
Journal of Vision (2023) 23(1):15, 1–22 1

Varying test-pattern duration to explore the dynamics of
contrast-comparison and contrast-normalization processes

Norma V. Graham
Department of Psychology, Columbia University,

New York, NY, USA

S. Sabina Wolfson
Department of Psychology, Columbia University,

New York, NY, USA

In this paper, we examine the dynamics of
contrast-comparison and contrast-normalization
processes. Observers adapted (for 1 second) to a grid of
Gabor patches at one contrast; then a test pattern
(which varied in duration from 12 ms to 3012 ms) was
shown; and then the adapt pattern was shown again (1
second). All the Gabor patches in all the adapt patterns
had 50% contrast. The test pattern was the same as the
adapt pattern except that the Gabor patches in the test
pattern had two different contrasts; the test contrasts
varied from row to row (horizontal test pattern) or
column to column (vertical test pattern). The task was to
identify the orientation of the contrast variation in the
test pattern (in other words, the observer performed a
second-order orientation identification task). The two
contrasts in each test pattern were varied while keeping
the difference between the two contrasts constant. We
have previously found that the observer’s performance
is poor for test patterns containing contrasts both above
and below the adapt patterns’ contrast (what we have
called the “straddle effect”) when the test duration is
approximately 100 ms. Here, we find the straddle effect
persists at all test durations we used. Other features of
the results varied dramatically with test duration. We
find that a simple model containing contrast-comparison
and contrast-normalization processes provides a good
explanation for the psychophysical results. The results
provide some insight into the dynamics of these
processes.

Introduction and methods

For most of their waking hours, human eyes are
looking at scenes that are temporally varying. The
change occurs both because the world outside is
changing and because the human eyes are changing
their position in that world.

Lower stages of visual processing constrain what
can possibly happen at higher stages of processing.
Knowledge about the functional roles of the

lower stages is useful in understanding the higher
stages.

In this paper, we concentrate on two intermediate-
level processes: contrast comparison and contrast
normalization. We have been studying their static
properties (Wolfson & Graham, 2009; Graham &
Wolfson, 2018). This paper is a first step in investigating
their dynamic properties, which we have not previously
investigated systematically. Here, we present results
of varying one particular temporal characteristic of
the visual pattern – namely, the duration of a test
pattern – on the performance of human observers in
discriminating simple patterns. In addition, we develop
a simple model to account for many aspects of these
results.

In this section, we first introduce the psychophysical
paradigm (as briefly as possible) with the help
of Figures 1, 2, and 3. Then, we summarize older
experimental results, and we preview new results.

Figure 1 shows the spatial and temporal
characteristics at each stage in a trial. The pattern is a
2 × 2 grid of Gabor patches. During any single trial,
all the Gabor patches have the same spatial frequency
and orientation and occupy the same spatial positions.
The orientation of the Gabor patches (either vertical or
horizontal) varies randomly from trial to trial. During
the 1-second adapt pattern, all of the Gabor patches
have the same contrast, 50%. The test pattern follows
the adapt pattern. The Gabor patches in the test pattern
are spatially identical to those in the adapt pattern,
but have contrasts (T1 and T2) that vary from row
to row (horizontal test pattern) or column to column
(vertical test pattern). In our previous experiments, the
duration of the test pattern has been approximately
100 ms (in the new experiments reported here, the
duration of the test pattern varies). Following the
test pattern, a pattern that is identical to the adapt
pattern is shown for a second; we call this the post-test
pattern.

The possible arrangements of the Gabor patches in
the test pattern are shown in the box on the righthand

Citation: Graham, N. V., & Wolfson, S. S. (2023). Varying test-pattern duration to explore the dynamics of contrast-comparison
and contrast-normalization processes. Journal of Vision, 23(1):15, 1–22, https://doi.org/10.1167/jov.23.1.15.

https://doi.org/10.1167/jov.23.1.15 Received July 22, 2022; published January 23, 2023 ISSN 1534-7362 Copyright 2023 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:nvg1@columbia.edu
mailto:sabinawolfson@gmail.com
https://doi.org/10.1167/jov.23.1.15
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2023) 23(1):15, 1–22 Graham & Wolfson 2

Figure 1. Diagram of a typical trial. The sinusoidal grating in our Gabor patches had a period of 0.5 degrees which corresponded to a
spatial frequency of 2 c/deg. The Gaussian window had a full-width-at-half-height of 0.5 degrees. The contrast of a Gabor patch was
computed by taking the difference between the luminance at the peak of the Gaussian and the mean luminance of the pattern, and
then dividing that difference by the mean luminance. The task of the observer was to identify the orientation of the contrast-defined
stripes in the test pattern. The words “vertical” and “horizontal” are the correct responses of the observer to the patterns shown
below them.

Figure 2. An illustration of contrast plotted as a function of time for three types of trial (above, straddle, and below). The light
entering an observer’s eyes in our experiments varies as a function of two spatial dimensions and one temporal. (It is unchanging in
wavelength composition.) For our purposes, here, however, it is sufficient to use a one-dimensional function of time for each of the
two test contrasts. In each panel, the function for one test contrast (T1) is plotted in black and blue, while the function for the other
test contrast (T2) is plotted in black and red. The thick black lines show the single contrast when all four Gabor patches have the same
contrast (50% during the adapt, 50% during the posttest, and 0% during the gray stages).

side of Figure 1. On each trial, the observer responds
by indicating whether the contrast-defined orientation
in the test pattern is vertical or horizontal. The labels
“Vertical” and “Horizontal” above the columns give
the correct responses. After the post-test pattern, the
screen returns to gray (for at least 100 ms). While the
screen remains gray, the observer responds. Auditory
feedback as to the correctness of the response is given
immediately after the response.

We have previously used the methods and procedures
just briefly described. Further details of these methods
and procedures are given in the description of
“2nd-order orientation identification” in Appendix A
of Graham and Wolfson (2018).

If one wishes to know about the dynamics of the
processes underlying the psychophysical performance in
these experiments, test-pattern duration is an obvious
parameter to vary (as are several others which we will
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Figure 3. Illustration of the adapt and test patterns on five trials from a constant-difference series of patterns (where the test contrast
difference is 10%). Results are shown for one observer with two different test durations: 94 ms (like the duration we have used in
most of our prior work) and 3012 ms (a much longer duration than we have used before). Performance with the two different test
durations is similar except on the far below pattern. Contrast differences in the gray-level images are exaggerated to increase their
salience (the data are from observer LG in Figure 5).

visit in later papers). In the new experiments reported
here, the duration of the test pattern varied from 12
ms to 3012 ms. The exact test-pattern durations are
indicated in the data figures.

We generally refer to our procedure as short-term
adaptation to visual contrast. It could be called masking
instead (e.g. Foley, 2011). Further discussion of this
terminology can be found in the Introduction section
of Wolfson and Graham (2009).

Figure 2 diagrams three types of trials which we
call above, straddle, and below. The names reflect the
values of the test contrasts (T1 and T2) relative to the
adapt contrast. The blue lines show the contrast T1,
and the red lines show the contrast T2. In an above
trial (top row), both T1 and T2 are higher than the
adapt contrast. In a straddle trial (middle row), T1 is
higher than the adapt contrast and T2 is lower than
the adapt contrast. In a below trial (bottom row), both
T1 and T2 are lower than the adapt contrast. The
box on the righthand side defines two quantities that
we often use: average test contrast and test contrast
difference.

Figure 3 shows a single adapt pattern and five
possible test patterns. The value of the adapt contrast
is always 50%. The test-contrast difference | T1-T2
| is 10% for each test pattern, and the values of
the two test contrasts vary from very low (lefthand
pattern) to very high (righthand pattern). We
refer to a set of patterns like this – in which the
average test contrast varies but the test-contrast
difference is held constant – as a constant-difference
series.

The bottom of Figure 3 gives the percent correct
on each of the five test patterns for two test durations
for a single observer. The results for the 94 ms test
duration replicate results of our previous experiments
(e.g. Wolfson & Graham, 2009). The results for the 3012
ms test duration are a small subset of the new results
presented later in this paper.

Performance on the middle test pattern – the Straddle
pattern – is very poor at both test durations. We have
called this effect the straddle effect. (Foley, 2011, has
also shown the straddle effect with a test duration of
100 ms.)
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For both test durations in Figure 3, performance
peaks on the two patterns adjacent to the middle – the
below and above patterns.

At a test duration of 94 ms (like that used in
our previous work), performance at both ends – on
far-below and far-above patterns – drops down from
the peak performance.

At a long test duration of 3012 ms, performance
on the righthand (far-above) pattern was again
substantially lower than peak performance. However,
performance on the lefthand (far-below) pattern is as
high as at the peak! This was originally very surprising
to us.

The curve in Figure 4 is a sketch of a typical
observer’s performance on a constant-difference series
of patterns at a test duration like 94 ms.

To understand the results presented in this paper, for
a variety of test durations we developed a dynamic,
functional model starting from the static modeling we
had already done for our previous results. This modeling
is based on two processes: a contrast-comparison
process and a contrast-normalization process. The
labels in Figure 4 indicate where on this curve each of
these two processes is dominant according to the static
model we have previously developed. A description
of this static model is given in Wolfson and Graham
(2009).

A brief verbal description of the two processes
follows.

Figure 4. Sketch of a typical observer’s performance on a
constant-difference series of patterns with a test duration of
about 100 ms. The labels “Contrast Normalization Process” and
“Contrast Comparison Process” indicate where on this plotted
curve each of two processes in our model is dominant. See text
for description of the model and these two processes.

The contrast-comparison process. We have explained the
straddle effect previously – and will continue to do so
here (both verbally and then formally in a model) – in
terms of a contrast-comparison process (Wolfson &
Graham, 2007). In more detail, the test-pattern contrast
at each point in space is compared to a contrast-
comparison level, which is the weighted average of
recent contrasts at that point. The comparison is
a computation of the magnitude – neglecting the
sign – of the difference between the current contrast
and recently-weighted average contrast. When the result
of that comparison is large, the observer is easily able to
see the pattern and thus to perform well. Performance
is poor when the result of that comparison is small, as
can happen when both current contrasts are far from
the recently-weight average contrast but on opposite
sides of it. (In Foley’s 2011 model, there is a V-response
that acts much like the contrast-comparison process
we use.)
The contrast-normalization process. For test durations
of about 100 ms: the observer’s performance reaches
a peak on both sides of the local minimum at the
straddle pattern; and then it declines to very low values
for far-below and far-above test patterns. We have
attributed these declines to a contrast-normalization
process which is a form of divisive inhibition that has
been suggested in many other situations: in physiology
by, for example, Heeger (1992), Carandini and Heeger
(2012), Solomon and Kohn (2014), and Sawada and
Petrov (2017); and in psychophysics by, for example,
Legge and Foley (1980), Teo and Heeger (1994), Watson
and Solomon (1997), Foley (1994), Graham and Sutter
(2000), and Shooner and Mullen (2020).

In our model presented in this paper, the dynamics
of these processes are made explicit. For the contrast-
comparison process, we postulate transient pulses of
excitation occurring at both increases and decreases
of contrast. For the contrast-normalization process,
we found ourselves forced to postulate two kinds of
divisive inhibition, one that is transient and one that is
sustained.

Experimental results

Figures 5 and 6 show results from our experiments
varying the test duration for four human observers
(M.C., L.G., W.L., and B.S.G.). Different observers’
results appear in different columns. The exact values of
the test durations are given at the right of the figures.
Each panel shows the results for two constant-difference
series, one for a 10% difference (green open squares)
and the other for a 5% difference (purple solid discs).

The curves for the 10% and the 5% constant-
difference series are very similar except that the
observer’s performance on the 10% series is generally
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Figure 5. Results from observers M.C., L.G., and W.L. (in different columns) at test durations ranging from 12 ms (bottom row) to 3012
ms (top row). Error bars show +/- 1 standard error across blocks. The green open squares show results from the 10%
constant-difference series. The purple solid discs show results from the 5% constant-difference series.
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Figure 6. Results from observer BSG at test durations ranging
from 94 ms (bottom row) to 2012 ms (top row). Symbols have
the same meaning as in Figure 5.

higher than that on the 5% series. This is not surprising
because a 10% difference in test contrasts should make
processing the information substantially easier than a
5% difference would.

In each block of trials in the experiment, the test
duration was the same on all trials. But the order of
blocks of different durations was random. (Blocks
in Figure 5 were 144 trials long, and observers ran 10 or
11 blocks at each test duration. Blocks in Figure 6 were
416 trials long, and the observer ran five blocks at each
test duration.)

Effect of varying test duration

What happens as the test duration is varied? An
example of the results for a constant-difference series
(at just 5 points) at two durations was already presented
in Figure 3. In Figure 7, the complete shapes of the
constant-difference-series curves at two test durations

are idealized. We will now go through the full results in
some detail.

Results for test duration of 94 ms
The results at a test duration of 94 ms in Figures 5

and 6 show a shape like that idealized in the left-hand
panel of Figure 7. Namely, performance generally dips
to a very low value for the Straddle test pattern (where
the average test contrast equals the adapt contrast 50%).
Performance rises to peaks for average test contrasts
somewhat below and somewhat above the adapt
contrast. Performance declines again for far-below test
patterns (left end) and far-above test patterns (right
end).

As an aside, in this paper, the adapt contrast is always
50%. Previously, we have used adapt contrasts varying
from very low to very high (e.g. Wolfson & Graham,
2009) with a test duration of about 100 ms. Regardless
of the adapt contrast, the observers’ performance
always reached a very low value when the average test
contrast equaled the adapt contrast. In other words, the
dip at the straddle test pattern was not always at 50%,
but depended on the adapt contrast.

Results for test durations increasing from 12 ms to 94 ms
Consider what happens as test duration increases

from very short (12 ms) to a duration of 94 ms in
Figure 5. Performance on the straddle test pattern
remains around chance (50% correct); performance
on the test patterns with average test contrast
very far below (or above) also remains around
chance; but performance on the other patterns
improves greatly. Looked at from a slightly different
perspective, the whole constant-difference-series
curve tends to rise, but the rise is greatest at the
peaks and least at the center (the straddle pattern)
and two ends (the far-below patterns, and far-above
patterns). This is clearer for the results with a 5%
constant-difference series than with a 10% series,
because the results in the 10% series are more often at
ceiling.

The kind of general increase in performance from
very short to longer test durations is what one might
well expect from almost any dynamic process that
integrates incoming stimulation for some time period
(i.e. accumulates information over some time period).
When the test duration is too short, there is not
very much information for the brain to use in doing
the task. As the test duration gets longer, more and
more information is available and performance gets
better.
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Figure 7. An idealized version of the experimental results shown in Figures 5 and 6. At short test durations, the results generally have
the shape shown in the left panel. At the longest test durations, the results generally have the shape shown in the right panel.

Results for test durations increasing from 94 ms to
3012 ms

There is a dramatic change in the shape of the results
curves as the test duration continues to increase from
94 ms to 2012 ms (Figure 6) or to 3012 ms (Figure 5).
The performance continues to get better and better, but
only for the lower average-test-contrast end of the curve
(the left end), not for the higher average-test-contrast
end of the curve (the right end). This is idealized in
Figure 7.

In general, there is little improvement in the
performance on the straddle test pattern even at
the longer test durations. This initially surprised
us. At an intuitive level, we expected observers to
overcome their difficulty seeing the straddle test
pattern if the test pattern was on for a second or
more. There are individual differences; in particular,
observer W.L. shows more improvement at longer test
durations.

Informal explanation of the long-test-duration
results

Let us get back to the question of why the left end of
the constant-difference series curve is elevated at long
test durations but not at short test durations. At an
informal, verbal level, the answer is as follows.

If the test duration is long and the test pattern is
composed of low test contrasts (e.g. the image of the
test pattern on the left of Figure 3), the observer is
seeing low contrasts for a relatively long time. Therefore,
it is very much as if the system has been staring at a
gray blank field for quite a while before the test offset.
When the test offset occurs, the system might be in a

heightened state of sensitivity relative to its state at the
test offset of a high average-test-contrast pattern (like
that in the image of the test pattern on the right end
of Figure 3). Thus, the system might be able to respond
to the low average contrast test pattern because it is able
to “see” the test offset even if it could not “see” the test
onset.

Thus, when test duration is long, performance on the
left end of the constant-difference-series curve might be
substantially better than performance on the right end
because it is as if the observer has adapted to something
like a gray blank field during the long test pattern. That
is, a constant-difference-series curve for a long test
duration will have higher performance on the left end
than on the right end, as shown in Figure 7 in the panel
labeled “Long Test Durations.”

In the next section, we introduce a simple model
that will account for many of these results in
terms of the dynamics of three mechanisms: a
transient excitatory mechanism (produced by contrast
comparison) and two inhibitory mechanisms – one
sustained and one transient – which carry out contrast
normalization.

Modeling

The simple model developed here is not intended to
describe in any detail the brain’s processing of visual
patterns. It is an attempt to characterize and give
insight into functional dynamics of intermediate-level
human vision. We are not using fine-grained neural
modeling of the sort used by, for example, Heeger
and Zemilianova (2020) or Chariker, Shapley, and
Young (2020).
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How the model responds to contrast as a
function of time (the input side of the model)

This model breaks naturally into two parts. The first
part is shown in Figure 8. It is the input side of the
model, going from Gabor-patch contrast to the model
response R(t). The second part is the output side of the
model and will be discussed in “How the model predicts
the observer’s performance.”

Figure 8 shows the three key mechanisms: one
excitatory and two inhibitory. The two key inhibitory
mechanisms are divisive. All three mechanisms are
described further below. We give equations for all three
mechanisms in Figure 9 and show time courses of their
action in Figure 10.

Recall that the patterns used in our experiments were
collections of Gabor patches, where the Gabor patches
had one of two possible contrasts (called T1 and T2)
during the test interval. The contrast of one Gabor
patch as a function of time will be given in symbols as
contrast(t). An example of this function for one Gabor
patch is shown in the top row of Figure 10 with a test
duration of 1506 ms. (The same example is shown twice,
once in the left column for the numerator computation
and once in the right column for the denominator
computation.) Contrast(t) is shown toward the left
of Figure 8.

Key excitatory mechanism
The key excitatory mechanism is shown in Figure 8 as

an oval labeled “transient excitation.” Critically for the
explanation of our psychophysical data, this excitatory
mechanism shows positive transient output pulses to
the test onset and to the test offset. An example of this
is shown in the left column of Figure 10, fourth row
from the top. For a test duration of 1506 ms as shown
here, the key excitatory mechanism is fast enough that

its output pulses at the onset and offset of the test
pattern are separate and of identical height. The onset
and offset pulses are separate for all test durations of 94
ms or longer. (Illustrations for a test duration of 94 ms
are shown in the Appendix). For shorter test durations
(12, 24, and 47 ms), output pulses to the onset and
offset of the test pattern interact, and the first pulse is
substantially higher than the second pulse. The exact
shape and timing of the key excitatory mechanism’s
output does not matter very much for the conclusions
of this paper, as verified by subsidiary calculations we
have done.

In symbols, we will refer to the output of the key
excitatory mechanism as:

Etran (t)

The subscript tran is short for transient. Similarly,
the subscript sus will be short for sustained.

Details about the key excitatory mechanism for the
interested reader

The equations that produce Etran(t) are given
in Figure 9. Etran(t) is computed as the rectified
difference between two sustained excitatory
mechanisms, one of which is slightly slower than
the other. The left column, second row of Figure 10
shows the outputs of the two sustained excitatory
mechanisms: The faster one is shown by the darker
brown line O(t) labeled “measure of current local
contrast”; the slower one is shown by the orange line
Z(t) labeled “current contrast comparison level.” Both
are linear with contrast in the pattern.

Formally, both O(t) and Z(t) are the result of six
stages of exponential filtering where the time constant
for the faster mechanism O(t) was 5 ms and that for
the slower mechanism Z(t) was 10 ms. Our reason for
using exponential filtering here was its convenience

Figure 8. Flow diagram of the input side of the model. The dashed red lines are inhibitory connections, and the solid green line is an
excitatory connection. There is one key excitatory mechanism. This mechanism responds positively and briefly to step increases and
step decreases in contrast. This positive-going transient output results from the contrast-comparison process. There are two key
inhibitory mechanisms – one sustained and one transient. Together they perform contrast normalization. The weightsWtran andWsus
can represent the number of connections or the strength of connections. The output of this flow diagram is the input to Figure 11.
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Figure 9. Equations for the model developed in this paper. The top box refers to the input side (shown in Figure 8 and discussed in
“How the model responds to contrast as a function of time”). The bottom box refers to the output side (shown in Figure 11 and
discussed in “How the model predicts the observer’s performance”). The period of time over which the summation V(T1,T2) occurs
depends on whether the observer is using the WHOLE, ONSET, or OFFSET decision rule.

in producing sustained (low-pass) responses that we
could vary the time course of. For more details of the
exponential filtering done here, see Graham and Hood
(1992) in the appendix section titled “Linear lowpass
module - Cascaded exponential filters” on page 1392.
The time step we used in these calculations was 0.005
ms.

The difference, O(t) - Z(t), is shown in the
left column, third row of Figure 10. It shows a
positive-going pulse whenever there is a contrast
increase, and a negative-going pulse whenever there is a
contrast decrease.

That difference is then full-wave rectified – in other
words the absolute value of the difference is computed –
to become | O(t) - Z(t) |. It shows positive-going pulses
to both contrast increases and contrast decreases, as in
the left column, fourth row, of Figure 10.

(The V-response of Foley’s 2011 model embodies a
full-wave rectification that performs a similar function
to that performed by the full-wave rectification here.)

For the results and predictions considered in this
paper, full-wave rectification is good enough. But a
quantitative explanation of some other aspects of the
results (at least for some observers) requires partial
rather than full rectification. For example, with only
full-wave rectification, the observer’s performance
on a straddle test pattern, no matter how large the
difference between the two test contrasts, would always
be at chance. For further discussion about the need
for partial rectification see Motoyoshi and Kingdom
(2007), and (Graham & Wolfson, 2007; Graham &
Wolfson, 2013). Although we could allow for partial
rectifications for our observers here, it would require
two further parameters (for each observer) without
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Figure 10. Responses of different stages in our model’s input side as a function of time. The model is responding to a single Gabor
patch having a time-course specified by contrast(t). This particular Gabor patch is of very low test contrast (10%). The adapt contrast
is 50%, which is the adapt contrast used in all the experiments reported in this paper. The test duration is 1506 ms. The left column
shows the functions of time that produce the numerator. The right column shows the functions that produce the denominator. The
centered row at the bottom is the response R(t), which equals the moment-by-moment division of the numerator by the
denominator. More illustrations for a test duration of 1506 ms are given in the Appendix. In addition, illustrations for a test duration
of 94 ms are given in the Appendix.

gaining anything about the aspects of the results we are
interested in.

Two key inhibitory mechanisms
In our model, there are two key inhibitory

mechanisms. They are labeled “transient inhibition”
and “sustained inhibition” in Figure 8.

The key transient inhibitory mechanism is shown in
the right column of Figure 10, second row. The exact
time-course does not matter much for our conclusions
here. We assume it is a weighted version of the key
excitatory mechanism’s time-course (see Figure 10, left
column, fourth row). For this transient key inhibitory

mechanism, we use the symbol:
Itran (t)

The second key inhibitory mechanism is sustained
and acts over a substantially longer period of time.
The exact time-course for the sustained key inhibitory
mechanism does not matter much. However, the
approximate time course is important. For a sketch of
the exact time course, see Figure 10, right column, third
row. For this sustained key inhibitory mechanism, we
use the symbol:

Isus (t)
The transient inhibitory mechanism’s response has

a time course which is a weighted version of the key
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excitatory response Etran(t) with the weight Wtran. That
is:

Itran (t) = Wtran × Etran (t)

The sustained inhibitory mechanism’s response is:

Isus (t) = Wsus × Esus (t)

where Esus(t) is the result of six stages of exponential
filtering with a time constant of 60 ms.

In addition to the two key inhibitory mechanisms,
there is a constant baseline inhibition represented by
the parameter σ .

The existence of sustained and transient mechanisms
has been suggested by many investigators to explain
both psychophysical and physiological results. Early
suggestions include Kulikowski and Tolhurst (1973)
in psychophysics and Cleland, Dubin, and Levick
(1971) in physiology. Relying on the physiological
correlates, more recent suggestions about psychophysics
(e.g. Pokorny & Smith, 1997; Shooner & Mullen,
2020) refer to the sustained and transient mechanisms
as the parvocellular (PC) and magnocellular (MC)
mechanisms.

The two key inhibitory mechanisms are assumed
to act together as a divisive inhibition. The divisive
inhibition will be very simply modeled here as
a moment-by-moment division. That is, the key
excitatory mechanism’s output is divided by the
total amount of inhibition (the sum of the constant
inhibition σ plus the two key inhibitory mechanisms’
outputs). The exact value of the parameter σ (in concert
with the weights Wsus and Wtran) sets the overall scale
of the inhibition. In addition, any value of σ greater
than zero guarantees that the denominator – the total
amount of inhibition – can never reach zero. The exact
value of σ matters rather little for the predictions
(although the necessary order-of-magnitude for σ

depends heavily on the weights used for the excitatory
and inhibitory mechanisms).

Response R(t) of the model’s input side
We use R(t) as the symbol for the response of the

model’s input side as a function of time to a Gabor
patch:

R (t) = Etran (t)
σ + Itran (t) + Isus (t)

R (t) is used for the general case. R1(t) and R2(t)
are used to refer explicitly to the two contrasts in a
test pattern. R1(t) is the response to a Gabor patch
having contrast T1 during the test interval. R2(t) is the
response to a Gabor patch having contrast T2 during
the test interval.

Crucially, as will be shown in the Discussion section,
the model’s ability to account for our experimental
results depends on the value of the weight Wsus. We
found a clear distinction between two types of behavior:
(1) behavior that could be predicted by very small
values of Wsus (relative to Wtran) and (2) behavior that
could be predicted by substantially larger values of Wsus
(approximately equal to Wtran).

How the model predicts the observer’s
performance (the output side of the model)

The previous subsection described the three key
mechanisms (transient excitation, transient inhibition,
and sustained inhibition) that work together to produce
the responses R1(t) and R2(t). In line with the
general modeling philosophy of this paper, we use
a very simplified two-step calculation to represent
all the higher-level processing occurring between the

Figure 11. Flow diagram of the output side of the model. There are two inputs – R1(t) and R2(t) – shown in this flow diagram. R1(t)
and R2(t) are responses to two different Gabor patches, each of which goes through the stages shown in the diagram of Figure 8.
Those two Gabor patches are identical in spatial characteristics but have different contrasts (T1 and T2). The value of V(T1,T2) will
depend on the period of time over which the summation to compute V(T1,T2) occurs, i.e. whether the observer is using the WHOLE,
ONSET, or OFFSET decision rule. The computed value of V(T1,T2) then goes through a monotonic S-function to produce a prediction of
the observer’s percent correct.
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two responses, R1(t) and R2(t), and the observer’s
response. These two steps are shown in Figure 11.

STEP 1 - Compute pooled visual response
We define an intermediate quantity – the pooled

visual response V – which is a single number for each
pattern in the experiment. V(T1,T2) is a measure of
the overall difference between R1(t) and R2(t) pooled
across time. In symbols,

V (T1,T2) =
[∑

t

| R1 (t) − R2 (t)|k
]1/k

where T1 and T2 are the values of the two test contrasts
that led to the responses R1(t) and R2(t). The sum
is taken over many discrete time points during the
trial; the particular time points depend on the decision
rule as explained below. In this paper, we will let the
exponent k = 2. Although we have tried other values
for k, the exact value makes little if any difference for
the conclusions here.

The kind of computation in the equation for
V(T1,T2) has been called various names in different

contexts, for example, the Minkowkski metric, power
summation, and Quick pooling.

If all times t from the beginning to the end of the trial
are summed over, we call this the pooled visual response
V for the whole trial or, in symbols, VWHOLE(T1,T2). If
an observer uses this quantity to make their decision
on each trial in our experiment, we say the observer is
using the WHOLE decision rule.

If all times from the beginning of the trial to 1 ms
before the offset of the test pattern are summed over, we
call it the onset pooled visual response V or, in symbols,
VONSET(T1,T2). This quantity only includes the
response to the test-pattern onset; logically it does NOT
include the response to the offset because the offset has
not happened yet. If an observer uses this quantity to
make their decision on each trial in our experiment,
we say the observer is using the ONSET decision
rule.

If all times from a moment after the offset of the
test pattern to the end of the trial are summed over, we
call it the offset pooled visual response V or, in symbols,
VOFFSET(T1,T2). This quantity includes the response
to the test-pattern offset, and generally it does NOT
include any of the response to the onset. (For very
short test durations, however, this quantity does in

Figure 12. Illustration of the S-function’s action. The top row illustrates the case of a predicted constant-difference series like the
idealized one shown in Figure 7 for long test durations. The bottom row illustrates an example like the idealized curve in Figure 7 for
short test durations. The left column shows the action at STEP 1 where the pooled visual response V(T1,T2) is computed. The middle
column shows the action at STEP 2 where the S-function itself (in green, identical in both rows) is applied to V(T1,T2). The right
column shows the predictions for the observer’s performance after both STEP 1 and STEP 2. The red lines are described in the text.
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fact include some of the response to the onset.) If an
observer uses this quantity to make their decision on
each trial in our experiment, we say the observer is
using the OFFSET decision rule.

In the appendix, there are examples of R1(t) and
R2(t) along with the three values of pooled visual
response V(T1,T2) that result from using the three
different decision rules.

When there is no subscript at all, that is, V(T1,T2),
it means that the statement is true no matter which of
the three specialized cases is considered.

STEP 2 - Apply monotonic S-function
We now need to get from the pooled visual response

V(T1,T2) to the predicted percent correct identification
by an observer.

For STEP 2, we are going to make the following very
simple assumption: A monotonic function – which we
call the S-function – exists. It is shown in the box labeled
“STEP 2” in Figure 11. This S-function is a simple
stand-in for several stages of higher-level perceptual
and cognitive processing.

This S-function takes as input the single number that
is the value of pooled visual response V for a particular
pair of test contrasts (T1, T2). This number V(T1,T2)
ranges from 0 to something arbitrarily high.

The S-function produces as output a predicted
percent correct identification. This is a number in
the range from chance (50%) to perfect performance
(100%). Thus,

Predicted percent correct identiffication
= S[V (T1,T2)].

For the purposes of this paper, we do NOT need to
postulate any particular form for the function S(V)
other than it being monotonic and generally S-shaped.
In addition, accordingly, we do NOT present figures
showing the predicted percent correct identification for
different patterns. Instead, we will show plots of the
values of V(T1,T2) for the different patterns (as is done
in Figures 13, 14).

Why do we NOT specify a particular function S(V)?
It is possible – and to our minds preferable – to NOT
specify any particular form for the function S(V). The
fact that S(V) is monotonic and generally S-shaped
will be sufficient to make the comparisons of model
predictions to the experimental results (observers’
percent-correct) that are needed to support the
conclusions we draw here. Not specifying a particular
S(V) seems preferable because it produces a more
transparent picture of the strengths and weaknesses of
the input-side of our model (Figure 8). S(V) obscures
the action of the input side of the model by removing
information from the data (by compressing it at the
top and bottom of the scale). In addition, there seems

to be no reason to add another few parameters to the
model when we know that our data and arguments
from it would not constrain these parameters in any
interesting way. Indeed, the parameters would simply
trade off.

Example illustrating effect of a monotonic S-function
Figure 12 illustrates the action of the monotonic

S-function. The top row shows one example and the
bottom row shows another example. The top row shows
a case where the left end of the constant-difference
series curve is high. The bottom row shows a case where
the left end is low. The right ends are identical in the
two rows.

The left column shows hypothetical examples of
constant-difference-series curves before the action of
the S-function. Average test contrast is plotted on
the horizontal axis and the pooled visual response,
V(T1,T2), is plotted on the vertical axis. (As a
reminder, this quantity V(T1,T2) will be shown for the
predictions.)

The middle column shows the S-function itself
(which is the same in both rows). The pooled visual
response V(T1,T2) is plotted on the horizontal axis
and percent correct identification, S[V(T1,T2)], is
plotted on the vertical axis.

The right column shows the constant-difference-
series curve after the action of the S-function. Average
test contrast is plotted on the horizontal axis and
percent correct identification, S[V(T1,T2)], is plotted
on the vertical axis.

The reader can follow the action of the S-function
by following the red lines in each row. In the upper left
panel, the red lines show that at STEP 1 an average
test contrast of 20% produces a pooled visual response
of 0.7. In the upper middle panel, the red lines show
that at STEP 2 a pooled visual response of 0.7 leads
to a percent correct identification of 100%. The upper
right panel plots the combined action of STEP 1 and
STEP 2, showing that an average test contrast of 20%
produces a percent correct identification of 100%.
Similarly, one could follow the action in the bottom row
by following the red lines there.

For a wide range of pooled visual responses
V(T1,T2) – from 0 to reasonably high – the S-function
does not do much. But for high values of pooled visual
response, the S-function compresses the output so that
the output stays nearly constant. This can be seen in the
top row of Figure 12 in the panel showing predictions
after the S-function (upper right panel) where the left
end of the curve has been flattened. Compare this case
in the upper row with the case in the lower row. In the
lower row, the curve after the S-function (lower right
panel) maintains the general shape of the curve before
the S-function (lower left panel).
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Figure 13. Predictions of the model for the pooled visual response V(T1,T2). This stage is before the S-function has acted. Shown here
are the predictions when the weight on the key sustained inhibitory mechanism (Wsus) equals zero, that is, the key sustained
inhibitory mechanism is NOT active. Constant-difference series curves (for a test contrast difference of 10%) are shown for three
decision rules (in different columns) and various test durations (in different rows). Values for the other model parameters are given
in Figure 9. The predictions shown here cannot account for the observers’ performances.
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Figure 14. Predictions of the model for the pooled visual response V(T1,T2) withWsus =1. Other parameters are the same as
for Figure 13. This stage is before the S-function has acted. The predictions shown here (in Figure 14) with the WHOLE and OFFSET
decision rules can account for the observers’ performances.
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Discussion: Comparing predictions
to data

Predictions from the model are shown in Figures 13
and 14. These two figures show predictions from
the model with one critical parameter changed,
namely, Wsus is 0 in Figure 13 and Wsus is 1 in Figure
14. Each of the panels in these figures shows a
constant-difference-series curve. The three columns
show predictions from the three different decision rules
(WHOLE, ONSET, and OFFSET). The rows show
predictions for different test durations.

Let us first look at Figure 13, which shows
predictions when Wsus = 0, in other words, when
only two of the three key mechanisms – transient
excitation and transient inhibition – are active. (The
key sustained inhibitory mechanism is NOT active.)
All these predictions are symmetric around an average
test contrast of 50%, that is, the predictions are
symmetric around the adapt contrast which is 50%.
The symmetry around the adapt contrast of 50% will
not be altered by the action of any S-function. Now
compare the experimental results in Figures 5 and 6 to
these predictions in Figure 13. That comparison makes
it clear that the predictions are dramatically at odds
with the experimental data: they cannot account for the
rise of the left end of the observer’s performance curve
as test duration lengthens.

Now let us look at the predictions when all three key
mechanisms are active (Figure 14 for which Wsus = 1).
The predictions in the middle column use the ONSET
decision rule. These predictions are always symmetric
and therefore do not show the rise of the left end of the
observer’s performance curve (Figures 5, 6). Logically
the model using only onset information could not
possibly predict the effect of test duration.

The predictions in the left and right columns
of Figure 14 (labeled WHOLE and OFFSET) do
use test-pattern offset information. The WHOLE
predictions use both test-pattern onset and offset
information, whereas the OFFSET predictions use only
the offset information. Both sets of predictions show a
rise at the left end of the curve for long test durations.
Once the S-function has exerted its compressive
action, these predictions would be a good account of
the observers’ performance. Consider what happens
with short test durations (bottom row in Figure 12
and bottom few rows of Figure 14). Even after the
S-function, the predictions will remain symmetric
and thus closely resemble the experimental data
(Figures 5, 6). Now consider what happens with long
test durations (top row in Figure 12 and top few rows
of Figure 14). After the S-function, the predictions will
now closely resemble the experimental data (Figures 5, 6)
in having high flat left ends.

At a broad-brush level, one can understand the long
test duration predictions with Wsus = 1 (i.e. the key

sustained inhibitory mechanism is active) as follows:
once the test-pattern duration gets long enough, the
contrast of the test pattern (rather than that of the
preceding adapt pattern) dominates the inhibitory
signal. For low test contrasts (the left end of the
constant-difference-series curve), by the time the test
pattern has been on for a while, it will be like having
had a very low-contrast gray adapt pattern on for a
while. An example of this for a very low test contrast
is shown in Figure 10. The sustained inhibition (right
column, third row from the top) rises to the level of the
adapt contrast during the adapt pattern but then drops
down to the level of the test contrast during the long
duration test pattern.

In the results of other dynamic experiments that we
are not presenting in this paper but plan to present
subsequently, we will find it necessary to sometimes
use Wsus = 1 (as in this paper) and at other times to
use a much smaller value of Wsus (such as Wsus = 0).
We currently view this as meaning that there are two
different subsystems (or channels) of the visual system
– one with sustained inhibition and one without – that
get recruited for the observer’s performance in our full
set of dynamic experiments.

Summary

The work presented in this paper is a first step in
trying to characterize the dynamic properties of the
contrast-comparison process as they show up in human
visual perception. This work also leads to some further
characterization of the contrast-normalization process.

We present a simple dynamic model to account
for our experimental results. The model contains
a key excitatory mechanism that is transient, and
responds positively to both increases and decreases of
contrast. The model also contains two key inhibitory
mechanisms, one that is transient and one that
is sustained. The contrast-comparison process is
carried out by the key excitatory mechanism. The
contrast-normalization process is carried out by the two
key inhibitory mechanisms.

The experimental results show that as the duration of
the test pattern increases, performance on the straddle
pattern improves little (which initially surprised us).
In the model, this result is a direct consequence of the
transient nature of the key excitatory mechanism.

In addition, the experimental results show that, as
the test pattern duration increases, the left end (low
average test contrast) of the constant-difference-series
curve rises up. In the model, this rise is a consequence
of the combined action of the transient and sustained
key inhibitory mechanisms.

Keywords: contrast adaptation, dynamics, straddle
effect, contrast comparison, contrast normalization
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Appendix

This appendix gives a fuller explanation of why the
model with Wsus = 1 predicts the raising of the left

Figure 15. Illustration of the calculation of the model’s predictions for a test duration of 94 ms withWsus = 0.
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Figure 16. Illustration of the calculation of the model’s predictions for a test duration of 1506 ms withWsus = 0.

side of the constant-difference-series curve when test
duration increases. We will assume the reader is familiar
with the description of the model given in the Modeling
section. The following equation gives the response of
the model to a Gabor patch as a function of time:

R (t) = Etran (t)
σ + Itran (t) + Isus (t)

The figures in this appendix illustrate how the model
works in making predictions for the far left end of
constant-difference-series curves for two test durations
(94 ms and 1506 ms) and for two values of Wsus
(0 and 1).

The first four figures in this appendix (Figures 15–18)
have the following format: The left column shows the
case for a test contrast of 0% (T1 = 0%), and the
right column for a test contrast of 10% (T2 = 10%).
Each column shows, as a function of time, the pattern
contrast (top row), the numerator of the model
equation (second row), the denominator of the model
equation (third row), and the quotient (fourth row).
This quotient is labeled R1(t) in the left column and
R2(t) in the right column. At the bottom of the figure
is the difference R1(t)-R2(t). Also shown there is
the value of the pooled visual response V(T1,T2) for
each of the three observer decision rules we explored
(WHOLE, ONSET, and OFFSET).



Journal of Vision (2023) 23(1):15, 1–22 Graham & Wolfson 20

Figure 17. Illustration of the calculation of the model’s predictions for a test duration of 94 ms withWsus = 1.

The fifth figure in this appendix (Figure 19) is a
summary showing the values of the pooled visual
response V for the three different decision rules, the two
test durations, and the two values of Wsus used in the
preceding four figures.

Let us start by looking at the two figures withWsus =
0 (Figures 15, 16). In these figures, the curves showing
the numerator, denominator, and the quotient of the
equation (second, third, and fourth rows) are all of
similar shape: they have four quick pulses of activity

generally separated by horizontal line segments. In any
one panel, the four quick pulses are of approximately
equal height. The four quick pulses in each curve occur
immediately after four events in the visual stimulus: the
adapt pattern’s onset, the test pattern’s onset, the test
pattern’s offset, and finally the adapt pattern’s offset.
The quick pulses in the numerator are the response of
the key excitatory mechanism, which is transient. The
quick pulses in the denominator reflect the response
of the key transient inhibitory mechanism. (Because
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Figure 18. Illustration of the calculation of the model’s predictions for a test duration of 1506 ms withWsus = 1. The outputs in the
right column of this figure are also shown in Figure 10. Figure 10 also includes panels which show the individual components of the
numerator and denominator functions.

Wsus = 0 here, there is only transient inhibition, not
sustained inhibition.)

Now let us look at the two figures with Wsus = 1
(Figures 17, 18) and consider the effect of test duration:

• When the test duration is 94 ms (Figure 17),
the amount of inhibition coming from the key
sustained inhibitory mechanism – both at the

beginning and at the end of the test pattern – will
be determined primarily by the contrast of the
adapt pattern that preceded the test pattern (and
not affected by the contrasts T1 and T2 in the test
pattern itself).
• When the test duration is 1506 ms (Figure 18),
the amount of inhibition coming from the
key sustained inhibitory mechanism at the
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Figure 19. The pooled visual response V for the three different decision rules (WHOLE, ONSET, and OFFSET), the two test durations,
and the two values ofWsus shown in Figures 15–18.

beginning of the test pattern is not affected by
the test-pattern contrasts T1 and T2. However,
the amount of inhibition at the end of the test
pattern is heavily influenced by the test-pattern
contrasts.

Next, let us look at the two figures with test duration
of 1506 ms and consider the effect of changing from
Wsus = 0 to Wsus =1 (Figures 16, 18). This change
does not affect the numerator (the output of the
key excitatory mechanism) at all. But it does change
the denominator (the output of the key inhibitory
mechanisms) and hence the quotient. The denominator
has four quick pulses (due to the key transient
inhibitory mechanism) in both cases. However, for the
case of Wsus = 1, there are slow rises or falls (due to the
key sustained inhibitory mechanism) in between those
four quick pulses rather than horizontal lines (as in the
case of Wsus = 0).

At the bottom of each of the first four figures in
the appendix (Figures 15–18), is a panel showing
R1(t)-R2(t) for a pattern in which the two test

contrasts are 0% and 10%. The bottom panels
from these first four figures are shown again in
Figure 19.

As you can see by examining Figure 19, whenWsus =
1 and the test duration is long (upper right panel), the
value of the pooled visual response V(T1,T2) is large
(approximately 38) when the observer uses the WHOLE
or OFFSET decision rule. However, whenWsus = 1 and
the test duration is short (lower right panel), V(T1,T2)
is always small (less than 7). Thus, when Wsus = 1,
and the WHOLE or OFFSET decision rule is used,
the left end of the constant-difference-series curve for
a long test duration is predicted to be substantially
higher than the left end for a short test duration (as
in Figure 14). This model prediction is consistent with
the experimental results (Figure 5).

However, when Wsus = 0 (Figure 19, left column),
the value of the pooled visual response V(T1,T2) is
always small (less than 10). Thus, the left end of the
constant-difference-series curve is not affected by test
duration (as in Figure 13). This model prediction is
inconsistent with the experimental results (Figure 5).


