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Radiomics: a novel feature extraction 
method for brain neuron degeneration 
disease using 18F-FDG PET imaging and  
its implementation for Alzheimer’s  
disease and mild cognitive impairment
Yupeng Li, Jiehui Jiang , Jiaying Lu, Juanjuan Jiang, Huiwei Zhang and Chuantao Zuo and 
the Alzheimer’s Disease Neuroimaging Initiative

Abstract
Background: Alzheimer’s disease (AD) is the most common form of progressive and 
irreversible dementia, and accurate diagnosis of AD at its prodromal stage is clinically 
important. Currently, computer-aided diagnosis of AD and mild cognitive impairment (MCI) 
using 18F-fluorodeoxy-glucose positron emission tomography (18F-FDG PET) imaging is 
usually based on low-level imaging features or deep learning methods, which have difficulties 
in achieving sufficient classification accuracy or lack clinical significance. This research 
therefore aimed to implement a new feature extraction method known as radiomics, 
to improve the classification accuracy and discover high-order features that can reveal 
pathological information.
Methods: In this study, 18F-FDG PET and clinical assessments were collected in a cohort of 
422 individuals [including 130 with AD, 130 with MCI, and 162 healthy controls (HCs)] from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 44 individuals (including 22 
with AD, and 22 HCs) from Huashan Hospital, Shanghai, China. First, we performed a group 
comparison using a two-sample Student’s t test to determine the regions of interest (ROIs) 
based on 30 AD patients and 30 HCs from ADNI cohorts. Second, based on two time scans of 
32 HCs from ADNI cohorts, we used Cronbach’s alpha coefficient for radiomic feature stability 
analyses. Pearson’s correlation coefficients were regarded as a feature selection criterion, 
to select effective features associated with the clinical cognitive scale [clinical dementia 
rating scale in its sum of boxes (CDRSB); Alzheimer’s disease assessment scale (ADAS)] 
with 500-times cross-validation. Finally, a support vector machine (SVM) was used to test the 
ability of the radiomic features to classify HCs, MCI and AD patients.
Results: As a result, we identified brain regions which were mainly distributed in the 
temporal, occipital and frontal areas as ROIs. A total of 168 radiomic features of AD were 
stable (alpha > 0.8). The classification experiment led to maximal accuracies of 91.5%, 83.1% 
and 85.9% for classifying AD versus HC, MCI versus HCs and AD versus MCI.
Conclusion: The research in this paper proved that the novel approach based on high-order 
radiomic features extracted from 18F-FDG PET brain images that can be used for AD and MCI 
computer-aided diagnosis.
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Introduction
Alzheimer’s disease (AD) is the most common 
form of progressive and irreversible dementia, with 
occurrences doubling approximately every 5 years 
after the age of 65 years. Presently, approximately 
90 million people have been diagnosed with AD, 
and it is estimated that the number of AD patients 
will reach 300 million by 2050.1 Mild cognitive 
impairment (MCI), which is considered a precur-
sor of AD, has been an increasingly common target 
of potential therapeutic trials.2 Currently, there is 
no effective cure solution for AD; thus, the early 
detection at its prodromal stage and accurate diag-
nosis of AD are important for patient care and 
developing future treatment.3

In recent years, positron emission tomography 
(PET) imaging technology has been widely used 
in the diagnosis, classification and rehabilitation 
evaluation of AD. In particular, 18F-fluorodeoxy-
glucose (18F-FDG) PET, which is a functional 
molecular imaging modality performed utilizing 
glucose metabolic activity and distribution via 
imaging agents,4 has been proven to be a valid 
tool to help doctors diagnose AD and MCI.5

Currently, there are two primary categories of 
computer-aided diagnoses of AD and MCI based 
on 18F-FDG PET imaging: (1) the numerical dis-
tribution method of glucose uptake values, and its 
common imaging markers are usually low-order 
and simple image features6; (2) machine learning 

and deep learning techniques. Gary and col-
leagues7 used multi-region PET image fusion 
structural magnetic resonance imaging (MRI) to 
extract the average signal intensity per cubic mil-
limeter in each region as features to classify AD 
patients and healthy controls (HCs), achieving an 
accuracy of 82%. Silveira and colleagues5 pro-
posed a boosting classification technique based 
on simple classifier hybridization for the diagnosis 
of AD and MCI, with average accuracies of 
90.97% and 79.63%, respectively. Liu and col-
leagues3 invented a classification framework 
based on the combination of two-dimensional 
convolutional neural networks and recurrent neu-
ral networks, and the classification accuracies of 
AD or MCI versus HCs could reach 91.2% and 
78.9%, respectively. However, the aforemen-
tioned low-order markers used in numerical 
methods were mostly hand-crafted, original, and 
low-level features that could not reveal the neuro-
pathological heterogeneity of brain tissue and 
could hardly achieve high classification accu-
racy.3–5 By comparison, although the deep learn-
ing frameworks could achieve better diagnostic 
accuracy, these methods only obtain the calcula-
tion values without clinical significance; thus, we 
cannot determine the association between inter-
mediate values and the disease. For clinical prac-
tice, finding image features that can provide 
pathological information about diseases and using 
them for efficient classification diagnosis have 
great implications for physicians.

Figure 1.  Workflow of the analysis methods in this study, which comprised five steps: image preprocessing, 
image preprocessing, identification and extraction of regions of interest, feature extraction, feature selection, 
and SVM classification.
SVM, support vector machine.
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In this paper, to find high-level image features and 
develop efficient and accurate diagnostic tools, we 
proposed an emerging method, radiomics, for 18F-
FDG PET image feature extraction. The term 
‘radiomics’ refers to the extraction and analysis of 
large amounts of advanced and high-order quanti-
tative features with high-throughput from medical 
images.8,9 These radiomic features could not only 
effectively diagnose disease and assist in treatment 
but also reveal the in-depth information hidden in 
the images that may help develop personalized and 
accurate medical plans.8–10 Radiomics has been 
well developed in oncological studies.11–14 
Although current radiomics research studies have 
been mainly focused on oncology, considerations 
have been recently extended to numerous medical 
applications.8 However, no application of radiom-
ics has been described in AD and MCI. Therefore, 
the present study was aimed to determine whether 
radiomic features extracted from 18F-FDG PET 
brain images could be used for AD and MCI com-
puter-aided diagnoses, and then we proposed a 
novel computer-aided Alzheimer’s diseases diag-
nosis approach based on radiomics.

Methods
As shown in the Figure 1, we first preprocessed 
the collected 18F-FDG PET data using normali-
zation and smoothing. Next, we performed statis-
tical parametric mapping (SPM) analyses based 
on two-sample, Student’s t tests of the preproc-
essed data to determine the regions of interest 
(ROIs). Subsequently, a few radiomic features 
were extracted from the ROIs. Thereafter, we 
applied the Cronbach’s alpha coefficient and 
Pearson’s correlation coefficient for feature selec-
tion. Finally, based on these selected radiomic 
features, we completed three classifications for 
AD versus HCs, MCI versus HCs and AD versus 
MCI using a support vector machine (SVM). 
Details on this approach are described in follow-
ing sections.

Materials
The study was approved by the ethics committee 
of Huashan Hospital, Fudan University, 
Shanghai, China (permission number: KY2013-
336). All patients of Huashan Hospital provided 
written informed consent. For ethical review 
information on Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) data, please refer to the website 
(adni.loni.usc.edu).

The data used in this study included two cohorts: 
(1) 422 cohorts from the ADNI database, includ-
ing 162 HCs (32 HCs had two time-interval 18F-
FDG PET scans, while 130 HCs had only one 
18F-FDG PET scan), 130 MCI and 130 AD 
patients. We selected clinical variables [clinical 
dementia rating scale in its sum of boxes 
(CDRSB); Alzheimer’s disease assessment scale 
(ADAS)] and 18F-FDG PET images for these 
cohorts. The ADNI was launched in 2003 by the 
National Institute on Aging, the National Institute 
of Biomedical Imaging and Bioengineering, the 
United States Food and Drug Administration 
(US FDA), private pharmaceutical companies, 
and nonprofit organizations, as a $60 million, 
5-year, public-private partnership. The primary 
goal of ADNI has been to test whether serial 
MRI, PET, other biological markers, and clinical 
and neuropsychological assessments can be com-
bined to measure the progression of MCI and 
early AD. (2) A total of 44 cohorts from the PET 
Center, Huashan Hospital, Fudan University, 
Shanghai, China, including 22 HCs and 22 AD 
patients. We selected basic information (sex and 
age) and 18F-FDG PET images for these cohorts. 
Table 1 lists the basic information of all the data.

Image acquisition
All patients who underwent 18F-FDG PET brain 
scans at Huashan Hospital were in a resting state. 
A 222-296 MBq injection of 18F-FDG was 
administered intravenously under standardized 
conditions (in a quiet, dimly lit room with the 
patient’s eyes open). A 10-min three-dimensional 
brain emission scan was acquired at 45-min post 
injection with a state-of-the-art PET scanner 
(Siemens Biograph 64 HD PET/CT; Siemens, 
Germany). During the scanning procedure, the 
patient’s head was immobilized using a head 
holder. Attenuation correction was performed 
using low-dose computed tomography (150 mAs, 
120 kV, Acq. 64 × 0.6 mm) prior to the emission 
scan. Following corrections for scatter, dead 
time, and random coincidences, PET images 
were reconstructed by three-dimensional filtered 
back-projection and a Gaussian filter [full-width 
at half maximum (FWHM) 3.5 mm], providing 
148 contiguous transaxial slices of 3-mm-thick 
spacing. For images downloaded from the  
ADNI database, detailed information regarding 
the data acquisition protocol is publicly available 
on the LONI website (https://ida.loni.usc.edu 
/login.jsp).
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Image preprocessing
Image data were processed using statistical para-
metric mapping (SPM8, www.fil.ion.ucl.ac.uk/
spm/) implemented in MATLAB R2014b. The 
aim of preprocessing was to spatially normalize 
the images into a standard space defined by tem-
plate images and to remove unwanted distortions 
such as low-frequency background noise. The 
image preprocessing consisted of two steps: nor-
malization and smoothing. All the original Digital 
Imaging and Communications in Medicine 
(DICOM) data were converted into NIfTI-
formatted files using DCM2NII (http://people.
cas.sc.edu/rorden/mricron/index.html). For each 
patient, the PET image was first normalized to 
the Montreal Neurological Institute (MNI; 
McGill University, Montreal, Canada) space 
through the ‘normalize: estimate and write’ meth-
odology. Next, the normalized images were 
smoothed using an isotropic Gaussian smoothing 
kernel with a FWHM value of 10 × 10 × 10 mm3. 
The normalized images had a spatial resolution of 
91 × 109 × 91 with voxel sizes of 2 × 2 × 2 mm3.

ROIs
In this study, we focused on brain areas that were 
relevant to AD pathology. To characterize mor-
phological differences in AD patients compared 
with HCs, we performed a group comparison 

using a two-sample, Student’s t test implemented 
in SPM8, based on 30 AD patients (from AD1 
group) and 30 HCs (from HC2 group) randomly 
selected from ADNI cohorts. These 60 samples 
were not included in subsequent feature selection 
and classification experiments. We set the peak 
threshold at p < 0.01 with family-wise error cor-
rection over the entire brain regions with a thresh-
old of 20 voxels. Significantly different brain areas 
were localized using the software xjView9.6 (www.
alivelearn.net/xjview). Because MCI is an interme-
diate process of HC conversion to AD, we assume 
that these ROIs can also be used for feature extrac-
tion of MCI data. Thus, these regions were treated 
as ROIs in subsequent studies. To verify the relia-
bility of these ROIs, we repeated this SPM analysis 
as a comparison in the Huashan cohort.

Feature extraction
Using morphological results from the last section, we 
extracted ROIs of the remaining samples (including 
100 AD patients, 130 MCI patients and 132 HCs) in 
the ADNI cohorts for further analysis. In this section, 
the radiomics tool developed by Vallieres4 (https://
github.com/mvallieres/radiomics) was used. All steps 
were performed in MATLAB R2014b, including 
wavelet bandpass filtering, Lloyd–Max quantization 
and feature calculation. The first step was wavelet 
bandpass filtering. This step was carried out by 

Table 1.  Basic information of all the data.

Group Sex (M/F) Age (years) ADAS CDRSB

ADNI cohorts
(422)

AD1
(n = 130)

70/60 71.3 ± 6.1 30.2 ± 7.1 4.5 ± 1.6

MCI
(n = 130)

66/64 70.7 ± 5.4 17.3 ± 6.4 1.7 ± 0.8

HC1
(n = 32)

13/19 76.2 ± 6.8 Twice 18F-FDG PET imaging
acquisition time interval: 
131.2 ± 80.8 days

HC2
(n = 130)

68/62 71.8 ± 5.9 8.8 ± 3.6 0

Huashan cohorts
(44)

AD2
(n = 22)

16/6 57.3 ± 6.5 N/A N/A

HC3
(n = 22)

16/6 57.3 ± 6.5 N/A N/A

18F-FDG PET, 18F-fluorodeoxy-glucose positron emission tomography; AD, Alzheimer’s disease; ADAS, Alzheimer’s disease 
assessment scale; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CDRSB, clinical dementia rating scale in its sum of 
boxes; F, female; HC, healthy control; M, male; MNI, Montreal Neurological Institute; N/A, not available.
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applying different weights [low (L) and high (H)] to 
bandpass sub-bands (LHL, LHH, LLH, HLL, 
HHL, and HLH) of the ROIs, compared with low- 
and high-frequency sub-bands (LLL and HHH) in 
the wavelet domain. The ratio of the weight was 
defined by R, and the values of R were 1/2, 2/3, 1 (no 
wavelet filtering), 3/2, and 2. Global features were 
immediately extracted before other steps. Second, 
because the feature extraction algorithm required 
that the image grayscale value should be a discrete 
value and voxels should be isotropic, the Lloyd–Max 
quantization algorithm was applied to normalize the 
18F-FDG PET images to 256 gray-level images. 
Finally, four types of texture matrices [gray-level co-
occurrence matrix (GLCM) gray-level run-length 
matrix (GLRLM), gray-level size zone matrix 
(GLSZM), and neighborhood gray-tone difference 
matrix (NGTDM)] could be obtained from quan-
tized PET images. According to these texture matri-
ces, numerous high-order features could be 
calculated. In addition to texture features, we also 
calculated wavelet features throughout 16 orders of 
wavelet decomposition. In total, 215 radiomic fea-
tures were extracted from each sample, including 43 
texture features (The R parameter values for these 
features was 1) and 172 wavelet features that were 
defined as the features extracted after wavelet filter-
ing (The R parameters values for these features were 
1/2, 2/3, 3/2 and 2).11 The detailed mathematical 
definition of the global features and four texture 
matrices were as follows15–20:

(1) Global texture (GT): let P  define the his-
togram of a volume V x y z, ,( )  with iso-
tropic voxel size. P i( )  represents the 
number of voxels with gray-level i , and Ng
represents the number of gray-level bins set 
for P . The i th  entry of the normalized his-
togram is then defined as follows:

p i
P i

P i
i

Ng
( ) = ( )

( )
=∑ 1

	 (1)

(2) GLCM: let P  define the GLCM of a quan-
tized volume V x y z, ,( )  with isotropic voxel 
size. P i j,( )  represents the number of times 
voxels of gray-level i  were neighbors with 
voxels of gray-level j  in V , and Ng  repre-
sents the predefined number of quantized 
gray-levels set in V . Only the GLCM of size 
N Ng g×  is computed per volume V  by 
simultaneously adding up the frequency of 
co-occurrences of all voxels with their 26-con-
nected neighbors in three-dimensional space, 

with all voxels (including the peripheral 
region) considered once as a center voxel 
(according to Haralick,17 d =1). To account 
for discretization length differences, neigh-
bors at a distance of 3  voxels around a 
center voxel increment the GLCM by a value 
of 3 , neighbors at a distance of 2  voxels 
around a center voxel increment the GLCM 
by a value of 2 , and neighbors at a distance 
of 1 voxel around a center voxel increment 
the GLCM by a value of 1. The entry i j,( )  
of the normalized GLCM is then defined as 
follows:

p i j
P i j

P i j
i

N

j
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(3) GLRLM: let P  define the GLRLM of a 
quantized volume V x y z, ,( )  with an iso-
tropic voxel size. P i j,( )  represents the 
number of runs of gray-level i  and of length 
j  in V , Ng  represents the predefined num-

ber of quantized gray-level sets in V , and Lγ  
represents the length of the longest run (of 
any gray-level) in V . Only one GLRLM of 
size N Lg × γ  is computed per volume V  by 
simultaneously adding up all possible long-
est run lengths in the 13 directions of three-
dimensional space (one voxel can be part of 
multiple runs in different directions but can 
be part of only one run in a given direction). 
To account for discretization length differ-
ences, runs were constructed with voxels 
separated by a distance of 3  in the 
GLRLM; the results of an increment of 3  
were similar to those with increments of 2  
and 1. The entry i j,( )  of the normalized 
GLRLM is then defined as follows:

p i j
P i j

P i j
i

N

j

Lg

,
,

,
( ) = ( )

( )
= =∑ ∑1 1

γ
	 (4)
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The following quantities are also defined:

µ µi i

N

j j j i

N
i p i j j p i jg g= ( ) = ( )

= = = =∑ ∑ ∑ ∑1 1 1 1

L Lγ γ, , ,   (5)

(4) GLSZM: let P  define the GLSZM of a 
quantized volume V x y z, ,( ) with isotropic 
voxel size. P i j,( ) represents the number of 
3D zones of gray-levels i  and of size j  in V ,  
Ng  represents the predefined number of 
quantized gray-levels set in V , and Lz  rep-
resents the size of the largest zone (of any 
gray-level) in V . A GLSZM of size N Lg z×  
is computed per volume V  by adding up all 
possible largest zone sizes, with zones con-
structed from 26 connected neighbors of the 
same gray level in three-dimensional space 
(one voxel can be part of only one zone). 
The entry i j,( )  of the normalized GLSZM 
is then defined as follows:

p i j
P i j

P i j
i

N

j

Lg z

,
,

,
( ) = ( )

( )
= =∑ ∑1 1

	 (6)

The following quantities are also defined:

µ µi i

N

j j j i

N
i p i j j p i jg g= ( ) = ( )

= = = =∑ ∑ ∑ ∑1 1 1 1

L Lz z, , ,   (7)

(5) NGTDM: let P  define the NGTDM of a 
quantized volume V x y z, ,( )  with isotropic 
voxel size. P i( )  represents the summation 
of the gray-level differences between all 
voxels with gray-level i  and the average 
gray-level of their 26-connected neighbors 
in three-dimensional space. Ng  represents 
the predefined number of quantized gray-
levels set in V , and Ng eff( )  is the effective 

number of gray levels in V , with Ng eff( )  < 

Ng  (let the vector of gray-level values in V  
be denoted as g = ( ) ( ) … ( )g g g Ng1 2, , , ;  
some gray levels excluding g 1( )  and 
g Ng( )  may not appear in V  due to differ-
ent quantization schemes). A NGTDM of 
size Ng ×1 is computed per volume V . To 
account for discretization length differ-
ences, all averages around a center voxel 
located at position j k l, ,( )  in V  are per-
formed such that the neighbors at a dis-
tance of 3  voxels are given a weight of 
1 3/ , similarly to 2  and 1. The i th  entry 
of the NGTDM is then defined as follows:

P i
i A if N
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	 (8)

Where Ni{ }  is the set of all voxels with gray level 
i  in V  (including the peripheral region), Ni  is 
the number of voxels with gray level i  in V , and 
Ai  is the average gray level of the 26-connected 
neighbors around a center voxel with gray level i  
and located at position j k l, ,( )  in V  such that:

A A j k l

w

V j m k n l o
i i

m n oo

o

n

n

m

m

= ( ) =
⋅ + + +( )

=−

=

=−

=

=−

= ∑∑∑
, ,

, ,

, ,1

1

1

1

1

1

wwm n oo

o

n

n

m

m

, ,=−

=

=−

=

=−

= ∑∑∑ 1

1

1

1

1

1

w

if j m k n l o

if j m k n l o

if j m k n l o
m n o, , =

− + − + − =

− + − + − =

− + − + − =

1 1

1

2
2

1

3
3

0 , ,if V j m k n l o is undefiend+ + +( )
















  (9)

The following quantities were also defined as 
follows:

ni
iN

N
= 	 (10)

Table 2 provides more details on the names, 
references and mathematical definitions of above 
texture features.

Feature selection
The feature selection step was done in ADNI 
cohorts. In this step, we first performed a stability 
analysis on the features mentioned above to elimi-
nate the unstable invalid features. The radiomic 
features were separately extracted from the 32 
HCs (HC1 group) in using their first-time and 
second-time 18F-FDG PET images. The one type 
of radiomic feature extracted from these samples 
was divided into two feature vectors (first and 
second-time). The two vectors were then treated 
as inputs to calculate the Cronbach’s alpha coef-
ficient. We judged the stability of each feature by 
the value of alpha. The coefficient threshold was 
0.8 and features above this value were considered 
stable and those features below this value were 
excluded from follow-up studies.

Second, to screen out the radiomic features asso-
ciated with AD and MCI, we used Pearson’s 
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Table 2.  Details of radiomic texture features.

Texture matrices References Feature name Formula
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Haralick and 
colleagues1
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N
i j

i j

g g i i p i j

= =
∑∑

−( ) −( ) ( )
1 1

µ µ

σ σ

,

Homogeneity

i

N

j

Ng g p i j

i j
= =
∑∑ ( )

+ −
1 1

1

,

Variance
1

1 1

2 2

N N
i p i j j p i j

g g i

N

j

N

i i

g g

×
−( ) ( ) + −( ) ( )

= =
∑∑[ , , ]µ µ

Sum average
1

1 1
N N

ip i j jp i j
g g i

N

j

Ng g

×
( ) + ( )

= =
∑∑[ , , ]

Entropy

− ( ) + ( ) 
= =
∑∑

i

N

j

Ng g

ip i j jp i j
1 1

, ,

Auto correlation refer to the references

Dissimilarity

Gray-level run-
length matrix 
(GLRLM)

Galloway2 Short-run 
emphasis (SRE)

i

N

j

Lg p i j

j
= =
∑∑ ( )
1 1

2

γ ,

Long-run 
emphasis (LRE)

i

N

j

Lg

j p i j
= =
∑∑ ( )
1 1

2
γ

,

 (Continued)
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Texture matrices References Feature name Formula

Gray-level 
nonuniformity 
(GLN)

i

N

j

Lg

p i j
= =
∑ ∑ ( )















1 1

2
γ

,

Run-length 
nonuniformity 
(RLN)

j

L

i

Ng

p i j
= =
∑ ∑ ( )















1 1

2
γ

,

Run percentage 
(RP)

i

N

j

L

j

L

i

N

g

g

p i j

p i j

= =

= =

∑ ∑
∑ ∑

( )

( )
1 1

1 1

γ

γ

,

,

Chu and 
colleagues3

Low-gray-level 
run emphasis 
(LGRE) i

N

j

Lg p i j

i
= =
∑∑ ( )
1 1

2

γ ,

High-gray-level 
run emphasis 
(HGRE) i

N

j

Lg

i p i j
= =
∑∑ ( )
1 1

2
γ

,

Dasarathy 
and Holder4

Short-run 
low-gray-level 
emphasis 
(SRLGE)

i

N

j

Lg p i j

i j
= =
∑∑ ( )
1 1

2 2

γ ,

Short-run high 
gray-level 
emphasis 
(SRHGE)

i

N

j

Lg i p i j

j
= =
∑∑ ( )
1 1

2

2

γ ,

Long-run 
low-gray-level 
emphasis 
(LRLGE)

i

N

j

Lg j p i j

i
= =
∑∑ ( )
1 1

2

2

γ ,

Long-run 
high-gray-
level emphasis 
(LRHGE)

i

N

j

Lg

i j p i j
= =
∑∑ ( )
1 1

2 2
γ

,

Thibault and 
colleagues5

Gray-level 
variance (GLV) 1

1 1

2

N L
ip i j

g i

N

j

L

i

g

×
( ) − 

= =
∑∑

γ

γ

µ,

Run-length 
variance (RLV) 1

1 1

2

N L
jp i j

g i

N

j

L

j

g

×
( ) − 

= =
∑∑

γ

γ

µ,

Gray-level size 
zone matrix 
(GLSZM)

Galloway2; 
Thibault and 
colleagues5

Small zone 
emphasis (SZE)

i

N

j

Lg z p i j

j
= =
∑∑ ( )
1 1

2

,

Table 2.  (Continued)
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Texture matrices References Feature name Formula

Large zone 
emphasis (LZE)

i

N

j

Lg z

j p i j
= =
∑∑ ( )
1 1

2 ,

Gray-level 
nonuniformity 
(GLN)

i

N

j

Lg z

p i j
= =
∑ ∑ ( )















1 1

2

,

Zone-size 
nonuniformity 
(ZSN)

j

L

i

N
z g

p i j
= =
∑ ∑ ( )















1 1

2

,

Zone percentage 
(ZP)

i

N

j

L

j

L

i

N

g z

z g

p i j

p i j

= =

= =

∑ ∑
∑ ∑

( )

( )
1 1

1 1

,

,

Chu and 
colleagues3; 
Thibault and 
colleagues5

Low-gray-level 
zone emphasis 
(LGZE) i

N

j

Lg z p i j

i
= =
∑∑ ( )
1 1

2

,

High-gray-level 
zone emphasis 
(HGZE) i

N

j

Lg z

i p i j
= =
∑∑ ( )
1 1

2 ,

Dasarathy 
and Holder4; 
Thibault and 
colleagues5

Small zone 
low-gray-level 
emphasis 
(SZLGE)

i

N

j

Lg z p i j

i j
= =
∑∑ ( )
1 1

2 2

,

Small zone 
high-gray-
level emphasis 
(SZHGE)

i

N

j

Lg z i p i j

j
= =
∑∑ ( )
1 1

2

2

,

Large zone 
low-gray-level 
emphasis 
(LZLGE)

i

N

j

Lg z j p i j

i
= =
∑∑ ( )
1 1

2

2

,

Large zone 
high-gray-
level emphasis 
(LZHGE)

i

N

j

Lg z

i j p i j
= =
∑∑ ( )
1 1

2 2 ,

Thibault and 
colleagues5

Gray-level 
variance (GLV) 1

1 1

2

N L
ip i j

g z i

N

j

L

i

g z

×
( ) − 

= =
∑∑ , µ

Zone-size 
variance (ZSV) 1

1 1

2

N L
jp i j

g z i

N

j

L

j

g z

×
( ) − 

= =
∑∑ , µ

Table 2.  (Continued)

 (Continued)

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 12

10	 journals.sagepub.com/home/tan

Texture matrices References Feature name Formula

Neighborhood 
gray-tone 
difference matrix 
(NGTDM)

Amadasun 
and King6

Coarseness

 + ( )














=

−

∑
i

N

i

g

n P i
1

1

Contrast
1

1

1

1 1

2

N N
n n i j

N
g eff g eff

i

N

j

N

i j

i

g g

( ) ( ) −





−( )














= =

∑∑
==
∑ ( )















1

Ng

P i

Busyness

i

N

i

i

N

j

N

i j

g

g g

n P i

in jn

=

= =

∑
∑ ∑

( )
−( )

1

1 1

,

n ni j, ¹ 0

Complexity

i

N

j

N
i j

i j

g g i j n P i n P j

N n n= =
∑∑

− ( ) + ( ) 
+( )1 1

n ni j, ¹ 0

Strength

i

N

j

N

i j

i

N

i

g g

g

n n i j

n P i

= =

=

∑ ∑
∑

+( ) −( )

+ ( )





1 1

2

1


n ni j, ¹ 0

1.Haralick RM, Shanmugam K and Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; 
3: 610–621.
2.Galloway MM. Texture analysis using grey level run lengths. Vol. 75. NASA STI/Recon Technical Report N. Linthicum Heights, 
MD, 1974.
3.Chu A, Sehgal CM and Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Patt Recog Lett 
1990; 11: 415–419.
4.Dasarathy BV and Holder EB. Image characterizations based on joint gray level—run length distributions. Patt Recog Lett 
1991; 12: 497–502.
5.Thibault G, Fertil B, Navarro C, et al. Texture indexes and gray level size zone matrix application to cell nuclei 
classification. In: 10th International conference on pattern recognition and information processing, Minsk, Belarus, 2009, 
pp.140–145.
6.Amadasun M and King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 1989; 19: 
1264–1274.

Table 2.  (Continued)

correlation coefficients to evaluate whether there 
was a correlation between the clinical scale and 
radiomic features. If there was a correlation, we 
believe that this feature was effective for AD or 
MCI and would be used for classification. To 
ensure statistical reliability, we conducted a cross-
validation test. Taking AD as an example, the 
cross-validation process was as follows: (1) we 
randomly chose 70 patients from the AD1 group 
(100 patients that were not used for SPM analysis 
described in section Regions of interest); (2) we 

extracted ROIs from the above 70 patients and 
got stable radiomic features; (3) we calculated the 
correlation between the ADAS scale and each 
feature using Pearson’s correlation coefficients. 
As a result, those features which were related to 
ADAS (p < 0.05 with false discovery rate (FDR) 
correction) were considered as selected features; 
(4) the remaining 30 patients from the AD1 group 
were used as a test dataset for subsequent classifi-
cation experiments. Finally, the above cross-vali-
dation process was repeated 500 times.
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For the MCI group, we calculated the correlation 
between the CDRSB scale and each feature and 
did the same cross-validation process 500 times. 
In addition, we also did the same cross-validation 
process to explore radiomic features that were 
effective for both the AD group and MCI group 
by calculating the correlation between the ADAS 
scale and each feature. All calculations were 
implemented in MATLAB R2014b using raw 
values without normalization.

To further explore the consistency of the selected 
features in different conditions, we also extracted 
selected features using ROIs from the Huashan 
cohort and calculated the intraclass correlation coef-
ficient (ICC) for those feature using samples which 
participated in feature selection cross-validation 
(CV) experiments (100 AD and 100 MCI patients).

SVM classification
After the feature selection step, we identified 
three selected radiomic feature sets (AD/MCI/
HC) to distinguish AD/HC, MCI/HC and AD/
MCI. To verify the diagnostic capabilities of these 
feature sets, we performed three SVM classifica-
tion for AD versus HCs, MCI versus HCs and AD 
versus MCI. The SVM is one kind of supervised 
learning model with associated learning algo-
rithms that analyze data used for classification 
and regression analysis. Given a set of training 
examples, each marked as belonging to one or the 
other of two categories, an SVM training algo-
rithm builds a model that assigns new examples 
to one category or the other, making it a nonprob-
abilistic binary linear classifier.

In this step, we also conducted classification experi-
ments 500 times for each SVM classification. 
Taking the AD versus HCs classification as an 
example, we used 70 patients from the AD1 group 
(the same as 70 patients selected in the section, 
Feature selection) and randomly selected 70 patients 
from the HC2 group (100 patients that were not 
used for SPM analysis described in the section, 
Regions of interest) to train the SVM classifier. Then, 
we used the remaining 30 patients from the AD1 
group and 30 patients from the HC2 group to test 
the SVM classifier. Finally, the Huashan cohort was 
used as the second test dataset to further validate 
the classification results. We also did the above pro-
cess for AD versus MCI, and MCI versus HCs 500 
times. The mean and standard deviation values 
were also calculated 500 times in each experiment.

In the classification experiment, four kernel (lin-
ear, sigmoid, polynomial, and radial basis) func-
tions were used to detect feature generalization 
ability and classification reliability. Before classifi-
cation, all feature values were normalized in both 
the train dataset and test dataset by using a ‘min-
max normalization’ method separately. In addition, 
features, age and sex had also been considered as 
the inputs for SVM classification. The classifier 
version used in this experiment was LIBSVM 2.9.1 
(www.csie.ntu.edu.tw/~cjlin/libsvm/) and was 
implemented in MATLAB R2014b. In addition, 
we repeated the above feature selection experi-
mental process using ROIs obtained by the 
Huashan cohort as a comparison. The same clas-
sification experiments were also repeated.

Results

ROIs
Figure 2 shows the results of the voxel-based two-
sample Student’s t test of AD patients and HCs in 
both ADNI cohorts (30 AD patients versus 30 
HCs) and Huashan cohorts (22 AD patients ver-
sus 22 HCs). These brain regions comprised  
brain tissue related to the AD pathology and are 
summarized in Tables 3 and 4. The results 
obtained from the two groups were consistent. 
Most of the ROIs were distributed in the tempo-
ral, occipital and frontal areas.

Cronbach’s alpha coefficient
Figure 3 shows an overall scatter plot of the 
Cronbach’s alpha coefficient for all radiomic fea-
tures. Of these, 168 features were stable (alpha > 
0.8), and 47 were unstable (alpha < 0.8). Among 
the 168 stable features, 51 features were extremely 
stable (alpha > 0.95). The results from the stabil-
ity analysis proved that the radiomic features were 
stable and reliable in brain 18F-FDG PET images. 
Table 5 shows all stable features.

Pearson’s correlation coefficients
After each cross-validation in the feature selection 
step, it can be observed that there were about 
50–70 kinds of features associated with AD, 
about 30–40 features associated with MCI and 
about 10–20 features associated with both AD 
and MCI. Table 6 lists the most frequently fea-
tures, their occurring times and ICC values at 
500 times cross-validation. In general, these 
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Figure 2.  Results of the two-sample Student’s t test brain 18F-FDG PET images conducted to assess 
differences between AD patients and HCs.
18F-FDG PET, 18F-fluorodeoxy-glucose positron emission tomography; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease 
Neuroimaging Initiative; HC, healthy control.

Table 3.  Brain regions with significant differences between AD patients and HCs based on ADNI cohorts.

MNI coordinate Cluster location (standardized automated 
anatomical labeling template)

Brodmann area Hemisphere Cluster 
size

Z-score

14 −68 74 Temporal_Mid; Angular; Temporal_Sup; 
Calcarine; Occipital_Inf; Occipital_Sup; 
Parietal_Sup; Lingual; Occipital_Mid; 
Temporal_Inf; Precuneus; Cingulum_Mid; 
Cingulum_Post; Fusiform; Cuneus

18,39,19,40,21,22, 
17,7,31,37,23,42,30

Right/left 13535 −3.84

−64 14 2 Temporal_Mid; Temporal_Sup; Angular; 
Occipital_Mid

22,39,19,21,42,41,40 Left 643 −3.28

8 −14 14 Thalamus – Right 99 −2.96

−12 2 16 Caudate – Left 68 −2.93

18 −4 20 Caudate – Right 22 −2.79

54 22 38 Frontal_Inf_Oper; Frontal_Mid; Frontal_Inf_
Tri

9 Right 37 −2.8

−52 15 34 Precentral; Frontal_Inf_Oper; Frontal_Mid; 
Frontal_Inf_Tri

9 Left 31 −2.85

48 0 34 Precentral 6,9 Right 32 −2.87

−38 −72 54 Parietal_Inf; Angular; Parietal_Sup 7,40,19 Left 518 −3.25

16 52 44 Frontal_Sup; Frontal_Sup_Medial 8,9 Right 41 −2.92

52 8 48 Precentral; Frontal_Mid 6 Right 34 −2.79

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; HC, healthy control; MNI, Montreal Neurological Institute.
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features showed excellent consistency in repeated 
experiments. For example, ‘energy’ and ‘entropy’ 
appeared in both AD and MCI experiments, indi-
cating that these two features have good patho-
logical revealing ability. As a comparison, the top 
relative features selected from Huashan cohort’s 
ROIs were consistent with Table 6. Table 7 shows 
the details of these key features.

SVM classification results
As shown in Table 8, the use of selected radiomic 
features with linear, polynomial, radial basis, and 
sigmoid kernels could achieve average accuracies 
of 91.5%, 88.1%, 86.1%, and 86.3%, respectively, 
to distinguish AD patients and HCs, average accu-
racies of 85.9%, 83.4%, 85.0%, and 83.5%, 
respectively, to distinguish AD and MCI patients, 
and accuracies of 83.1%, 81.8%, 82.9%, and 
81.5%, respectively, to distinguish MCI patients 

and HCs. As a result, the linear kernel could 
achieve an optimal classification performance. The 
classification performance of Radial Basis Function 
(RBF) and the sigmoid kernel were slightly poor 
and relatively unstable, probably because these 
two kernels depend on parameter adjustments and 
in this study, we only used default parameters for 
classification. As a comparison, similar results were 
achieved by using ROIs from the Huashan cohorts. 
The best classification performances achieved 
average accuracies of 91.2%,85.5%, 82.3% and 
92.1%, in AD vs HC, AD vs MCI,MCI vs HC for 
ADNI cohorts, and AD vs HC for Huashan 
cohorts, respectively. Table 7 shows more details 
on classification accuracy, Area Under Curve 
(AUC), sensitivity, and specificity using Huashan 
cohort ROIs. The above results could prove the 
reliability of our research framework.

Discussion
This study utilized statistical analysis and SVM to 
investigate whether a radiomic method based on 
18F-FDG PET images could be used for AD and 
MCI computer-aided diagnosis. To prove the sta-
bility and generalization of the proposed radiomic 
method, we selected different samples by different 
PET scanners with different imaging properties, 
including samples from the ADNI database and 
Huashan Hospital. This kind of cross-dataset 
research approach was frequently used in the radi-
omic studies to avoid the over-fitting problem, as 
well as to test the generalization ability of the whole 
research framework.8,11,12,21–23

Figure 3.  Scatter plot of all radiomic features in 
relation to Cronbach’s alpha coefficient.

Table 4.  Brain regions with significant differences between AD and HC based on Huashan cohorts.

MNI coordinates Cluster location (standardized automated anatomical 
labeling template)

Brodmann 
area

Hemisphere Cluster 
size

Z-score

20 −100 −8 Temporal_Mid; Temporal_Inf; Temporal_Sup; 
Angular; Occipital_Mid; Occipital_Sup; Occipital_Inf; 
Calcarine; Lingual; Parietal_Inf; Parietal_Sup; 
Cuneus; SupraMarginal; Fusiform

7, 13, 18, 
17, 19, 21, 
22, 23, 30, 
37, 39, 40

Right/left 5902 −5.22

70 −22 4 Temporal_Sup; Temporal_Mid 21, 22, 42 Right 317 −4.52

14 −72 28 Cuneus; Precuneus; Cingulum_Post; Cingulum_Mid 7, 23, 31 Right 180 −4.17

−38 72 54 Parietal_Sup; Angular; Parietal_Inf 7 Left 155 −4.49

−48 50 62 Parietal_Inf – Left 33 −4.17

14 −66 76 Parietal_Sup; Precuneus; Postcentral – 353 −5.07

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; HC, healthy control; MNI, Montreal Neurological Institute.
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Table 5.  Stable features.

R = 1/2 R = 2/3 R = 1 R = 3/2 R = 2

Skewness Skewness Skewness Skewness Skewness

Energy Energy Kurtosis Energy Contrast

Contrast Contrast Energy Contrast Entropy

Entropy Entropy Contrast Entropy Homogeneity

Homogeneity Correlation Entropy Homogeneity SumAverage

Correlation SumAverage Homogeneity Correlation Variance

SumAverage Variance Correlation SumAverage Dissimilarity

Variance Dissimilarity SumAverage Variance SRE

Dissimilarity AutoCorrelation Variance Dissimilarity GLN

AutoCorrelation SRE Dissimilarity AutoCorrelation RLN

SRE LRE AutoCorrelation SRE RP

LRE GLN SRE GLN LGRE

GLN RLN LRE RLN HGRE

RLN RP GLN RP SRLGE

RP LGRE RLN HGRE LRLGE

LGRE HGRE RP LRLGE LRHGE

HGRE SRHGE LGRE LRHGE GLV

SRLGE LRLGE HGRE GLV RLV

SRHGE LRHGE SRLGE RLV LZE

LRLGE GLV SRHGE SZE GLN

LRHGE RLV LRLGE LZE ZP

GLV LZE LRHGE GLN LGZE

RLV GLN GLV ZP HGZE

SZE ZSN RLV LGZE SZLGE

LZE ZP SZE HGZE SZHGE

GLN LGZE LZE SZLGE LZLGE

ZSN HGZE GLN SZHGE LZHGE

ZP SZLGE ZSN LZHGE GLV

LGZE SZHGE ZP GLV ZSV

HGZE LZLGE LGZE ZSV Coarseness

SZLGE GLV HGZE Coarseness  
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R = 1/2 R = 2/3 R = 1 R = 3/2 R = 2

SZHGE ZSV SZLGE  

LZLGE Coarseness SZHGE  

LZHGE LZLGE  

ZSV LZHGE  

Coarseness GLV  

ZSV  

  Coarseness  

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; GLN, gray-level nonuniformity; GLV, gray-
level variance; HGRE, high-gray-level run emphasis; HGZE, high-gray-level zone emphasis; ICC, intraclass correlation 
coefficient; LGRE, low-gray-level run emphasis; LGZE, low-gray-level zone emphasis; LRE, long-run emphasis; LRHGE, 
long-run high-gray-level emphasis; LRLGE, long-run low-gray-level emphasis; LZE, large zone emphasis; LZHGE, large 
zone high-gray-level emphasis; LZLGE, large zone low-gray-level emphasis; MCI, mild cognitive impairment; RLN, run-
length nonuniformity; RLV, run-length variance; RP, run percentage; SRE, short-run emphasis; SRHGE, short-run high 
gray-level emphasis; SRLGE, short-run low-gray-level emphasis; SZHGE, small zone high-gray-level emphasis; SZLGE, 
small zone low-gray-level emphasis; ZP, zone percentage; ZSN, zone-size nonuniformity; ZSV, zone-size variance.

Table 5.  (Continued)

Table 6.  The key relative features selected by cross-validation, 500 times.

AD MCI AD + MCI

Feature R times ICCa Feature R times ICCa Feature R times ICCa

Energy 1 488 0.956 Entropy 1 475 0.949 Skewness 1 412 0.901

GLV 1/3 479 0.947 Homogeneity 1 471 0.941 Coarseness 1 387 0.875

Contrast 1 465 0.931 SRE 1/2 447 0.927 Correlation 3/2 331 0.821

Variance 2/3 461 0.933 RP 2/3 413 0.894 SZLGE 2/3 317 0.806

Entropy 1 443 0.915 Energy 1 397 0.881 Skewness 1/2 311 0.803

ZSV 3/2 410 0.899 GLV 2/3 374 0.836 –

HGRE 1/2 393 0.878 RLN 1/2 363 0.829

SZHGE 1 389 0.842 LZE 1 330 0.815

LRHGE 2/3 354 0.827 Dissimilarity 1 314 0.803

RLV 1 316 0.807 ZP 1/2 276 0.797

aICC > 0.9 means excellent consistency and ICC > 0.8 means statistically acceptable consistency.
AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; GLV, gray-level variance; HGRE, high-gray-level run emphasis; ICC, 
intraclass correlation coefficient; LRHGE, long-run high-gray-level emphasis; LZE, large zone emphasis; MCI, mild cognitive impairment; RLN, 
run-length nonuniformity; RLV, run-length variance; RP, run percentage; SRE, short-run emphasis; SZHGE, small zone high-gray-level emphasis; 
SZLGE, small zone low-gray-level emphasis; ZP, zone percentage; ZSV, zone-size variance.

To define ROIs, we performed a voxel-based, two-
sample, Student’s t test in a group of 30 HCs and 
30 AD individuals from ADNI cohorts to deter-
mine the brain areas associated with AD pathology. 

In the subsequent experiments, we regarded the 
ROIs of AD as those of MCI because the patients 
with MCI who will be converted to AD have brain 
tissue lesions similar to those of AD.24–27 As shown 
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Table 7.  Results for ADNI cohorts using the Huashan cohort ROIs. 
(a) The top relative features selected by cross-validation 500 times.

AD MCI AD + MCI

Feature R times Feature R times Feature R times

GLV 1/2 471 Entropy 1 452 Skewness 1 383

Energy 1 463 SRE 1/2 449 Coarseness 1 361

Contrast 1 455 Homogeneity 1 431 Correlation 3/2 355

Entropy 1 449 RP 2/3 423 Skewness 1/2 328

Variance 2/3 447 Energy 1 396 SZLGE 2/3 291

HGRE 1/2 417 RLN 1/2 388 –

ZSV 3/2 405 GLV 2/3 359

SZHGE 1 383 LZE 1 341

LRHGE 2/3 345 Dissimilarity 1 317

RLV 1 324 ZP 1/2 280

(b) Classification accuracy, AUC, sensitivity, and specificity.

Group Accuracy / AUC / sensitivity / specificity (average)

Linear Polynomial RBF Sigmoid

ADNI cohorts AD versus HC 91.2% ± 2.1% 87.8% ± 2.4% 85.3% ± 2.7% 85.8% ± 2.5%

 0.91 ± 0.02 0.86 ± 0.03 0.85 ± 0.03 0.85 ± 0.03

92.5% ± 1.9%  89.1% ± 2.3% 84.8% ± 2.9% 86.5% ± 2.5%

90.1% ± 2.2%  86.9% ± 2.6% 87.1% ± 2.5% 83.1% ± 2.9%

AD versus MCI 85.5% ± 2.4% 83.1% ± 2.8% 84.4% ± 2.7% 83.3% ± 2.7%

0.84 ± 0.03 0.83 ± 0.03 0.84 ± 0.03 0.82 ± 0.04

86.6% ± 2.5% 86.2% ± 2.7%  86.2% ± 2.6% 80.1% ± 2.9%

85.9% ± 2.5% 79.9% ± 3.0%  82.7% ± 2.9% 86.2% ± 2.5%

MCI versus HC 82.3% ± 2.9% 80.8 % ± 3.1% 81.9% ± 2.9% 80.4% ± 3.0%

0.79 ± 0.04 0.76 ± 0.04 0.78 ± 0.04 0.76 ± 0.05

83.1% ± 2.8% 82.7% ± 3.0% 81.1% ± 3.0% 82.3% ± 2.9%

82.3% ± 2.9% 79.8% ± 3.2% 82.3% ± 2.7% 76.5% ± 3.2%

Huashan cohorts AD versus HC 92.1% ± 2.0% 89.1% ± 2.1% 86.4% ± 2.4% 87.3% ± 2.5%

0.93 ± 0.02 0.90 ± 0.02 0.86 ± 0.03 0.89 ± 0.03

90.9% ± 2.1%  89.8% ± 2.2% 85.6% ± 2.7% 88.7% ± 2.6%

91.1% ± 2.2%  88.2% ± 2.2% 88.1% ± 2.5% 82.5% ± 2.9%

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AUC, Area Under Curve; GLV, gray-level 
variance; HGRE, high-gray-level run emphasis; LRHGE, long-run high-gray-level emphasis; LZE, large zone emphasis; 
LZHGE, large zone high-gray-level emphasis; MCI, mild cognitive impairment; RBF, Radial Basis Function; RLN, run-
length nonuniformity; RLV, run-length variance; RP, run percentage; SRE, short-run emphasis; SZHGE, small zone high-
gray-level emphasis; SZLGE, small zone low-gray-level emphasis; ZP, zone percentage; ZSV, zone-size variance.
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in Tables 3 and 4, most of the results are consistent 
with the typical results reported previously. Ferreira 
and colleagues found that the medial temporal 
region is the most consistent neurostructural bio-
marker for predicting AD,28 and our results were 
consistent with this finding (AAL: Temporal_Mid, 
Temporal_Inf and Temporal_Sup). Occipital lobe 
regions (AAL: Occipital_Mid, Occipital_Sup, 
Occipital_Inf), anterior cingulate (AAL: Cingulum_
Post, Cingulum_Mid), and the parietal cortex area 
(AAL: Parietal_Sup, Parietal_Inf, Parietal_Sup) 
were also identified in agreement with previous 
studies.28–32 After t test analysis, an ROI template 
was obtained (Figure 2 and Table 3), and features 
were extracted from this ROI. In total, 215 radi-
omic features were extracted for each sample, 
including intensity, texture, and wavelet features. 

Recent radiomics research studies usually involved 
shape features because the target ROIs with various 
shapes, such as the tumor areas, were segmented 
manually.8,9,11,13,14,22 However, those shape fea-
tures were not included in this study. For brain 
PET studies, preprocessing steps usually include 
spatial normalization and smoothing. In this study, 
we followed this preprocessing process, further 
reducing the effects of shape differences. Moreover, 
individual heterogeneity in tumors was much 
higher than that in normal brain tissue. Therefore, 
our feature set did not contain shape features.

In addition, the stability of 215 radiomic features 
in brain 18F-FDG PET images was determined, 
revealing 168 stable features (alpha > 0.8). 
Stability analyses proved that more than half of 

Table 8.  Classification accuracy, AUC, sensitivity, and specificity.

Group Accuracy / AUC / sensitivity / specificity (average)

Linear Polynomial RBF Sigmoid

ADNI cohorts AD versus HC 91.5% ± 1.9% 88.1% ± 2.3% 86.1% ± 2.4% 86.3% ± 2.5%

0.92 ± 0.01 0.88 ± 0.03 0.87 ± 0.03 0.88 ± 0.03

92.9% ± 2.4 %  89.5% ± 2.6% 85.3% ± 2.5% 87.1% ± 2.6%

90.2% ± 2.1 %  87.1% ± 2.5% 87.5% ± 2.7% 83.2% ± 2.4%

AD versus MCI 85.9% ± 2.1 % 83.4% ± 2.8% 85.0% ± 2.5% 83.5% ± 2.7%

0.85 ± 0.02 0.84 ± 0.04 0.86 ± 0.03 0.82 ± 0.03

87.3% ± 2.2% 86.5% ± 2.9%  86.7% ± 2.3% 80.4% ± 2.9%

86.2% ± 2.3% 80.1% ± 2.8%  83.3% ± 2.7% 86.5% ± 2.8%

MCI versus HC 83.1% ± 2.8% 81.8% ± 2.9% 82.9% ± 2.8% 81.5% ± 3.1%

0.80 ± 0.04 0.79 ± 0.04 0.81 ± 0.03 0.78 ± 0.05

83.8% ± 2.9% 83.4% ± 3.1% 83.1% ± 2.9% 84.5% ± 2.9%

82.9% ± 2.6% 80.2% ± 2.9% 82.7% ± 2.8% 77.3% ± 3.2%

Huashan cohorts AD versus HC 91.9% ± 2.3% 88.4% ± 2.5% 85.9% ± 2.6% 87.1% ± 2.5%

0.93 ± 0.02 0.89 ± 0.03 0.85 ± 0.03 0.89 ± 0.03

90.7% ± 2.4%  89.4% ± 2.8% 85.1% ± 2.8% 88.2% ± 2.7%

 90.5% ± 2.6%  87.8% ± 2.7% 87.7% ± 2.4% 82.4% ± 2.9%

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AUC, Area Under Curve; HC, healthy control; 
MCI, mild cognitive impairment; RBF, Radial Basis Function.
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the radiomic features would not be disturbed by 
random errors and imaging noise. Of the 168 sta-
ble features, 51 were extremely stable (alpha > 
0.95). Stability score analysis was performed in 
HC samples, and subsequent analyses indicated 
that radiomic feature values were associated with 
clinical cognitive scales, which could reflect dis-
ease pathology in AD and MCI patients. 
Obviously, these connections were not caused by 
random factors. Hence, the stability results 
proved the reliability of subsequent analyses and 
indirectly proved that radiomic features contains 
a wealth of pathological information. The possi-
ble association of radiomic features with CDRSB 
and ADAS was explored based on Pearson’s cor-
relation. We found that many radiomic features 
that were not studied previously were relevant 
with cognitive scale values. Here, we studied two 
scales because ADAS is a scale specifically 
designed to measure cognitive performance in 
AD patients.33 As described in the section Feature 
selection, two group analyses containing AD 
patients used ADAS values; however, for MCI 
patients, we used CDRSB because it is a scale 
specifically sensitive for MCI measurement. As a 
result of the feature selection, we found that about 
50–70 features were associated with AD through 
the Pearson correlation coefficient, about 30–40 
features were associated with MCI, and about 
10–20 features were associated with AD and MCI 
mixed samples. Jaccard index values of frequently 
occurring features in Table 6 showed that selected 
features were consistent with the correlation with 
disease. These correlations suggested that high-
order radiomic features extracted from 18F-FDG 
PET brain imaging could be used not only for 
classification diagnosis but also contained rich 
information related to pathological processes for 
further study and mining.8–10,22

Importantly, on a 500-times cross-validation 
experiment based on both ADNI and Huashan 
cohorts using SVM as a classifier, we found that 
radiomic features had a distinct ability to classify 
AD versus HCs, MCI versus HCs and AD versus 
MCI with maximum average accuracies of 
91.5%, 83.1% and 85.9%, respectively. By using 
the cross-validation method, the above results 
avoided the bias of test results, and presented the 
validity of the selected features, and SVM classi-
fication.34 Table 9 lists the results of this paper 
compared with the results of previous studies, 
and these methods were complex image classifi-
cation algorithms based on deep learning tech-
niques. As shown in Table 9, the radiomic 
method could achieved a satisfied classification 
accuracy in both AD versus HCs (91.5%) and 
MCI versus HCs (83.1%) comparable with com-
plex algorithms. Thus, radiomics may have appli-
cation prospects in the field of AD and MCI 
diagnosis. Because the significance of the calcu-
lation values existing in the neural network 
framework are unknown, compared with the 
deep learning framework, another advantage of 
radiomics is that its features are correlated with 
AD and MCI clinical scales. Based on this, a 
future study can investigate the relationship 
between the radiomic feature values and the dis-
ease directly to help physicians carry out person-
alized and precise treatment.8

Limitations and further considerations
Although the potential application value of radiom-
ics in the diagnosis of AD and MCI has been 
proven in the paper, some limitations persist that 
may influence the results of this study. First, for 
individuals from ADNI and the Huashan Hospital, 
their ages and races were not matched. The average 

Table 9.  Classification accuracy of existing literature.

References Accuracy

AD versus HCs MCI versus HCs

Silveira and Marques5 90.9% 79.6%

Gray and colleagues7 81.6% 70.2%

Liu, Manhua and colleagues3 91.2% 78.9%

Our method 91.5% 83.1%

AD, Alzheimer’s disease; HC, healthy control; MCI, mild cognitive impairment.
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age of individuals from ADNI was approximately 
72 years and mainly included Europeans and 
Americans. The average age of individuals from 
Huashan Hospital was 57 years and mainly included 
Asians. Whether the differences in age and race will 
influence the results has not been studied yet and 
can be explored in subsequent studies.

Second, the shape and some texture features of 
PET images were lost in the preprocessing step, 
events that may influence the results. In this 
study, we used a smooth step and selected the 
MNI template for image registration and lost 
some texture and morphology information dur-
ing the registration process. However, this is a 
routine step in other AD studies; thus, we fol-
lowed this preprocessing principle. The effect of 
these preprocessing methods on the results is 
unknown and requires follow-up studies.

Third, the pathobiological mechanism concern-
ing the correlation between radiomic features and 
clinical scale was not explored in this paper. In 
our current research, we only confirmed that the 
radiomic features were related to the clinical 
scale, indicating that there is indeed a correlation 
between radiomic features and AD/MCI pathol-
ogy; however, we did not further study the patho-
biological mechanism. In future research, the 
mechanism between each feature and disease 
should be studied in detail.

Conclusion
In summary, the research in this paper proved 
that high-order radiomic features extracted from 
18F-FDG PET brain images can be used for AD 
and MCI computer-aided diagnoses. Radiomic 
features can reflect the pathological information 
of MCI and AD, and they can diagnose MCI and 
AD with increased accuracy. The simplicity of the 
acquisition of radiomic features and its high-
throughput nature would constitute powerful 
tools for personalized precision medicine for the 
population affected by AD and MCI.
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