probability of less than 10− 5 or that were unmapped
to autosomes or sex-linked were removed. A total of
413,355 SNP markers remained for analysis. The gen-
omic coordinates for each SNP marker were based on
the Bos taurus UMD3.1 reference assembly.

Construction of haplotypes
Five different haplotype sizes were constructed based on
overlapping sliding windows methodology spanning the
entire genome: three (SW3), five (SW5), seven (SW7),
nine (SW9) or eleven (SW11) SNPs. Given an ordered
set of markers (SNP1, SNP2, SNP3, ..., SNPn), where n is
the number of SNP markers on the chromosome, sliding
windows of overlapping haplotypes are tested in sequence.
i.e. for SW3: haplotype 1 (SNP1-SNP2-SNP3), haplotype 2
(SNP2-SNP3-SNP4), haplotype 3 (SNP3-SNP4-SNP5), ...,
haplotype n (SNPn-2, SNPn-1, SNPn) [14, 20]. The haplotypes
were estimated for each locus and the diplotype of each ani-
mal was estimated as the combination of haplotypes i and i’
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at locus j. Thus, the dummy variable for each haplotype
were coded as: 0 = no copies of the haplotype, 1 = one copy
of the haplotype (paternal or maternal), and 2 = two copies
of the haplotype (paternal and maternal).

Genome-wide association analysis
The WBSF was pre-adjusted for fixed effect of CG and
age at slaughter as covariate (linear effect). Fixed effects
were estimated using a single-trait animal model imple-
mented in AIREMLF90 [26]. The univariate linear mixed
model analysis was performed for pre-adjusted WBSF
using single-SNPs and each size of haplotype (three, five,
seven, nine or eleven SNPs) individually in GEMMA
[27] using the model: y = 1μ + Xβ + Zu + e; u~MVNn(0,
GVg); e~MVNn(0, IVe); where: y is an n-vector of
pre-adjusted WBSF; μ is the overall mean; X is the inci-
dence matrix for single SNP or haplotype; β is the single
SNP allele or haplotype effects; Z is an n x n identity
matrix; u is an n-vector of random residual additive gen-
etic effects; G is a n x n genomic relationship matrix
(GRM); e is a vector of residuals; Vg is the residual addi-
tive genetic variance component; Ve is the residual vari-
ance component; and I is an n x n identity matrix. MVNn

denotes the n-dimensional multivariate normal distribu-
tion. The GRM was estimated using the standardized ge-
notypes for all 413,355 SNP markers retained for analysis
following filtering, using GEMMA. The same GRM was
used for the single-SNPs and haplotype-based association
analyses.

Estimating additive genetic variance
The additive genetic variance (VA) explained by SNP
markers was estimated as: σ2i ¼ 2pið1−piÞa2i , where: σ2

i is
the additive genetic variance for the ith SNP; pi is the allele
frequency of one of the alleles at the ith SNP; and ai is the
additive effect of the ith SNP. An equivalent equation was
used to estimate VA explained by the haplotyped loci [28],

as follows: σ2j ¼
Pk j−1

i¼1

Pk j

l¼2 ðaij−aljÞ2pijplj, for l > i, where:
σ2j is the additive genetic variance for the jth haplotype,

aij is the additive effect of the ith allele at the jth haplo-
type, alj is the additive effect of the lth allele at the jth

haplotype, pij is the allele frequency for the i
th allele at the

jth haplotype, plj is the allele frequency for the lth allele at
the jth haplotype, and kj is the number of existing alleles at
the jth haplotype. The additive effects and frequencies of
the SNP and haplotype alleles were calculated using
GEMMA software as described in section “Genome-wide
association analysis”.
For the identification of the SNPs and haplotyped loci

that explained the greatest amounts of VA for WBSF, the
estimated VA were assumed to follow a gamma distribu-
tion with parameters shape (α) and rate (β) [29]. The pa-
rameters (α and β) were predicted using the VA explained

by the SNPs and haplotyped loci which allowed establish-
ing the value of gamma distribution quantile corrected for
multiple testing by Bonferroni method (α ≤ 0.05). For the
SNPs, the α and β were predicted using an approximation

of the Newton-Raphson method [30] as: α̂ ≈ 3−s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3−sÞ2þ24s

p
12s ,

where: s ¼ lnð 1N
PN

i¼1 σ
2
i Þ− 1

N

PN
i¼1 ln ðσ2

i Þ ; β̂ ¼ â
μσ2

i

,

where: μσ2i is the mean of estimated VA explained by the

SNPs. For the haplotyped loci, the estimated VA were
dependent on the number of alleles at each haplotyped
locus. Therefore, a cubic regression model was used to

predict α as a function of the number of alleles. For the β̂
parameter, the Brody non-linear regression model [31] was

applied, as follows: β̂ ¼ Að1−Be−ktÞ þ ε , where: β̂ is a
predicted β parameter; A is the asymptotic limit for the β
parameter; B is the integration constant; k is the curve par-
ameter representing the ratio of maximum growth rate to

asymptotic limit of β̂ ; t is the number of alleles at the
haplotyped locus; and ε is the residual. From these equa-
tions, it was possible to estimate the gamma distribution in
order to establish the thresholds that allowed identify-
ing haplotyped loci (regarding the number of alleles)
and SNP markers that explained the greatest amounts of
VA for WBSF.

Linkage disequilibrium analysis
The LD between each pair of the SNPs (413,355), mea-
sured as r2, was calculated using Haploview [32]. The
average r2 values according to distance between markers
are displayed in Fig. 1. The regions that explained the
greatest amounts of VA for WBSF were classified as strong
(r2 > 0.6), moderate (0.2 < r2 < 0.6), weak (0.1 < r2 < 0.2),
and not in LD (r2 < 0.1) based on the average r2 values
between the SNPs.

SNP and haplotype annotation and gene networks
The SNPs and the genomic regions harboring all of the
haplotyped loci identified were annotated using the
Variant Effect Predictor (VEP) Ensembl API [33]. The
identified genes were used to predict a gene interaction
network using the GeneMANIA Cytoscape plug-in [34],
based on the source organism Homo sapiens.

Results
Genome-wide association analysis
The single-SNP GWAA identified eight variants influen-
cing WBSF on BTA 3, 4, 9, 10 and 11 (Table 1). The SNP
rs134499129 (BTA3) explained the greatest amount of VA

(0.072 kg2) and rs41623448 (BTA10) had the largest allele
substitution effect (0.73 ± 0.09 kg). Four of the detected
variants (rs109294639, rs134499129, rs41595711 and
rs42732955), located in NOS1AP and SUCLG1 were
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intronic, and four variants (rs43490295, rs137367597,
rs41623448 and rs136174419) were intergenic. The
intronic variant rs109294639 was in moderate LD with
rs134499129 and rs41595711 (r2 = 0.26 and 0.24, respect-
ively), whereas rs134499129 and rs41595711 were in
strong LD (r2 = 0.71). The intergenic variants rs41623448
and rs136174419 are located near TBCD21 and SUCLG1,
at a distance of 37 and 68 kb, respectively. The SNPs
rs136174419 (near SUCLG1) and rs42732955 (SUCLG1,
intron 1) were in strong LD (r2 = 0.79) at a distance of 74
kb. However, rs43490295, rs137367597 and rs41623448
are not in LD with any neighboring SNP markers.
Using the haplotype-based analysis we identified haplo-

typed loci that explained the greatest amounts of VA for
WBSF (Table 2). Thirty-three putative QTL regions for
WBSF were detected, with 19 being identified by at least
two different haplotype-based analyses and five QTLs
were identified in all of the haplotype-based analyses. The

SW3, SW5, SW7, SW9 and SW11 analyses identified 57,
61, 42, 39, and 21% of all 33 putative QTL regions,
respectively, whereas, the analyses using SW3 and SW5
jointly detected 88% of all 33 QTL regions. Increasing the
number of SNPs included in the haplotyped loci did not
always lead to an increase in the amount of VA that was
explained by the haplotypes. Some QTLs appeared to only
be captured using larger haplotypes while other QTLs
could only be detected using smaller haplotypes.
Putative QTLs identified are located on BTA 1, 3, 4, 5,

8, 9, 10, 11, 15, 17, 18, 24, 25, 26 and 29. SNPs within
most of the QTL regions found in this study were in
strong or medium pair-wise LD and the length of the
QTL regions varied from 5 to 147 kb with an avarage of
63 kb, as shown in Table 2. The QTL with the largest ef-
fect was identified in all of the haplotype window size
analyses, however, the window for the SW3 analysis
explained the greatest amount of VA (0.098 kg2). This

Fig. 1 Linkage disequilibrium (r2) values according to distance between pairs of markers

Table 1 SNP markers that explained the greatest additive genetic variance for meat tenderness in Nelore cattle

SNP marker BTA Position (bp) Allele frequencies (effectsa) Var (kg2) Gene

rs109294639 3 7,384,182 T = 0.094 (− 0.40 ± 0.08) C = 0.906 (0.40 ± 0.08) 0.027 NOS1AP (intron1)

rs134499129 3 7,390,035 A = 0.163 (− 0.51 ± 0.06) G = 0.837 (0.51 ± 0.06) 0.072 NOS1AP (intron1)

rs41595711 3 7,391,544 T = 0.185 (− 0.30 ± 0.06) C = 0.815 (0.30 ± 0.06) 0.027 NOS1AP (intron1)

rs43490295 4 1,008,553 G = 0.120 (− 0.37 ± 0.07) A = 0.880 (0.37 ± 0.07) 0.028 –

rs137367597 9 1,116,610 C = 0.135 (−0.34 ± 0.07) A = 0.865 (0.34 ± 0.07) 0.028 –

rs41623448 10 20,486,971 C = 0.064 (−0.73 ± 0.09) T = 0.936 (0.73 ± 0.09) 0.063 near TBCD21

rs136174419 11 50,332,078 A = 0.112 (−0.37 ± 0.07) G = 0.888 (0.37 ± 0.07) 0.028 near SUCLG1

rs42732955 11 50,406,682 A = 0.124 (−0.39 ± 0.07) G = 0.876 (0.39 ± 0.07) 0.032 SUCLG1 (intron1)

SNP single nucleotide polymorphism, BTA Bos taurus autosome, Var SNP marker additive genetic variance
aAllele substitution effects from GEMMA software (kg)
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QTL region harbors NOS1AP (BTA3) and includes three
SNPs (rs109294639, rs134499129 and rs41595711) iden-
tified in the single-SNP GWAA.
The SNPs rs43490295 and rs137367597 on BTA4

and BTA9 (Table 2), respectively, were only detected
by the single-SNP GWAA. On the other hand, the
haplotype-based association analyses captured many
QTL regions that were not identified by the single-SNP
GWAA. Full results for single-SNP and haplotype-based

association analyses for each number of alleles at haplo-
typed loci are shown in Additional files 1, 2, 3, and 4.

Gene network analysis
Figure 2 illustrates the interactions among the genes lo-
cated in genomic regions detected as being influencing
WBSF in this study. The constructed gene interaction
network revealed that 66.7% of the constituant genes are
known to be co-expressed in humans. Moreover, 26.7%

Table 2 QTL regions for meat tenderness detected using haplotype-based analysis on variable-sized sliding windows

BTA Region Position (bp) Dist LD Additive genetic variance (kg2)

SNP SW3 SW5 SW7 SW9 SW11

1 rs43761056 – rs137207255 6,317,864 – 6,324,488 6625 M – 0.032 0.036 – – –

1 rs42493480 – rs42493494 125,981,534 – 126,011,455 29,922 M – – 0.031 0.034 0.038 –

3 rs109872503 – rs110244139 7,371,235 – 7,460,489 89,255 M 0.072 0.098 0.071 0.085 0.086 0.089

3 rs132795858 – rs134534136 29,474,206 – 29,610,884 136,679 S – 0.038 0.049 0.051 0.051 0.050

3 rs132763845 – rs109427593 90,594,180 – 90,664,268 70,089 M – – – 0.036 0.045 –

3 rs134111725 – rs133976586 93,949,186 – 94,067,553 118,368 S – – – – – 0.040

4 rs43490295 1,008,553 – N 0.028 – – – – –

4 rs137252969 – rs43385178 24,143,662 – 24,225,606 81,945 W – – 0.037 – – –

4 rs110513194 – rs135604613 27,834,564 – 27,894,006 59,443 S – – – – 0.042 –

5 rs136407209 – rs110430223 7,525,121 – 7,583,435 58,315 S – – 0.030 – – –

5 rs41587994 – rs109349300 18,434,417 – 18,465,179 30,763 S – 0.036 0.034 – – –

8 rs133253155 – rs135484797 92,216,117 – 92,289,515 73,399 S – 0.033 0.034 0.033 – –

9 rs137367597 1,116,610 – N 0.028 – – – – –

9 rs110938040 – rs135589084 12,339,368 – 12,406,450 67,083 M – – – – 0.048 0.053

9 rs136867942 – rs135252570 21,441,424 – 21,497,606 56,183 M – – – – 0.037 –

9 rs133390891 – rs43600182 61,168,282 – 61,197,874 29,593 S – – 0.037 – – –

9 rs110730224 – rs109847831 66,977,872 – 67,045,614 67,743 M – 0.040 0.039 0.040 0.040 –

9 rs135160781 – rs110936646 100,716,451 – 100,721,452 5002 S – 0.034 – – – –

10 rs137812088 – rs133615734 20,448,593 – 20,541,764 93,172 M 0.063 0.040 0.041 0.038 0.044 0.052

10 rs134006987 – rs136312573 43,692,759 – 43,726,489 33,731 S – 0.033 0.031 – – –

11 rs109122230 – rs41655045 5,751,331 – 5,768,629 17,318 M – 0.033 – – – –

11 rs43755797 – rs137032372 43,129,117 – 43,135,745 6629 M – 0.032 – – – –

11 rs136174419 – rs42731923 50,332,078 – 50,417,494 85,417 S 0.032 0.069 – – – –

15 rs132639440 – rs136091960 72,439,829 – 72,470,564 30,736 M – – 0.036 0.040 0.051 –

17 rs110304377 – rs42926409 70,788,438 – 70,935,589 147,152 M – 0.035 0.043 0.054 0.056 –

18 rs137081181 – rs134146295 14,849,540 – 14,991,573 142,034 S – 0.039 0.041 0.043 0.043 0.045

24 rs135709192 – rs136715705 47,570,379 – 47,596,815 26,437 S – 0.033 0.033 0.034 0.034 0.034

24 rs110779214 – rs109148899 48,585,933 – 48,632,298 46,366 S – 0.038 0.038 – – –

24 rs136382747– rs135235176 55,868,854 – 55,975,740 106,887 M – – – 0.040 – –

25 rs110607501 – rs108984883 17,590,025 – 17,598,054 8030 S – 0.033 0.034 0.034 – –

26 rs133176306 – rs109605337 19,035,737 – 19,066,768 31,032 S – 0.034 0.038 – – –

28 rs134774253 – rs42146826 26,876,269 – 26,885,074 8806 S – 0.033 – – – –

29 rs136755211 – rs42192064 43,980,089 – 44,042,363 62,275 S – – 0.032 0.032 – –

BTA Bos taurus autosome, Dist distance, LD linkage disequilibrium, SNP single nucleotide polymorphism, SW Sliding window haplotype, SW3 SW of three SNPs,
SW5 SW of five SNPs, SW7 SW of seven SNPs, SW9 Haplotype SW of nine SNPs, SW11 SW of eleven SNPs, S strong LD (r2 > 0.6), M moderate LD (0.2 < r2 < 0.6), W
weak LD (0.1 < r2 < 0.2), N not LD (r2 < 0.1)
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of the genes co-localize indicating that they are expressed
in the same tissue or that their proteins are both identified
in the same cellular locations. In addition, 70% of the
genes interact, suggesting that they are functionally associ-
ated. The gene interaction network also revealed 20 genes,
presented as grey circles, that interact with genes in the
genomic regions that cause variation in WBSF. Among
these, CAPN1 is related to genes that were found to be
influencing WBSF in this study. CAPN1 interacts with
NEFH, NIN, PTPRK and THOC5 and is co-expressed with
MRPL49, SUCLG1,TM7SF2 and NF2.

Discussion
We performed a single-SNP GWAA and investigated a
strategy for haplotype-based analysis using variable-sized

sliding windows to detect genomic regions that influence
WBSF. The desirable alleles (negative effects) for all eight
SNPs identified influencing WBSF using single-SNP
GWAA were in low frequency (Table 1), indicating that se-
lection for these desirable alleles could improve tenderness
in Nelore cattle. We found haplotypes affecting WBSF that
were not detected in the single-SNP analysis (Table 2). This
is consistent with previous studies that have shown that
haplotype-based analysis provides a greater power for QTL
detection than does single SNP analysis [15, 16, 35, 36].
The most likely reason for this finding is that QTL are
more likely to be in strong LD with a multi-marker haplo-
type than with a single biallelic SNP, thus haplotype-based
association methods have the opportunity to capture
greater numbers of associations [10, 37, 38].

Fig. 2 Gene interaction network for genes in QTL regions for meat tenderness (WBSF). Genes presented as black circles were located in the QTL
regions and genes that interact with those as grey circles. Edges in purple, green and red represent co-expression relationships, genetic
interactions and co-localizations, respectively
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Genome-wide association analysis
The single-SNP analysis detected two SNPs (rs43490295
and rs137367597) that were not identified in the
haplotype-based analyses. These SNPs explained the smal-
lest amounts of QTL variance among the detected SNPs
(0.028 kg2) and they were not in LD with neighboring
SNPs. Using simulated data, [21] showed that haplotypes
did not provide an advantage for detecting QTL with small
effect sizes. In addition, haplotype-based analysis may also
not have captured these signals because haplotype-based
tests tend to be more powerful when moderate to high
levels of LD exist in a chromosome region [39].
The variable-sized sliding window haplotype analysis

strategy was used to ensure that every region of the gen-
ome was included in the analysis and that causal loci
could be spanned by haplotyped regions. However, the
number of contiguous SNPs to include in a haplotype
window is a variable that requires optimization [9, 10].
The optimal haplotype size will vary according to SNP
density, the patterning of LD throughout the genome
and the genetic architecture of trait variation [40, 41].
We investigated five window sizes for haplotypes, con-
taining 3, 5, 7, 9 or 11 SNP markers (SW3, SW5, SW7,
SW9 and SW11, respectively). The choice of a max-
imum window length of 11 SNP markers was made
based upon computational efficiency. The SW5 analysis
detected the largest number of haplotypes loci followed
by the SW3 analysis. This result may be because longer
haplotype windows are more likely to introduce analyt-
ical problems such as high rates of recombination
among distal SNPs resulting in excessive numbers of
haplotypes, creating noise and computer memory prob-
lems [39, 42], and reducing the benefits of improved LD
between haplotypes and causal variants [43].
Grapes et al.[35, 44] also found that the power to de-

tect QTL improved as haplotype length increased to 6
SNP markers and decreased thereafter using a simulated
bovine data set. However, [45] has shown that haplotypic
diversity was best captured by a 20-marker sliding win-
dow in U.S. Angus cattle. The extent of LD in Nelore is
much less than in Angus [46], suggesting that smaller
window sizes will optimally capture haplotypic diversity
in indicine cattle breeds. This assumption is supported
by the length of all haplotype windows found in this
study that ranged from 5 kb to 147 kb, and the SNPs
within most of the QTL regions were in strong or
medium pair-wise LD (Table 2). As shown in Fig. 1, the
useful LD in our population extends for less than 100 kb
(r2 < 0.15), which is consistent with the findings of [47].
This suggests that haplotypes based on sliding windows of
size no more than 100 kb will capture the LD genome-
wide. On the other hand, some putative QTLs were de-
tected only by larger haplotypes. One possible explanation
is that such QTL have small to very small effects on WBSF,

therefore many informative SNPs grouped would have
larger aggregated effects [22]. Other hypothesis is that only
the allele frequencies of the larger haplotypes were similar
to the QTL allele frequencies in these regions, which
allowed their detection [21, 38]. Thus, since the genetic
architecture and population history differ across genes and
traits, it is not reasonable to expect that one single method
would be superior at detection of all QTL [21].

Genes influencing WBSF
The SNP and haplotype-based association analyses identi-
fied 37 candidate genes influencing WBSF in Nelore cattle
(Table 3). Among these, five genes (GAS8, OLFML3,
TWIST1, GPRC5B, and HIPK1) are involved in myogen-
esis, which is responsible for generating muscle tissue
during embryonic development, regeneration of the
mature skeletal musculature and maintenance of tissue
homeostasis [48–52].
Several genes located in the QTL regions for WBSF,

such as NEFH, FERD3L, NAV3, BCL11A, ZNHIT2,
NOS1AP and SHCBP1, participate in neurogenesis pro-
cesses (GO:0022008) or the structure and function of
neurons. Neurogenesis is essential for skeletal muscle
development and regeneration [53]. Motor neuron, a
neuromuscular junction component, regulates skeletal
muscle contraction [54] and also has a role in the de-
velopment and differentiating of muscle fibers [55].
NEFH, SHCBP1 and NOS1AP have previously been
associated with WBSF in Nelore steers [6]. Moreover,
NOS1AP has been associated with longissimus muscle
area and marbling score in cattle [56]. BCL11A has
been associated with marbling score in Canchim beef
cattle [57] and a QTL region for meat tenderness har-
bored ZNHIT2 in pigs [58].
The NIN and NF2 genes putatively affect skeletal muscle

structure and composition. NIN encodes a microtubule
nucleation protein, which has previously been associated
with skeletal muscle differentiation [59]. NF2 participates
in actin cytoskeleton organization (GO:0030036), which
may explain the association with WBSF after 7 days of
aging in Nelore steers found by [6]. This process results in
the assembly, arrangement of constituent parts, or
disassembly of cytoskeletal structures comprising actin
filaments and their associated proteins (GO:0030036).
Actin is a myofibril protein, one of the major compo-
nents of the sarcomere, which has been reported to
affect meat tenderness [60].
Genes involved in lipid and fatty acid metabolism, such

as SUCLG1, THOC5, NIPSNAP1, IQCK, TM7SF2, VPS51,
PTPRK, ECHDC2 and SCP2, were also found to influence
meat tenderness. Positive effects of lipid on meat ten-
derness are likely due to the lipid within cells in the
perimysium, which separate muscle fiber bundles [61].
Furthermore, [62] found a genetic correlation between
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Table 3 Genes located in QTL regions for meat tenderness in Nelore cattle

BTA Position (bp) Genes Gene Name Gene type

1 6,317,864 – 6,324,488 – – –

1 125,981,534 – 126,011,455 – – –

3 7,371,235 – 7,460,489 ENSBTAG00000010158 NOS1AP Protein coding

3 29,474,206 – 29,610,884 ENSBTAG00000024319 LOC107132293 Pseudogene

ENSBTAG00000011322 HIPK1 Protein coding

ENSBTAG00000011327 OLFML3 Protein coding

3 90,594,180 – 90,664,268 – – –

3 93,949,186 – 94,067,553 ENSBTAG00000002910 ECHDC2 Protein coding

ENSBTAG00000003746 SCP2 Protein coding

ENSBTAG00000026032 FERD3L Protein coding

4 1,008,553 – – –

4 24,143,662 – 24,225,606 ENSBTAG00000010168 – –

4 27,834,564 – 27,894,006 ENSBTAG00000039955 ZYG11A Protein coding

ENSBTAG00000046922 TWIST1 Protein coding

5 7,525,121 – 7,583,435 ENSBTAG00000009852 NAV3 Protein coding

5 18,434,417 – 18,465,179 – – –

8 92,216,117 – 92,289,515 – – –

9 1,116,610 – – –

9 12,339,368 – 12,406,450 - - -

9 21,441,424 – 21,497,606 – – –

9 61,168,282 – 61,197,874 ENSBTAG00000020713 BACH2 Protein coding

9 66,977,872 – 67,045,614 ENSBTAG00000020829 PTPRK Protein coding

9 100,716,451 – 100,721,452 – – –

10 20,448,593 – 20,541,764 ENSBTAG00000007800 TBC1D21 Protein coding

10 43,692,759 – 43,726,489 ENSBTAG00000020281 NIN Protein coding

11 5,751,331 – 5,768,629 ENSBTAG00000042179 U6 SnRNA

ENSBTAG00000046971 LOC107131213 Protein coding

11 43,129,117 – 43,135,745 ENSBTAG00000016534 BCL11A Protein coding

11 50,332,078 – 50,417,494 ENSBTAG00000006075 SUCLG1 Protein coding

ENSBTAG00000042444 U6 SnRNA

15 72,439,829 – 72,470,564 ENSBTAG00000037580 MSANTD3 Protein coding

17 70,788,438 – 70,935,589 ENSBTAG00000013150 THOC5 Protein coding

ENSBTAG00000013153 NF2 Protein coding

ENSBTAG00000013152 NIPSNAP1 Protein coding

ENSBTAG00000013147 NEFH Protein coding

18 14,849,540 – 14,991,573 ENSBTAG00000007096 GAS8 Protein coding

ENSBTAG00000025283 LOC101904595 Pseudogene

ENSBTAG00000029640 U1 SnRNA

ENSBTAG00000033441 SHCBP1 Protein coding

24 47,570,379 – 47,596,815 – – –

24 48,585,933 – 48,632,298 – – –

24 55,868,854 – 55,975,740 – – –

25 17,590,025 – 17,598,054 ENSBTAG00000019596 GPRC5B Protein coding

ENSBTAG00000044092 IQCK Protein coding
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meat tenderness and fatty acid abundance using animals
from the same population as used in the present study.
THOC5 was found to be differentially expressed between
low and high marbling beef cattle in a longissimus dorsi
muscle transcriptome analysis [63]. [58] reported that
TM7SF2 and VPS51 were located within a QTL region for
meat tenderness in pigs. The protein encoded by
PTPRK has been associated with marbling in beef cattle
[64]. ECHDC2 expression is negatively correlated with
non-esterified fatty acid abundance in pigs [65]. SCP2
was down-regulated in pork with high intramuscular fat
content [66] and was associated with WBSF after 7 and
14 days of aging in Nelore steers [6].
There was no evidence of a biological link or bio-

logical mechanism connecting TBC1D21, MSANTD3,
MRPL49, SYVN1, FAU, ZYG11A or BACH2 genes to
meat tenderness. These genes may play a role in the
regulation of transcription or translation, or may inter-
act with important genes for meat tenderness as shown
in Fig. 2. TBC1D21 encodes a GTPase-activating pro-
tein (GO:0090630) for Rab family proteins, which are
involved in spermatogenesis [67]. Its association with
meat tenderness appears to be through interactions
with BACH2 and PTPRK. MSANTD3 is a member of
the MSANTD3 family which contains DNA binding
domains for Myb proteins and the SANT domain
family. [68] speculated that MSANTD3 may be a tran-
scription factor. In addition, MSANTD3 interacts with
BCL11A, NIN, NOS1AP, SCP2 and TWIST1. A QTL
region for meat tenderness in pigs harbors MRPL49,
SYVN1 and FAU [58]. ZYG11A encodes a protein that
plays an important role in the regulation of ubiquitin-
protein transferase activity (GO:0051438). A ZYG11A
family member has been related to marbling in beef
cattle [63]. BACH2 is a transcription repressor and
plays essential roles in the regulation of B cell develop-
ment. B cells function in the humoral immunity com-
ponent of the adaptive immune system by secreting
antibodies [69]. BACH2 has been related to intramus-
cular fat content in bulls [70] and was associated with
WBSF in Nelore steers [6].

Gene network analysis
The gene network analysis (Fig. 2) revealed interactions
among the genes within QTL regions for WBSF and
other genes that were not detected as influencing
WBSF in the present study (grey circles), which are
enriched for their functions in the regulation of transcrip-
tion (GO:0006355), cell differentiation (GO:0030154), lipid
metabolic process (GO:0006629), regulation of angiogenesis
(GO:0045766), thyroid hormone transport (GO:0070327),
proteolysis (GO:0006508), cellular response to insulin
stimulus (GO:0032869) and cytoskeleton organization (GO:
0007010). Among these, is a well-known gene influencing
WBSF, CAPN1, which is responsible for the postmortem
breakdown of myofibrillar proteins and seems to be the pri-
mary enzyme involved in the postmortem tenderization
process [71]. The CAPN1 interacts with TM7SF2, ZNHIT2,
MRPL49, SYVN1,VPS51 and FAU genes that are located in
a QTL region for meat tenderness in this study. In addition,
all of these genes are located near CAPN1 on BTA29 and
their SNPs are in strong LD with SNPs located in CAPN1
in this population (with maximum r2 = 0.86).

Conclusions
This study demonstrates that GWAA using haplotypes
based on variable-sized sliding windows provides substan-
tially more power to detect QTL than does single-SNP
analysis, suggesting that this methodology should be con-
sidered for genomic predictions for WBSF and other
traits. Analyses performed with smaller haplotype win-
dows (3 and 5 SNPs) detected a higher proportion of
QTLs than the analyses that used larger SNP windows.
However, no single sliding window analysis identified
all of the QTL that were found in the analyses using
window sizes from 3 to 11 SNPs. This suggests that
haplotype-based GWAA should employ several window
sizes in order to detect the largest number of putative
QTL. Likewise, the single-SNP analysis found two puta-
tive QTL that were not found by the haplotype-based
analyses. While these may be type I errors, they may
also be regulatory variants.

Table 3 Genes located in QTL regions for meat tenderness in Nelore cattle (Continued)

BTA Position (bp) Genes Gene Name Gene type

26 19,035,737 – 19,066,768 – – –

28 26,876,269 – 26,885,074 – – –

29 43,980,089 – 44,042,363 ENSBTAG00000005069 TM7SF2 Protein coding

ENSBTAG00000005073 ZNHIT2 Protein coding

ENSBTAG00000005075 MRPL49 Protein coding

ENSBTAG00000005076 SYVN1 Protein coding

ENSBTAG00000015499 VPS51 Protein coding

ENSBTAG00000020807 FAU Protein coding
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We identified thirty-seven candidate genes influencing
meat tenderness that participate in myogenesis, neurogen-
esis, lipid and fatty acid metabolism and skeletal muscle
structure or composition processes. These findings contrib-
ute to a better understanding of the biological mechanisms
underlying meat tenderness in Nelore cattle. Further valid-
ation of these genes and polymorphisms in different popu-
lations would contribute to their use in breeding programs
for Nelore cattle.
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