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Compared with the traditional neurofeedback paradigm, the cognition-guided
neurofeedback brain–computer interface (BCI) is a novel paradigm with significant effect
on nicotine addiction. However, the cognition-guided neurofeedback BCI dataset is
extremely lacking at present. This paper provides a BCI dataset based on a novel
cognition-guided neurofeedback on nicotine addiction. Twenty-eight participants are
recruited and involved in two visits of neurofeedback training. This cognition-guided
neurofeedback includes two phases: an offline classifier construction and a real-
time neurofeedback training. The original electroencephalogram (EEG) raw data of
two phases are provided and evaluated in this paper. The event-related potential
(ERP) amplitude and channel waveform suggest that our BCI dataset is of good
quality and consistency. During neurofeedback training, the participants’ smoking cue
reactivity patterns have a significant reduction. The mean accuracy of the multivariate
pattern analysis (MVPA) classifier can reach approximately 70%. This novel cognition-
guided neurofeedback BCI dataset can be used to develop comparisons with other
neurofeedback systems and provide a reference for the development of other BCI
algorithms and neurofeedback paradigms on addiction.

Keywords: brain-computer interface, cognition-guided neurofeedback, nicotine addiction, electro
encephalogram, public dataset

INTRODUCTION

The brain–computer interface (BCI) is a hardware and software system integrated as the interface
between the brain and the computer (Janapati et al., 2020). Considering time sensitivity and device
portability, BCI system generally uses electroencephalogram (EEG), electrocorticogram (ECoG),
functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS),
magnetoencephalography (MEG), and positron emission tomography (PET) as imaging methods.
Among them, EEG is the most widely used BCIs (Kwon et al., 2020). ECoG can collect purer signal
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than EEG, but it is invasive (Korostenskaja et al., 2014). Although
fMRI and fNIRS have high spatial resolution, their temporal
resolution is low (Cui et al., 2011). Besides, MEG and PET require
large and expensive equipment and are not suitable for large-scale
applications (Stam, 2010).

Nowadays, BCI system includes ERP, steady-state visually
evoked potential (SSVEP), motor imagery (MI), and emotional
BCI. In recent years, BCI-related fields have developed.
Neurofeedback, as the predecessor of BCI, is applied to improve
normal cognitive abilities, such as the enhancement of attention
and working memory (Hsueh et al., 2016). It is also more and
more used in the field of psychiatry studies, such as depression
(Trambaiolli et al., 2021), anxiety (Gadea et al., 2020), addiction
(Posson, 2019), etc.

Previous addiction-related neurofeedback datasets were
usually based on fixed EEG or fMRI signals. Traditional EEG-
based neurofeedback usually focuses on arousal/anxiety
symptom in drug addiction by regulating α, α/θ, and
sensorimotor rhythm (SMR)/β signals (Sokhadze et al., 2008).
Real-time fMRI neurofeedback usually focuses on the activation
of anterior cingulate cortex (ACC) or functional connectivity of
bilateral ACC, medial prefrontal cortex (mPFC), orbitofrontal
cortex (OFC), etc. (Martz et al., 2020). These datasets mentioned
above have the following problems:

• No cognition task is performed to disclose the relationship
between signals and behaviors/cognition components.

• Individual differences are not considered as all the
subjects use a single and fixed signal to regulate the
addiction behaviors.

• The efficacy of the traditional neurofeedback urges to be
further improved in the treatment of addiction, as it is only
rated as “probably efficacious.”

Therefore, it is of vital importance to propose a novel
neurofeedback paradigm.

We attempt to resolve the shortcomings of traditional
neurofeedback by proposing the EEG cognition-guided
neurofeedback based on a cue reactivity model. According
to this model, when smokers are presented with visual, taste,
or tactile cues related to smoking, they will have significant
cue reactivity (physiological and physical reaction). Similar
reactivity is found in healthy control subjects to non-drug
evocative stimuli (Garavan et al., 2000). Cue reactivity leads to
impulsive behavior in drug-seeking behavior as well as relapse
(Chiamulera, 2005). The cue reactivity task is usually used to
induce cue reactivity of participants. In our study, we used a
smoking cue reactivity task to induce specific cue reactivity. Cue
reactivity has multiple EEG features including both time- (e.g.,
P300, slow positive wave) and frequency-domain (e.g., alpha
oscillation) features. Compared with the single signal, combing
with multiple features (both time and frequency domain) using
multivariate pattern analysis can better enhance sensitivity of
detecting a particular brain activity pattern (Littel et al., 2012;
Campanella et al., 2014). Our cognition-guided neurofeedback
regulated the multiple signals induced by the specific cue
reactivity. Therefore, the cognition-guided neurofeedback

process included a specific addiction-related cognitive model
(cue reactivity model). Based on this model, we performed
the cognitive task (cue reactivity task) to obtain the specific
addiction-related brain activities represented by multiple EEG
features. In addition, this paradigm achieved a good intervention
effect for smokers: the number of cigarettes consumed per day
decreased 30.6, 38.2, and 27.4% compared with the baseline (pre-
neurofeedback) at 1 week, 1 month, and 4 months follow-up (Bu
et al., 2019). Our BCI dataset is based on a novel neurofeedback
paradigm, which is closed loop, individualized, and MVPA based.
Previous researchers have proposed a framework for cognitive
neurofeedback in food cravings (Sokunbi, 2014; Ihssen et al.,
2017) and cocaine addiction (Kirschner et al., 2018), but most of
these studies are based on fMRI.

According to the cue reactivity model, smoking behavior
enhances the conditional value of smoking cues, which is
specifically reflected at two levels (Supplementary Figure 1):

• Bottom–up automatic processing to activate
attentional functions.

• Top–down modulation of sensory inputting and motor
controlling from cortical area.

According to conditioned reflex learning theory (Rees and
Heather, 1995; Versace et al., 2017), the craving for cigarettes
induced by smoking cues may partly relate to the conditioned
reflex established by learning to associate smoking-related cues
with smoking behavior (Karelitz, 2020). The reinforcement
of smoking behavior also enhances the conditioned value
of smoking cues, which automatically activates the attention
function from the bottom to up. Besides, previous fMRI study
has reported the regulation of cue-induced cravings from the top
to down (Li et al., 2013).

Different from other neutral neurofeedback (for example,
the height of the column is used for neurofeedback visual
signals) (Zotev et al., 2014), we used an adaptive closed-
loop method to develop our cognition-guided neurofeedback
in the process of self-regulation training (Bu et al., 2019).
The essence of this method is that when the participants’
task performance decreased, the program would arouse the
participants’ attention and alertness by increasing the difficulty
of the current task (deBettencourt et al., 2015). We established
a mapping relationship between the probabilistic score and the
11 pictures (the probabilistic score was positively correlated with
the desiring rating of the picture). Participants’ brain activity state
toward smoking cues was reflected as smoking-related pictures
with different craving levels. At the same time, the picture would
affect the brain activity pattern in the next trial, which was
mapped to the corresponding smoking-related picture. In other
words, we amplified the consequence of neurofeedback training:
rewarding successful downregulation by reducing difficulty and
punishing unsuccessful downregulation by increasing difficulty
to activate participants’ self-monitoring ability. By this way, an
adaptable closed-loop effect was formed, which is one of the
characteristics of our cognition-guided neurofeedback.

Neurofeedback intervention methods may produce different
effects in different participants. Different visits of the same
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participant will also lead to different EEG signals (Gruzelier,
2014). Considering the individual differences of neurofeedback
intervention and changeable craving of a specific participant,
our neurofeedback paradigm built an individual model for each
visit of each participant, which eliminated individual differences
to a great extent. Each subject had exclusive classifier, and
the regulated EEG signals (time and frequency domain) were
obtained from his/her own cue reactivity task. The model
used by the subject was reconstructed in the current cycle.
Traditional neurofeedback regulated fixed signal, which may be
not suitable in some subjects. Individual classification is one of
the characteristics of our cognition-guided neurofeedback.

Traditional dependent neurofeedback usually includes single
signal. There are also researches about neurofeedback based
on network features, such as the algorithm based on common
spatial pattern (CSP) and local characteristic-scale decomposition
(LCD) developed by Ai et al. (2019). Addiction is a complex
pattern of brain activity, rather than just being related to a
certain electrical brain signal, such as P300 (Littel et al., 2012)
and α power (Cui et al., 2013). The development of a classifier
with more features or variables is particularly important. MVPA
classifier is used to extract features of different dimensions from
cue reactivity task (Zafar et al., 2017). This algorithm based
on machine learning can detect the brain reactivity patterns
in response to smoking and neutral stimulus more sensitively
(Sitaram et al., 2017).

Our novel paradigm has a good performance and shows
significant short- and long-term effects (Bu et al., 2019), but
so far, there is a lack of novel neurofeedback-related datasets.
Sharing these datasets online can facilitate comparison with
other neurofeedback datasets, promote parameter optimization
process, and help optimize the BCI algorithm. Single data may
be limited. More datasets shared online can also be applied to
big data models to get better results. In addition, BCI datasets
are also instructive for BCI hardware development. In the field
of psychiatry, more datasets on clinical nicotine addiction are
needed to promote the study of addiction mechanisms, especially
smoking cue reactivity mechanisms.

In this paper, we provide a novel dataset based on a cognition-
guided, closed-loop, and individualized neurofeedback, which is
based on MVPA classifier. The dataset includes EEG data of two
phases: the cue reactivity task and the real-time neurofeedback
training. In addition, we evaluated the quality of EEG data in
our dataset by ERP and topographic map analysis. A linear
correlation is used to indicate the trend of probabilistic score in
neurofeedback training. Prediction accuracies of each participant
are used to evaluate the classification power. The publication
of novel cognition-guided neurofeedback dataset is of vital
importance to the development of this field.

MATERIALS AND METHODS

Participants
In this study, 28 participants (male; mean age, 23.7 years)
were recruited through online advertisements and posters by
the criteria listed below. The score of Fagerstrom Test for

Nicotine Dependence (FTND) of the 28 subjects were 4.6 ± 1.9
(mean ± SD, Table 1). Since there are only a few female
smokers (2.7%) in China, we recruited only male participants
for this experiment. This study was approved by the Human
Ethics Committee of the University of Science and Technology
of China (USTC). According our records, no participant
reported uncomfortable feelings after neurofeedback training
(Bu et al., 2019).

Selection criteria were as follows:

• Smoking 10 cigarettes or more per day for at least 2 years
• Right-handedness
• 18–40 years old
• Normal or corrected-to-normal vision
• Normal mental and physical health condition assessed by

the Mini-International Neuropsychiatric Interview (MINI).

Exclusion criteria were as follows:

• Chronic neurological, psychiatric, or medical disease
• Taking any drugs in the past 3 months
• Unable to perform EEG for any reasons.

Experimental Design
We developed a novel cognition-guided neurofeedback
paradigm on nicotine addiction. Participants were involved
in two continuous visits over 2 days. In each visit,
participants experienced a two-phase procedure shown in
Figure 1C: offline classifier construction and real-time EEG
neurofeedback training.

Before the formal experiment, we prepared 330 pictures
(210 × 180 pixels), including 150 smoking-related pictures (e.g.,
holding a cigarette in hand), 150 paired neutral pictures (e.g.,
holding a pencil in hand), and 30 pictures of animals (e.g.,
cat). The selection of these pictures mainly referred to the
previous work on addiction of our laboratory (Zhang, 2011).
To eliminate the possible impact of visual information, these
smoking pictures and neutral pictures were matched as much as
possible in terms of visual information such as background color,
brightness, and object orientation. We recruited 20 participants
to evaluate the craving degree of these pictures. The picture
evaluation procedure is shown in Figure 2A. Eleven pictures
were selected for real-time EEG neurofeedback training from 150
smoking-related pictures. They were listed in ascending order of
the craving score given by the participants (Figure 2B).

TABLE 1 | Demographic information of 28 participants.

Characteristic Value

Age (years) 23.7 (3.8)

Education (years) 14.8 (2.5)

Cigarettes (day) 14.1 (4.5)

Cigarette use (years) 7.1 (3.9)

FTND score 4.6 (1.9)

Values were mean and values in parentheses were 1 standard deviation (SD).
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FIGURE 1 | Two phases for one neurofeedback visit: offline model construction and real-time neurofeedback training. (A) Offline classifier construction phase.
(B) Real-time EEG neurofeedback training phase. (C) Experimental protocol in one visit. NF, neurofeedback.

FIGURE 2 | Evaluation of nicotine related cues. (A) Picture evaluation protocol and procedure. Participants pressed the button to start a new trial. They had 5 s to
move the mouse to change the position of the triangle on the line to give an appropriate score according to their craving to this picture. Then, they had about 2 s to
rest and wait for the next trial. (B) Eleven selected pictures listed in ascending order of craving score.
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Offline Classifier Construction
Offline classifier construction consisted of two parts: the smoking
cue reactivity task and the support vector machines (SVMs)
classifier training (Figure 1A). EEG data collected from cue
reactivity task were used to train the classifier.

The smoking cue reactivity task was block design. Three
smoking and neutral blocks each were assessed in a pseudo-
randomized order (neutral, smoking, smoking, neutral, smoking,
and neutral). There were 55 trials in each block, and participants
were requested to focus on the pictures as much as possible.
Among them, 50 trials were smoking or neutral cues. Another
five randomly distributed trials were animal cues, which were
used to improve the concentration of participants on the task.
They were asked to press the space button of the keyboard quickly
and accurately when seeing animal cues (the main objects are
animals, such as cats and dogs) and press the space button of
the keyboard quickly and accurately. At the same time, EEG
data were collected during each block. In the block interval,
participants had 90 s of rest. The smoking cue reactivity program
was written by Psychophysics Toolbox1 for MATLAB (version
2016a, MathWorks Inc., Natick, MA, United States).

EEG data were processed offline in order to remove noise
using EEGLAB (more details and parameters will be mentioned
in Data processing). Permutation test was performed to extract
features in time and frequency domain from the processed
data (α = 0.05). Specifically, we compared EEG data collected
from smoking and neutral blocks to obtain significantly different
features in time (amplitude) and frequency (power) domain.
These statistically significant features were transferred to cluster
features via cluster-based statistic (maximum cluster-level mass)
and imported into the classifier in the form of a column vector
to train a personalized SVM classifier to recognize brain activity
patterns in response to smoking stimuli. This step was calculated
using the MATLAB function fitcsvm (Bu et al., 2019). Sixty
channels (64 standard channels except for CB1, CB2, HEOG, and
VEOG) were used to construct the model. In order to evaluate
the classification effectiveness of the classifier, we used 20% of the
trials to calculate the prediction accuracy in each cross-validation
cycle. This step repeated five times for each participant.

Real-Time EEG Neurofeedback Training
The neurofeedback training phase comprised eight same cycles
in total, including 40 trials (80 s) and a rating (60 s) in each
phase. Before the first trial, we carried out a practice cycle
to make sure that participants understand the experimental
requirements (Figure 3).

The real-time neurofeedback signal of each trial was updated
every 2 s, including 1 s of real-time EEG acquisition and
classification each. Online preprocessing (the same with offline
processing mentioned above) was performed to remove noise.
Processed EEG raw data were put into the classifier. Based on the
SVM classifier, a probabilistic score (range, 0–1) was returned to
characterize the similarity probability between the current brain
activity and the brain activity pattern of smoking measured in
smoking cue reactivity task. The probabilistic score was presented
to participants in real time as a moving point in the feedback

1http://psychtoolbox.org/

FIGURE 3 | One scene of a participant in the phase of neurofeedback
regulation training. A participant is wearing EEG cap and watching
neurofeedback display. A camera to monitor the status of the participant.

line at the bottom of the screen (Figure 1B). In order to prevent
drastic changes of the line, the value of each point was obtained
by averaging the value of the current point and the previous
2 points, and the first 2 points in the line were fixed 0.5 (no
previous points to be averaged). At the same time, based on
this value, the corresponding type of picture was displayed on
the top of the screen according to adaptive closed-loop design.
A higher probabilistic score corresponded to a picture with a
higher craving level. This closed-loop neurofeedback program
was written by Psychophysics Toolbox for MATLAB.

In this phase, participants were asked to downregulate the
line repeatedly and continuously while fixating the picture. If
one strategy failed to downgrade the line well, they needed
to change the strategy until they found the most effective
one. After finishing training and rating cycles (Figure 1C),
participants were asked to record 10 mental strategies that
may effectively downregulate the neurofeedback signals. To
improve the initiative of participants, we informed them about
the rewards they can get for completing the experiment in
advance. Participants who completed eight cycles would receive
a reward of up to 140 RMB according to their performance
(proportional to mean probabilistic score). After completing a
cycle, participants would have a rest for 1 min.

Data Acquisition
EEG raw data were collected using a SynAmps RT amplifier
(NeuroScan, Inc., Sterling, VA, United States), and an electrode
cap was with 64 Ag/AgCl electrodes located according to
international 10–20 system. Additionally, the left (M1) and
right mastoids (M2) were also recorded. The impedance of all
electrodes was kept under 5 k� based on the reference electrode
attached to the tip of the nose. The EOG was recorded by
VEOG (above and below the left eye) and HEOG (lateral to
the outer canthi of both eyes) using four electrodes (VEOL,
VEOU, HEOL, and HEOR). In order to reduce the influence of
electromagnetic interference on EEG signals, we grounded the
AFz electrode. The sampling rate of the EEG raw data was 250 Hz.
In neurofeedback sessions, EEG raw signals were collected
with the same parameters and sent to MATLAB program
using NeuroScan Access SDK (NeuroScan, Inc., Sterling, VA,
United States).
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FIGURE 4 | Analysis of ERP amplitude and topographic map of cue reactivity task. (A) ERP waveform and topographic maps of the first visit of cue reactivity task
phase. (B) ERP waveform and topographic maps of the second visit of cue reactivity task phase.

FIGURE 5 | The distribution of the SNR of Pz channel (µ = 59.39, σ = 29.10).
There were 55 runs of 28 subjects. There was no significant difference
between the distribution and the normal distribution by KS test (p = 0.29).

Data Processing
The EEG raw data processing was conducted by EEGLAB
toolbox (version 14_1_1b) for MATLAB. The preprocessing steps
included high-pass filter (0.5 Hz), epoch (−200 to 1,000 ms, −200
to 0 ms as prestimulus interval to conduct baseline correction),

and blink artifacts (using a conventional recursive least squares
algorithm). ERP analysis was also conducted in EEGLAB. Epochs
containing the amplitude changes exceeding ±100 mV were
rejected. The ERPs were grand averaged based on different
types of stimulus (smoking and neutral) across participants. The
power characteristics of the time–frequency domain were mainly
obtained based on the wavelet analysis algorithm. The frequency
of the EEG data was divided into five ranges: alpha, low beta, high
beta, low gamma, and high gamma waves.

Data Evaluation
At the offline classifier construction phase of the cue reactivity
task, EEG raw data were collected, and the signal-to-noise ratio
(SNR) of Pz channel was calculated to verify the quality of the
data (Hu et al., 2010). EEG epochs from −200 to 1,000 ms
were preprocessed and averaged to calculate ERP waveforms
separately for two visits. Besides, topographic maps were shown
every 200 ms in the time window of 0–1,000 ms. Processed EEG
data were imported to the classifier, and fivefold cross-validation
accuracy was used to calculate its prediction accuracy.

In neurofeedback training phase, 1-s EEG data were
preprocessed and shown at only channels located on the frontal
midline. Topographic maps were shown every 200 ms in the
time window of 0–1,000 ms. These 1-s EEG data were inputted
to the personalized classifier model built in the offline phase,
and a probabilistic score of smoking cue reactivity patterns
was given. The score reflected the matching degree between
the participant’s current brain activity pattern and the pattern
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FIGURE 6 | Channel waveform and topographic map of real-time neurofeedback training phase.

FIGURE 7 | The statistically significant features used to construct the classifier. (A) The features of each subject in the time domain; (B) the features in the alpha
(8–13 Hz) frequency band; (C) the features in the low beta (14–20 Hz) frequency band; (D) the features in the high beta (21–30 Hz) frequency band; (E) the features
in the low gamma (31–48 Hz) frequency band; (F) the features in the high-gamma (52–80 Hz) frequency band.
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FIGURE 8 | Within two visit of neurofeedback learning, participants tried to reduce the probabilistic score (r = −0.1545, p = 0.0010). Error bar: SD; shaded area:
95% CI.

FIGURE 9 | The accuracy of the classifier for each participant. Horizontal line:
average; error bar: SE.

while viewing smoking cues in cue reactivity task. A high score
indicated closely matched patterns. After training, the correlation
between decreased P300 amplitudes (pre–post) and decreased
craving score [score of tobacco craving questionnaire (TCQ), pre
vs. post] was performed.

Statistical Analysis
Statistical analysis was conducted in Statistics and machine
learning toolbox in MATLAB. The comparison of features
was performed with a non-parametric permutation test. The
correlation of probabilistic score and training cycles was
analyzed using Pearson’s correlation. The comparison between
the prediction accuracy and chance level used one-sample

FIGURE 10 | The correlation between the mean decreased P300 amplitudes
and decreased craving score (r = 0.43).

Student’s t-test. The normality test was based on Kolmogorov–
Smirnov (KS) test. Fivefold cross-validation was used to calculate
the classification accuracy of the classifier. The reported p-values
were all two-tailed. The significant threshold α is 0.05.

RESULTS

EEG Data Evaluation
The database is 3.96 GB, including 2.44 GB EEG data of cue
reactivity task, 1.52 GB EEG data of neurofeedback, 16.8 kB
demographic data, and 1.81 kB channel location file. Twenty-
eight subjects were included in this database. The cue reactivity
data were divided into two files: “cue reactivity_1.zip” and
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“cue reactivity_2.zip.” Each subject had two runs, and each
run contained six CNT files, which could be read in EEGLAB
toolbox. The neurofeedback data were in “nf_eeg.zip.” Each
subject had two runs, and each run contained eight EEG
MAT files (channel∗time), which can be read in MATLAB. To
facilitate subsequent data processing, electrode-position file and
marker information were also provided. The channel location
file named “chan62.zip,” the baseline demographic and clinical
characteristics named “baseline.mat,” and trigger information file
named “trigger.md” can be found in the root directory.

Figures 4A,B show the ERP amplitude and topographic map
of cue reactivity task in the first and second visits. The data of the
two visits have good consistency. The P300 component of ERP
caused by addictive substance-related cues is usually a feature of
substance use disorders, and the P300 amplitude is found to be
related to the craving for smoking (Littel et al., 2012; Campanella
et al., 2014). In our research, the P300 ERP component induced
by smoking cues can be observed at approximately 300–550 ms.
We evaluated the distribution of the Pz-SNR (Figure 5). KS test
was performed to check the normality of distribution. There was
no significant difference between the data distribution and the
normal distribution (p = 0.29).

Channel waveform and topographic map of preprocessed
1-s real-time neurofeedback training data of eight channels
(including FPz, Fz, FCz, Cz, CPz, Pz, POz, and Oz) are shown
in different color to express brain electrical activity. We used the
data of the 10th trial, the first cycle, the first visit (run1) of subject
1 (s1) as an example (Figure 6).

Feature Extraction Evaluation
These time (Figure 7A) and frequency domain (Figures 7B–F)
features from 28 participants were used to construct the classifier.
For each block diagram, the abscissa represents the time
information (ms), and the ordinate represents electrode channel
information (60 channels) respectively. The yellow and blue
areas in the figure represent the characteristic signals that were
statistically significant with smoking > non-smoking conditions
and the characteristic signal that was statistically significant with
smoking < non-smoking conditions (α = 0.05), respectively.

Neurofeedback Performance Evaluation
Participants were trained for 16 cycles in two visits. In each trial
of the neurofeedback cycle, the average score of 40 probabilistic
scores was recorded as neurofeedback performance in the
respective cycle. We performed a linear regression analysis on the
probabilistic score and the training cycles. A significant negative
correlation (r = −0.1545, p = 0.0010) was found, which showed
that the match probability (the current brain activity patterns
and the patterns when viewing smoking cues) decreased with
training progressed (Figure 8). In other words, the difference in
brain activity patterns between viewing the smoking cues and the
neutral cue was smaller after neurofeedback training.

Classifier Power Evaluation
Each point in Figure 9 represents fivefold cross-validation
accuracy of one participant. The accuracy of the classifier varies
between 0.5409 and 0.8427, with a mean accuracy of 0.6935.

One-sample t-test showed a significant difference between the
prediction accuracy and the chance level (p = 4.4176 × 10−14).

CONCLUSION AND DISCUSSION

In this paper, we developed a novel cognition-guided
neurofeedback paradigm. Neurofeedback technology is an
effective method to regulate brain signals and neuroplasticity,
which involves brain networks of reward, control, and learning
(Sitaram et al., 2017). Among them, dorsolateral prefrontal
cortex (dlPFC) and posterior parietal cortex (PPC) in the
control network will be activated during the execution of
the strategy, and the learning network [mainly includes the
dorsal striatum (DS)] is responsible for strategy learning
in neurofeedback. The theoretical models of neurofeedback
learning include operant (or instrumental) learning, motor
learning, dual process theory, awareness theory, global
workspace theory, and skill learning theory (Sitaram et al.,
2017). These theoretical models are not mutually exclusive
but compatible. Operant learning can be regarded as part
of the dual process theory, which includes automatically
process and controlled process (Enriquez-Geppert et al., 2017).
Normally, approximately 15–30% of subjects do not respond
to neurofeedback/BCI (Weber et al., 2011). Strategies are
extremely important for neurofeedback. In the process of
neurofeedback learning, strategies may promote or hinder
neurofeedback learning, depending on the appropriate degree
of scheduling cognitive resources in the process (Gaume et al.,
2016; Davelaar, 2018).

In our implicit neurofeedback, the significant negative
correlation (r = −0.1545, p = 0.0010) of the probabilistic
score and training cycles demonstrates good neurofeedback
learning effect. It also shows that the brain activity pattern
in response to smoking stimuli represented by EEG signals
can be successfully downregulated after two neurofeedback
trainings. This is similar to previous rt-fMRI neurofeedback
studies based on visual perception and attention brain
activity patterns (deBettencourt et al., 2015; Amano et al.,
2016). Our research also shows that the changes in brain
patterns influenced addictive behaviors. The subjects’ TCQ
craving score and P300 amplitude decreased significantly
after neurofeedback training (Bu et al., 2019), and there
was a positive correlation between them (Figure 10). The
results revealed the relationship between neural signals and
behavioral indicators.

In particular, previous neurofeedback studies based on the
regulation of brain activity patterns focused on training normal
subjects to improve their cognitive abilities. The results of our
study further extended these findings to patients with mental
illness (smoking addicts), which also had the potential to regulate
brain activity patterns. Our dataset provided important support
for the extension of neurofeedback training of multivariable brain
activity pattern regulation to clinical research in the future.

This dataset is of high quality and good integrity. In order
to reduce artifacts as much as possible and improve the
SNR, we added simple cognitive activities while performing
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the cue reactivity task to ensure that the collected data
were brain electrical signals from the experiment rather
than distractions. Additionally, in the cue reactivity task
phase and the neurofeedback training phase, an intertrial
interval (ITI) was used to eliminate the detention effect of
the previous trial and gave participants a certain time to rest
until they felt comfortable enough for the next trial. During
the experiment, participants were instructed to blink and
swallow as little as possible to obtain purer EEG raw data.
As can be seen in Figure 4, ERP waveforms and topographic
maps have strong consistency and repeatability between
visits. In addition, we checked the strategies reported by the
participants and the surveillance video during neurofeedback
and found that no subjects used the strategies that were
not allowed, such as not watching the screen. The decline
in smoking cue reactivity patterns and the relatively high
model prediction accuracy provided a guarantee for the
intervention effect and method reliability of neurofeedback
BCI. Nevertheless, the dataset also had some limitations.
Considering that the prevalence among female smokers
in China was very low (2.7%), we only recruited male
participants. The dataset we present is the first cognition-
guided neurofeedback BCI dataset on nicotine addiction to
our knowledge. Participants completing two separate visits of
training showed improvement in smoking cue reactivity patterns.
High-quality EEG raw data are provided, and the classifier is
evaluated and proven to have relatively high classification
accuracy. Our two-visit, cognition-guided neurofeedback BCI
can be compared with other neurofeedback paradigms to develop
new neurofeedback systems.

Our previous research extracted the characteristics of the EEG
signal in the time and frequency domains for SVM modeling. As
far as we know, the cue reactivity task is commonly studied in
substance addiction (Hardy et al., 2017). The dataset we provided
contains the participants’ brain electrical activity exposed to
both smoking-related cues and neutral cues. There are other
methods to analyze the dataset, such as the microstate (Michel,
2018) and source analysis (Zhou et al., 2019). These methods
can be implemented on this dataset to discover mechanisms of
nicotine addiction. The EEG data provided in this study can be
used to verify other existing models or optimize parameters. In
addition, the dataset can be used to development other ERP-
based BCI algorithms.

In future research, BCI datasets can still be improved from
the following aspects. First, a higher number of channels and
sampling rate can be applied to obtain higher BCI bandwidth.
Second, the extraction of feature can be improved. Different
network connection of participants toward smoking and neutral
cues can be incorporated into classification features to obtain
a higher degree of discrimination (Ai et al., 2019). Third,
SVM classifier was used in this study, and a relatively high
classification accuracy rate was obtained. Subsequent studies
can use other machine learning method to obtain higher
model prediction rates, such as logistic regression and decision
tree. For example, a feature extraction method was developed
based on autoregression and used random forest classifiers
to identify the EEG features of patients with epilepsy with

a best accuracy of 97.352% (Zhang et al., 2017). Fourth,
this study conducted two visits of neurofeedback training,
which was mainly based on skill learning theory (Hinterberger
et al., 2005; Koralek et al., 2012) and previous MRI research
(Young et al., 2017a,b). In future BCI studies, longer training
periods can be used to evaluate the impact of training
time on neurofeedback effects. Finally, this study used a
simple floating line as the visual form of neurofeedback.
Nowadays, BCI is moving in the direction of gamification
(de Castro-Cros et al., 2020), which is also the direction for
future BCI datasets.

In conclusion, our novel neurofeedback BCI dataset has a
significant contribution to this field. We offer the community
access to our EEG data from our BCI experiment. The
neurofeedback protocol that we developed and applied is based
on the long-term research on nicotine addiction of our group and
will act as a reference for subsequent neurofeedback BCI research.
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