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Abstract: Tuning the third-order nonlinear properties of graphene by hybrid method is of great
significance in nonlinear optics research. ZrO2/reduced graphene oxide (RGO) composites with
different ZrO2 concentrations were prepared by a simple hydrothermal method. The morphology
and structure show that ZrO2 nanoparticles were uniformly dispersed on the surface of graphene
nanosheets. The nonlinear optical (NLO) characteristics of composites with different ZrO2 con-
centrations were studied by the Z-scan technique of 532 nm picosecond pulsed laser. The results
showed that ZrO2/RGO composites had saturated absorption and positive nonlinear refraction
characteristics. Meanwhile, the third-order nonlinear susceptibility of the ZrO2/RGO composite
with a 4:1 mass ratio of ZrO2 to graphene oxide could reach 23.23 × 10−12 esu, which increased
tenfold compared to RGO, and the nonlinear modulation depth reached 11.22%. Therefore, the NLO
characteristics could be effectively adjusted by controlling the concentration of ZrO2, which lays a
foundation for further research on the application of ZrO2/RGO composites in NLO devices.

Keywords: ZrO2/RGO nanocomposites; third-order nonlinear optical property; Z-scan technique

1. Introduction

Nonlinear optical (NLO) materials are very important for application in optical com-
munication, optical computation and optical signal processing [1–3], and are of great
importance in the study of materials with excellent nonlinear properties [4–7]. Graphene
is a hexagonal two-dimensional planar crystal material with comprising carbon atoms of
sp2 hybridized orbitals [8]. Due to its unique photoelectric properties and large specific
surface area, graphene has been widely developed in the optical field. The third-order
NLO properties of graphene have been proven in some studies [9–11]. However, the
nonlinear properties of a single graphene material are not sufficient because graphene is a
zero-bandgap structure. In order to expand the application of graphene and improve the
optical nonlinearity, people have studied graphene hybrid composites, which have obvious
nonlinearity [12–14]. Therefore, hybrid composites, such as transition metal sulfides and
metal selenides, which were compounded with graphene to enhance the nonlinear proper-
ties, have been developed [4,15,16]. Rajeswari et al. studied the strong reverse-saturation
absorption (RSA) property of WO3/reduced graphene oxide (RGO) hybrid material under
the excitation of 532 nm, and obtained the third-order nonlinear optical susceptibility
χ(3) of 9.727 × 10−8 esu [17]. Jiang et al. studied the graphene-titanium dioxide hybrid
nanostructure and observed an RSA effect at 700 nm and a saturation absorption (SA)
effect at 1100 nm [18]. As a source of Zr in the same family as Ti, zirconia (ZrO2) has
become an attractive functional material due to its high strength, good thermal stability,
excellent optical properties and wide bandgap. It is also non-toxic and has eco-friendly
characteristics [19–22], which is why we chose to study ZrO2 in this work.
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In this paper, a simple one-step hydrothermal method will be used to synthesize
ZrO2/RGO nanocomposites including in-situ synthesis of ZrO2 nanoparticles and reduced
graphene oxide by hydrazine hydrate, and Polyvinyl Pyrrolidone will be added to solve the
problem of ZrO2 agglomeration during the synthesis of ZrO2/RGO nanocomposites. The
structure and morphology of the samples were characterized by The X-ray diffraction pat-
terns, scanning electron microscopy, transmission electron microscopy, Fourier transform
infrared spectroscopy, UV-Vis absorption spectroscopy and Raman spectroscopy. The prop-
erties of nonlinear saturated absorption and positive nonlinear refraction of ZrO2/RGO
nanocomposites were studied and discussed with regard to the laser wavelength of 532 nm.

2. Experimental
2.1. Synthesis of ZrO2/RGO

Synthesis of graphene oxide (GO): GO was synthesized by a modified Hummer’s
method [23]. Firstly, 100 mL of concentrated sulfuric acid and 10 mL of concentrated
phosphoric acid were added into a three-necked flask. Secondly, 5 g of potassium per-
manganate and 0.5 g of carbon powder were added into the three-necked flask which was
heated for 24 h in an oil bath at 70 ◦C. The reactants were cooled to room temperature after
the reaction was finished, and then were poured into a 150 mL ice mixture of H2O2 and
distilled water, which was stirred to room temperature by using a glass rod. Finally, the
mixture was washed once by using hydrochloric acid, four times by using ultra-pure water
and was freeze-dried for 24 h.

Synthesis of the ZrO2/RGO: Firstly, 10 mg of GO was placed in 40 mL of ultra-pure
water and was sonicated for 2 h. 100 mg ZrOCl2·8H2O and 10 mg polyvinyl pyrrolidone
were added to GO solution and stirred until they were fully mixed. 200 µL N2H4·H2O was
slowly added to the solution and stirred for 20 min. Secondly, the mixture was placed in a
50 mL autoclave, sealed, and subjected to hydrothermal reaction at 180 ◦C for 12 h. The
black product was centrifuged and washed repeatedly with ultrapure water. Finally, it
was dried in vacuum at 60 ◦C for 24 h. In this study, the mass ratios of GO and ZrO2 were
1:2, 1:4, 1:6, and 1:8, respectively, which were obtained by changing the dosage of ZrO2
and selenium powder, and were labeled as T1, T2, T3, and T4, respectively. Pure ZrO2
nanocrystals and RGO were synthesized by the same process. The fabrication schematic of
the ZrO2/RGO nanocomposites is shown in Figure 1.
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Figure 1. Schematic diagram of the ZrO2/RGO composite nanostructure.

2.2. Characterization

The X-ray diffraction (XRD) patterns were measured using a DX-2500 diffractometer.
The morphology and structure of the samples were characterized using field emission
scanning electron microscopy (SEM, Carl Zeiss Inc., Oberkochen, Baden-Württemberg,
Germany) and transmission electron microscopy (TEM, JEOL JEM-2100 operating at 200 kV,
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JEOL Ltd. Inc., Akishima, Tokyo, Japan). The Fourier transform infrared (FTIR) spectra
were taken using a FTIR VERTEX 70 v (Bruker Optics Corp. Rudolph Planck Stetter
2776275, Ettlingen, Germany). The UV-Vis absorption spectra of samples were measured
using a Perkin-Elmer Lambda 35 spectrometer. The Raman spectrum was observed and
recorded on a Lei Nishao-based Raman spectrometer with an excitation wavelength of
532 nm. The third-order NLO characteristics were measured by Z-scan technology with
laser source of Nd: YAG laser system (EKSPLA, PL2251. Savanoriu Ave 237 LT, Vilnius,
Lithuania), wavelength of 532 nm, pulse width of 30 ps and pulse repetition frequency of
10 Hz. Before measurement, the optical path was tested and calibrated by using standard
nonlinear material CS2.

3. Results and Discussion

The morphology of the samples GO, ZrO2 and ZrO2/RGO nanocomposites was
characterized by scanning electron microscopy and transmission electron microscopy. The
SEM images of the samples (Figure 2a–f) showed that graphene was multi-layer, and the
zirconia monomer presented spherical nanoparticles. And after the reaction between Zr+

and GO, zirconia was attached to the graphene. When GO: ZrO2 = 1:2, the dispersibility of
the particles on the graphene was relatively good. With the increase of the concentration
of ZrO2, the zirconia on the graphene wa gradually increased. Figure 2g,I are the TEM
images of T2 and T4, and the size distribution of ZrO2. The nearly circular ZrO2 crystal is
attached to the graphene, and the average size of ZrO2 was about 7.4 nm. The results were
consistent with SEM.

The structures of the samples GO, ZrO2, and ZrO2/RGO nanocomposites were an-
alyzed by X-ray diffraction, as shown in Figure 3. GO had a major diffraction peak at
2θ = 10.44◦, which corresponded to the (002) plane of GO [24]. The diffraction peak of GO
disappeared in the composite, suggesting that GO was transformed to G. The diffraction
peaks of ZrO2 were at 2θ = 30.12◦, 34.92◦, 50.21◦, 59.67◦, and 60.12◦, which were corre-
sponded to (111), (200), (220), (311) and (211) crystal faces of ZrO2, respectively, and were
consistent with that of the standard colorimetric card (JCPDS no.89-9069). The diffraction
peaks of composites were in accord with that of ZrO2, indicating that ZrO2 was success-
fully embedded on RGO. The size of ZrO2 nanoparticles on RGO were obtained by the
Debye-Scheler equation [25]: D = kλ/βcosθ. D is the particle size, k is a dimensionless
shape factor, λ is wavelength of incident radiation, β is the line broadening in radians at
half maximum intensity, θ is the Bragg angle. The calculate crystal average particle size of
the composites was close to the results obtained in TEM characterization.

FT-IR spectrum provided the functional group analysis of GO, ZrO2, and ZrO2/RGO
nanocomposites. As shown in Figure 4, the absorption peaks of GO appeared in 3394 cm−1,
2973 cm−1, 1650 cm−1, and 1048 cm−1 in the FT-IR spectrum, which respectively correspond
to O-H vibration of hydroxyl group, C-H vibration of saturated CH2, C=C vibration of
aromatic hydrocarbon and C-O vibration of aromatic hydrocarbon in graphene [26]. In
the FT-IR spectrum of the ZrO2/RGO composite, with the decrease of the concentration of
ZrO2, the strength of oxygen-containing functional groups in GO hydroxyl and carboxyl
groups were reduced or even disappeared. The vibration peaks at 503 cm−1, 592 cm−1, and
606 cm−1 of ZrO2/RGO nanocomposites would be attributed to the vibration of the Zr-O
functional group [27]. This indicated that ZrO2 nanoparticles were successfully embedded
on RGO.
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Raman analysis is a very important mean to characterize the sp3 and sp2 hybridized
carbon atoms in graphene [28]. As shown in Figure 5, under the excitation at the wavelength
of 532 nm, the composites showed two characteristic peaks at 1593 cm−1 and 1335 cm−1,
which corresponded to the G and D bands of graphene, respectively. The D-band was
related to the defect state of graphene, and the G-band came from the in-plane vibration of
carbon atoms in graphene [29]. The intensity ratios of D to G for GO and composites T1–T4
were 0.76, 0.83, 0.850, 0.853, and 0.86, respectively. The intensity of D-band/the intensity
of G-band (ID/IG) of the composites increased, indicating that the surface defects of the
composites increased with the increase of ZrO2 concentration.
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Figure 6 shows the UV-Vis absorption peak position of the sample. The absorption
peak of GO was at 228.96 nm, which might be mainly derived from the π-π* transition
of C-C and C=C in sp2 hybridization [30]. For ZrO2/RGO nanocomposites, with the
increase of ZrO2 concentration, the absorption peaks were located at 262.79 nm, 264.16 nm,
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266.07 nm, and 275.15 nm, respectively. The absorption peak underwent red shift. The
energy gap (Eg) of ZrO2 was estimated to be 5.47 eV, and the band gaps of ZrO2/RGO
composites T1–T4 were calculated from UV absorption peaks as 4.72 eV, 4.69 eV, 4.66 eV
and 4.51 eV, respectively. The red shift of the absorption peak and the reduction of the
band gap provided the basis for the covalent bond between graphene and ZrO2. The high
refractive index of ZrO2 and the high electron mobility of graphene, as well as the charge
transfer between graphene and ZrO2, made the band gap of the composite become smaller.
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Nonlinear Optical Effect of ZrO2/RGO

The samples were dissolved in anhydrous ethanol at 0.2 mg/mL, and the input pulse
intensity was 7 GW/cm2. The open-aperture (OA) and closed-aperture/open-aperture
(CA/OA) Z-scan curve of samples were shown in Figure 7, where the scattered point
represented the experimental transmittance and the solid line represented the theoretical
fitting. Anhydrous ethanol had no peak under the same conditions, so its influence could
be negligible. Figure 7a was the OA Z-scan curve of RGO, ZrO2 and composite T2. RGO,
ZrO2 and composite T2 exhibited nonlinear saturated absorption at the focus, and the
saturated absorption of composite T2 was stronger than that of RGO and ZrO2. Since
RGO had a zero-band-gap structure, it would theoretically absorb any wavelength. When
the strong laser irradiated RGO, the electrons in the valence band absorbed the energy
of the photon and continuously excited to the conduction band, and the photon energy
subband of the valence band and the conduction band were completely occupied by the
electrons and holes, resulting in the blocked transition, thus achieving saturated absorption.
The main reason for the SA of ZrO2 was that the electrons in the valence band absorbed
the photon energy and then stimulated the conduction band when the laser irradiated
the ZrO2. The essence of this excitation was that the electrons in the 2p energy state of
oxygen atom in the valence band excited to the 4d energy state of zirconium nanoparticle.
According to Fermi-Dirac distribution [15,31,32], the energy of electron absorption photons
was excited from a low level to a high level, and the excitation rate of absorption transition
was much higher than the relaxation rate of carriers. The photonic bands in the valence and
conduction bands were completely occupied by electrons and holes, resulting in hindered
transitions and saturated absorption. Figure 7b was the OA Z-scan of composites T1–T4,
which showed SA. With the increase of ZrO2 concentration, the saturated absorption
increased firstly and then decreased, which indicated that the combination of ZrO2 and
RGO played a synergistic effect on the nonlinear property. In order to better explain the SA
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of composites, theoretical fitting was adopted, and the formula combining the SA and RSA
coefficient was used [33–35]:

α(I) = α0(1 + I/Is) + δI
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α(I) represented the total absorption of the sample, α0 was the linear absorption
coefficient which could be obtained from the UV-vis spectrum. Is was the SA intensity,
and δ was the RSA coefficient. The experimental data of OA Z–scan were fitted with the
equation below [33,35]:

T(z) =
∞

∑
m=0

(−βI0Le f f )
m(

1 + Z2

Z2
R

)m
(1 + m)

3
2

where T(z) was the OA Z-scan normalized transmittance, z was the sample position, I0
was the laser intensity at the focus, z0 = πω2

0/λ was the length of Rayleigh diffraction,
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andω0 was the laser beam waist. Leff = [1 − exp(α0L)]/α0, was the effective thickness of
the sample, L was the actual thickness of the sample. The effective nonlinear absorption
coefficient of the sample could be obtained by fitting the curve: β = 23/2(1 − TZ=0)(1 +
z2/z0

2)/I0Leff, The imaginary part of the third order nonlinear susceptibility of the sample
was calculated by Im χ(3) = cn2

0λβ/480π3.
Figure 7c,d shows the CA/OA track of RGO, ZrO2, and composite samples T1–T4.

It was shown that the RGO, ZrO2 and composites had self-focusing properties. With
the increase of ZrO2 concentration, the nonlinear refraction firstly decreased and then
increased, which indicated that the combination of ZrO2 and RGO had a synergistic effect
on the nonlinearity. The normalized CA/OA Z-scan experimental data were fitted by the
following equation [30]:

T(z) = 1 − 4x∆∅0

(x2 + 9)(x2 + 1)

where x = z/z0, ∆∅0 was the on-axis phase shift at the focus, defined as ∆∅0 = k∆n0Leff =
kγI0Leff , k = 2π/λ was the wave vector, λ was the laser wavelength,

γ = λα∆TP−V/
(

0.812πI0(1− S)0.25(1− e−αL)), γ was the nonlinear refractive index co-

efficient in m2/W, ∆TP−V represented the difference between the normalized transmitted
peaks and valleys of the open/closed Z-scan trace, S was the fluence of the aperture. Then, the
nonlinear refraction index was calculated by n2(esu) = (cn0/40π)γ

(
m2/W

)
. Thus, the real

part of the third order nonlinear susceptibility was calculated using Reχ (3) = n0n2/3π, and

the third-order nonlinear susceptibility was obtained by χ(3) =
[(

Re χ(3)
)2

+
(

Im χ(3)
)2

] 1
2
.

The results of Is, Im χ (3), Re χ (3), χ (3) and ∆T for all the samples were presented in Table 1.

Table 1. The nonlinear susceptibilities of the samples.

Is Imχ (3) Reχ (3) χ (3) ∆T

Sample GW/cm2 /10−12 esu /10−13 esu /10−12 esu /%

RGO 9.60 −2.31 0.63 2.39 4.97
ZrO2 1.64 −1.79 0.18 1.81 7.73

T1 1.52 −8.413 1.06 8.48 9.62
T2 0.58 −23.19 1.49 23.23 11.22
T3 3.32 −6.82 1.65 6.88 8.95
T4 4.91 −4.89 1.74 5.19 10.38

From the table, one can see that the Imχ(3) of the composites firstly increased and
then decreased with the increase of ZrO2 concentration, and the Imχ(3) of T2 reached the
maximum whose value was 23.19 × 10−12 esu. In addition, the real part of the NLO
susceptibility Reχ(3) of the composites increased, and Reχ(3) of T4 reached the maximum of
1.74 × 10−13 esu. The third-order NLO susceptibility χ(3) was also tuned and enhanced,
and the maximum χ(3) value of T2 is 23.23 × 10−12 esu, which was approximately 10 times
that of RGO and 20 times that of ZrO2. These data indicated that the NLO properties of the
ZrO2/RGO composites were obviously better than those of the ZrO2 nanoparticles and
RGO nanosheets.

4. Discussion

As shown in Figure 7 and Table 1, the nonlinear absorption and refraction characteris-
tics of RGO were regulated by ZrO2. Particularly with the increase of ZrO2 concentration,
the nonlinear saturation absorption first increased and then decreased, which might result
from the charge transfer effect between ZrO2 and RGO [36]. To explain the regulation of
charge transfer effect on the NLO properties of ZrO2/RGO composites, a model of charge
transfer was proposed based on the valence band (VB) spectrum and relative energy levels
as given in Figure 8 [30,31,36]. ZrO2 is a wide bandgap material (the bandgap is 5.47 eV)
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and RGO is zero bandgap. Therefore, the two materials could be regarded as a donor-
acceptor system. Under the excitation of 2.33 eV (532 nm), the 2p energy state of oxygen
atom in the valence band of ZrO2 underwent spin splitting and bonding/anti-bonding
splitting to generate electrons and oxygen holes, resulting in an electron-guiding band
transition, which was transformed from an excited state to a more intense state [19,37].
Meanwhile, the electrons in graphene absorbed the photon energy and transition from the
ground state to the excited state. The electrons generated in the ZrO2 valence band would
not only be relaxed to the conduction band through oxygen vacancy transition, but also
be transferred to the excited state of RGO through charge transfer and then returned to
the ground state. Therefore, the charge transfer process destroys the electron relaxation in
RGO, hinders the linear absorption of graphene, and increases the saturated absorption of
graphene.

 

Figure 8. The charge transfer mechanism and energy-level diagram of the ZrO2/RGO composites.

In order to better understand the electron relaxation in the SA of ZrO2/RGO com-
posites, the modulation depth, ∆T, defined as the difference between the maximum and
minimum transmissions, ∆T = Tmax − T0 was introduced, which was calculated by the
Franz-Norvik equation [38,39]:

T(F) = T0 +
TFN − T0

1 − T0
(Tmax − T0)

where T0 = e−σgNL was the linear transmission, Tmax = e−σeNL was the saturable trans-
mission, σg and σe represented the absorptive cross sections of ground and excited states,
respectively. N represented the density of the absorptive centers (density of atoms for
approximation), and L was the sample thickness. As shown in Table 1, the modulation
depths of composites T1–T4 were 9.62%, 11.22%, 8.95% and 10.98%, respectively, which
were larger than that of monomer graphene. In addition, the saturated absorption inten-
sity firstly decreased and then increased, and the minimum value Is was 0.58 GW/cm2,
appearing at composite sample T2. It might arise from the electron relaxation and charge
transfer processes in ZrO2/RGO composite. The electron relaxation and charge transfer
processes were related to the bandgap of material. ZrO2 is a wide bandgap material, and
the excitation of electrons from the valence band to the conduction band required a rela-
tively large amount of energy. The size of ZrO2 in ZrO2/RGO composite became smaller
(7.4 nm), which was obtained by SEM, TEM and XRD characterization. The small size
effect made the change of electronic relaxation between the ZrO2 and graphene. Therefore,
under the excitation of strong light, the electrons generated from the valence band of ZrO2
in ZrO2/RGO composites relaxed to the conduction band through the oxygen vacancy



Nanomaterials 2021, 11, 2741 10 of 12

transition. When the concentration of ZrO2 increased, the band gap of the composite
became smaller and the oxygen vacancy increased. This resulted in few electrons being
transferred to RGO, and the relaxation damage to electrons in RGO became smaller, and
the SA of the composite was reduced. the modulation depth of ZrO2/RGO composite with
the mass ratio of 4:1 reached the maximum value of 11.22%, indicating that charge transfer
between RGO and ZrO2 made the longer electron relaxation time, which hindered the
linear absorption of graphene and increased the saturated absorption of the composite.

Compared with the reported materials, the χ(3) of composite T2 (23.23 × 10−12 esu)
was three times larger than that of graphene–γMnS composite (6.23 × 10−12 esu) [40], four
times larger than that of α–MnS/rGO composite (4.93 × 10−12 esu) [41], and six times
larger than that of the rGO–Au@CdS composite (3.43 × 10−12 esu) [31]. Meanwhile, χ(3) of
composite T2 was twenty times larger than that of GeS2–Ga2S3–CDS chalcogenide glass
(0.165 × 10−12 esu) [42], and six orders of magnitude larger than that of CdS quantum dots
(3.96 × 10−18 esu) [43]. Therefore, the ZrO2/RGO composite exhibited relatively strong
NLO properties.

5. Conclusions

ZrO2/RGO nanocomposites were synthesized by the hydrothermal method and their
NLO properties were studied by the Z-scan technique. The experimental results showed
that ZrO2/RGO composites had nonlinear saturated absorption and positive nonlinear
refraction properties. By controlling the content of ZrO2, the third-order NLO susceptibility
χ(3) of the composite first increased and then decreased, and the maximum value was
23.23 × 10−12 esu, which was about 10 times that of RGO, and the modulation depth of
the composite reached 11.22%. The enhanced NLO property of ZrO2/RGO composites
indicates its possible application in many NLO devices such as optical communication,
optical switches and optical storage.
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