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Frequent use of antibiotics in preterm infants disturbs their gut microbial balance. In this

preliminary observational study, we investigated the effect of different antibiotic regimens,

administered during the first week of life, on microbial composition and diversity in very

low birth weight (VLBW) preterm infants. We performed fecal sampling of breastfed

VLBW infants on days 7, 14, and 30. After excluding stool samples from infants who

received probiotics or who were administered antibiotics beyond the age of 7 days, we

compared gut microbiota profiles between infants receiving a combination of ampicillin

and gentamicin for 3 days (AG group, n = 10) and those receiving a combination

of ampicillin and cefotaxime for 7 days (AC group, n = 14) using 16S ribosomal

DNA community profiling. We also assessed the changes over time in each group.

Compared to the AG group, Enterococcus species were significantly more abundant

in the AC group (P = 0.002), especially in 7-day samples (12.3 vs. 0.6%, respectively,

P = 0.032). No difference was observed at phylum and genus level over time within

each group. Species richness in the AC group decreased significantly in the 14-day

(P = 0.038) and 30-day (P = 0.03) samples compared to that in the 7-day sample.

The same was observed for microbial evenness; in contrast, no significant difference

in Shannon index and beta-diversity was detected between the two groups. Controlling

for relevant confounding variables did not change the results. In conclusion, different

antibiotic regimens affect the early development of gut microbiota in VLBW preterm

infants. Prolonged use of ampicillin and cefotaxime might result in overabundance of

Enterococcus. However, given that no significant differences were observed in 1-month

samples, bacterial genera appear to continue colonizing the gastrointestinal tract despite

previous exposure to antibiotics. The clinical relevance of these findings should be

elucidated by further studies.
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INTRODUCTION

The gut microbiome plays a vital role in promoting overall
health, and the perinatal period is considered critical for the
development of infant gut microbiota. A healthy gut microbiota
contributes significantly to the development of a healthy immune
system, digestive functions, and neurological functions (1–3).
The gut microbiota is highly dynamic during early infancy and
is affected by several host and environmental factors, including
gestational age, mode of delivery, type of feeding, administration
of probiotics, living environment, and medical interventions (1–
6). The onset and progression of several infectious diseases,
chronic inflammatory bowel disease, allergies, obesity, and
diabetes, are associated with disruption of the gut microbiota
(2, 7).

The gut microbiota of preterm neonates, as compared to full-
term neonates, is unique because it is characterized by delayed
colonization of common bacterial genera and an abundance of
pathogens (8, 9). Owing to concerns about a relatively immature
immune system that may not elicit an optimal response to
infection, preterm infants are generally prescribed empiric
antibiotic therapy in neonatal intensive care units (NICUs)
(10). Prolonged use or upgrade of antibiotics is very common
following peripartum issues, such as prolonged rupture of
membranes and suspected chorioamnionitis in mothers or non-
specific symptoms and signs of infection in neonates. Previous
studies showed that antibiotic overuse in early life could impair
initial microbial colonization (11–14), which might contribute to
subsequent adverse outcomes in preterm infants, such as late-
onset sepsis (LOS), necrotizing enterocolitis (NEC), and even
death (15–19).

Despite an increased understanding of how antibiotic
treatment influences microbiota development in preterm infants,
the impact of different antibiotic exposure on preterm microbial
community is not well-studied. This preliminary observational
study’s primary goal was to investigate the effect of different
antibiotic regimes, administered during the first week of life,
on the development of gut microbiota in very low birth weight
(VLBW, birth weight <1,500 g) preterm infants.

MATERIALS AND METHODS

Study Subjects
This prospective cohort observational study was conducted at
the NICU of MacKay Children’s Hospital from May 2017 until
May 2018. The study was supported by a grant (MMH-106-69)
from MacKay Memorial Hospital. Eligible subjects were VLBW
preterm infants who received their mothers’ milk. Exclusion
criteria included infants with major congenital anomalies or
malformations, those receiving nothing by mouth for ≥7
days or using probiotics during the study period, and those
administered antibiotics after the age of 7 days. The study
was approved by the Institutional Review Board of MacKay
Memorial Hospital, and was performed in accordance with the
1964 Declaration of Helsinki and its later amendments (IRB
number: 17MMHIS026e). Infants were recruited after written
informed consent had been obtained from their parents.

Infants were given antibiotic treatment on clinical suspicion
of a bacterial infection after analyzing blood cultures. Early
empiric antibiotic use consisted of ampicillin plus gentamicin
or ampicillin plus cefotaxime. Infants were divided into two
groups: those who received 3 days of combination treatment
with ampicillin plus gentamicin (AG group), and those who
received 7 days of ampicillin plus cefotaxime (AC group).
Treatment doses were based on existing guidelines and were
adjusted according to patients’ gestational age and birth
weight. Antibiotic combinations and treatment duration were
determined by the attending physicians based on the perceived
risk of infection. Ampicillin and third-generation cephalosporins
were administered to patients with high risk of infection over a
period of 1 week as per our NICU protocols. Medical records
were reviewed to identify pertinent infants and maternal factors,
as well as feeding patterns.

Sample Collection and DNA Extraction
Freshly evacuated feces from soiled diapers were collected at 7,
14, and 30 days by medical staff. All samples were frozen at
−80◦C until further processing. For the extraction of fecal DNA,
the QIAmp R© DNA stool mini kit (Qiagen, Germany) was used
according to the manufacturer’s instructions.

PCR Amplification and Illumina MiSeq
The V3-V4 region of the 16S rRNA gene was amplified by
PCR using universal primers (16S Amplicon PCR Forward
Primer: 5′ TCGTCGGCAGCGTCAGATGTGTATAAGA-
GACAGCCTACGGGNGGCWGCAG; 16S Amplicon PCR
Reverse Primer: 5′ GTCTCGTGGGCTCGGAGATGTGTATAA-
GAGACAGGACTACHVGGGTATCTAATCC) (20). The PCR
was performed in a total volume of 25 µL containing 0.2µM of
each primer and 12.5 µL of 2X KAPA HiFi HotStart ReadyMix
(Roche, South Africa). PCR conditions were as follows: 95◦C
for 3min; 25 cycles at 95◦C for 30 s, 55◦C for 30 s, and 72◦C for
30 s; and a final extension at 72◦C for 5min in a Veriti R© 96-well
thermal cycler (Applied Biosystems, Singapore). The purification
step was carried out using AMPure XP beads (Beckman Coulter,
USA). Dual indices and Illumina sequencing adapters were
attached to the PCR products using the Nextera XT Index
Kit for each library. The treated products were quantified on
a NanoDrop ND2000 spectrophotometer (Thermo Scientific,
USA), Qubit dsDNA HS Assay Kit (Invitrogen, USA), and
Labchip GX Touch 24 (Applied Biosystems, USA). Then, the
amplicons were pooled together in equimolar quantities and
paired-end sequenced (2 × 300 bp) on an Illumina MiSeq
platform according to standard protocols.

Bioinformatics Analysis of Microbiota
To analyze bacterial communities, raw sequence reads were
assessed for quality and then analyzed by QIIME (21). Each
sample yielded more than 100,000 reads after pre-processing
in USEARCH 6.1, which included a chimera check and
merging of chimera-checked sequences. To pick and cluster the
operational taxonomic units (OTUs) in each sample, we used
the GreenGenes bacterial reference database with a threshold
of 97% sequence identity, thus allowing for maximal taxonomic
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TABLE 1 | Demographic and clinical characteristics of study subjects.

AG groupa (N = 10) AC groupa (N = 14) P-value

Maternal antibiotics use 8 10 0.75

Prenatal steroid use 9 14 0.71

PROM >18 h 4 9 0.34

Cesarean delivery 7 12 0.36

Gestational age (week)b 29.0 (28.0–31.3) 29.0 (27.5–31.0) 0.74

Birth weight (gram)b 1,324 (1,223–1,405) 1,138 (846–1,388) 0.09

Male 6 6 0.42

SGA 4 10 0.13

Multiple births 4 1 0.06

APGAR score 5 mins <7 0 1 0.40

Start feeding (day)b 2.0 (2.0–3.3) 4.0 (2.0–7.0) 0.07

Reach full feeding (day)b 16.0 (10.8–24.5) 21.0 (14.8–29.5) 0.21

RDS need surfactant 5 8 0.49

Days on Oxygen (day)b 12.0 (4.3–49.3) 42.0 (3.5–70.5) 0.38

CLD 2 8 0.08

Any IVH 0 1 0.40

ROP need treatment 0 4 0.40

PDA need treatment 3 1 0.94

Total hospitalization daysb 47.5 (40.8–63.5) 62.0 (44.0–76.0) 0.11

No cases of sepsis and necrotizing enterocolitis in both groups.
aThe values represent the number of participants, unless otherwise specified.
bValues are expressed as median (IQR).

AG, ampicillin-gentamicin group; AC, ampicillin-cefotaxime group; PROM, preterm

rupture of membranes; SGA, small for gestational age; RDS, respiratory distress

syndrome; CLD, chronic lung disease; IVH, intraventricular hemorrhage; ROP, retinopathy

of prematurity; PDA, patent ductus arteriosus.

specificity. Based on taxonomic analysis and species annotation,
we generated relative abundance profiles of OTUs for all
samples. Differences in community structure were analyzed at
the phylum and genus levels; microbial richness and evenness
were assessed by the Chao1 and Simpson’s Evenness (Simpson’s
E) indices, respectively. The Shannon index was computed as
a measure of alpha-diversity for each individual. To assess
differences across groups (beta-diversity), we compared the AC
and AG groups by principal component analysis (PCA) and
visualized the results in R version 3.5 (https://www.r-project.
org/).

Statistical Analyses
Patient characteristics were assessed using a two-sample t-test
for continuous variables and Fisher’s exact test for categorical
variables. To determine significant differences across samples,
the Kruskal-Wallis test was conducted for multiple comparisons
followed by Dunn’s post-hoc test using Benjamini-Hochberg
for correction. Composition and alpha-diversity were compared
between the two groups at three time points and over time
within a group. Permutational multivariate analysis of variance
(PERMANOVA) was performed to assess the effect of relevant
confounding factors, including maternal antibiotics use, preterm
rupture of membranes, birth weight, start of feeding, and chronic
lung disease. Analysis of similarities (ANOSIM) was used for
comparison of PCA results between groups. P < 0.05 was
considered statistically significant.

RESULTS

Demographic Characteristics
Eighty-four breastfed VLBW infants were admitted to our NICU
during the study period. After excluding infants who were
administered probiotics (n = 40) or antibiotics after 1 week of
age (n= 20), serial stool samples of the final cohort (n= 24) were
analyzed. Based on exposure to different early postnatal antibiotic
therapy, the 24 cases were divided into two groups: AG group
(n = 10) and AC group (n = 14). The reasons for ampicillin-
cefotaxime prescription included maternal chorioamnionitis (n
= 4), increased levels of maternal C-reactive protein (n = 5),
and infant leukopenia or leukocytosis (n = 5). Gestational age
and birth weight were 30.0 ± 2.5 weeks and 1,286 ± 190 g in the
AG group, and 28.9 ± 2.5 weeks and 1,099 ± 280 g in the AC
group. Although there were no statistically significant differences
among demographic and clinical characteristics between these
two groups, infants in the AC group were more premature
and carried a higher risk of infections than those in the AG
group (Table 1).

Fecal Samples
Analysis of Microbiota Composition
Five stool samples (two 14-day samples in both groups, one 30-
day sample in the AG group) could not be obtained due to
absence of bowel movement at that time point. Valid sequence
data (passing quality control) generated 67 samples. Overall
microbiota composition of each group at phylum and genus level
is illustrated in Figure 1.

Phylum Level
Detailed phylum-level analysis revealed no difference in the
distribution of predominant phyla among both groups at any
time. Although microbial abundance decreased with increasing
age, Firmicutes was the most abundant phylum in both groups
and remained dominant until day 30 (50.6% in the AG group
and 62.7% in the AC group). In the AG group, the proportion
of Actinobacteria increased over time (7.6, 17.1, and 32.7% at
7, 14, and 30 days, respectively); whereas that of Proteobacteria
decreased (28.4, 17.5, and 16.7% at 7, 14, and 30 days,
respectively). In contrast, in the AC group, the proportions
of these two major bacterial phyla showed the opposite trend
(Actinobacteria: 19.3, 9.0, and 10.9% at 7, 14, and 30 days,
respectively; and Proteobacteria: 12.3, 27.2, and 26.3% at 7, 14,
and 30 days, respectively). No statistically significant difference
in the observed bacterial phyla was detected over time within any
of the groups (all P > 0.05).

Genus Level
Except for Enterococcus, no statistical difference in bacterial
composition at the genus level was observed between the AG and
AC groups at any time or over time within any of the groups.
Compared to the AG group, Enterococcus was significantly more
abundant in the AC group (P = 0.002), especially in the 7-
day sample (12.3 vs. 0.6%, respectively, P = 0.032). Such low
abundance of Enterococcus in the AG group persisted even
after controlling for relevant confounding factors. Although the
relative abundance of each bacterium at genus level displayed
no statistically significant difference over time within any group
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FIGURE 1 | Bar plots showing relative abundance of the most dominant

bacterial communities in the AG and AC groups on days 7, 14, and 30. (A)

Relative abundance at the phylum level. (B) Relative abundance at the genus

level. AG, ampicillin-gentamicin group; AC, ampicillin-cefotaxime group.

(all P > 0.05), the proportion of Enterococcus increased in both
groups (AG group: 0.6, 4.4, and 6.7% at 7, 14, and 30 days,
respectively; AC group: 12.3, 13.1, and 23.5% at 7, 14, and 30 days,
respectively). In contrast, the genus Bifidobacterium increased
over time in the AG group (5.8, 14.1, and 31.6% at 7, 14, and 30
days, respectively), but decreased in the AC group (17.6, 8.1, and
9.7% at 7, 14, and 30 days, respectively). Indeed, Bifidobacterium
became a dominant member of the community in the AG group
at 30 days after birth (31.6%). Although the proportion decreased
over time, Staphylococcus remained the top genus in both groups
on days 7 and 14 (AG group: 55.3, 47.5, and 21.4% at 7, 14,
and 30 days, respectively; AC group: 46.4, 36.0, and 20.9% at 7,
14, and 30 days, respectively). The abundance of Lactobacillus
decreased over time (AG group: 2.1, 0.7, and 0.2% at 7, 14, and
30 days, respectively; AC group: 5.5, 2.0, and 1.3% at 7, 14, and 30
days, respectively); whereas that of Streptococcus increased (AG
group: 0.7, 10.8, and 13.4% at 7, 14, and 30 days, respectively; AC
group: 2.1, 10.5, and 10.9% at 7, 14, and 30 days, respectively). In
comparison, Klebsiella remained around 10% in both groups at
any time point.

Diversity Analysis of Gut Microbiota
Species richness (Chao1 index) in the AC group was found to be
significantly lower at 14 days (175 vs. 375, P= 0.038) and 30 days

(185 vs. 375, P= 0.03) compared to 7 days (Figure 2A).Microbial
evenness (Simpson’s E index) was significantly decreased in the
AC group compared to that in the AG group (0.02 vs. 0.027, P =

0.018) on day 7 (Figure 2B). Moreover, in the AC group, it was
lower in the 7-day sample than in the 14-day (0.02 vs. 0.057, P =

0.042) and 30-day samples (0.02 vs. 0.053, P= 0.042). Differences
in richness and evenness were unchanged even after controlling
for relevant confounding factors. No significant difference
in alpha-diversity (Shannon index) between the two groups
was observed over time (Figure 2C). Regarding beta-diversity,
although most 7-day AG group samples were well-separated
and positioned far from their corresponding AC group samples,
microbial composition did not differ significantly between the
two groups (P = 0.131) (Figure 3A). Samples corresponding
to days 14 and 30 in these two groups clustered close to each
other and were similar in their microbial composition (P > 0.05)
(Figures 3B,C).

DISCUSSION

In the present study, we explored the changes in gut
microbiota communities in VLBW preterm neonates, who were
administered empirical antibiotic therapy. Among breastfed
infants, we found a statistically significant decrease in microbial
richness and evenness in those receiving ampicillin and
cefotaxime over a period of 7 days compared to those receiving
ampicillin and gentamicin over 3 days. Prolonged or intensive use
of antibiotics increased the abundance of bacteria from the genus
Enterococcus. This finding correlates with previous observations
on differential gut microbiota colonization in VLBW preterm
infants administered distinct antimicrobial agents (13, 14, 22, 23).

Antibiotics can alter the taxonomic, genomic, and functional
features of gut microbiota. These dysbioses include loss of
keystone taxa, reduced taxonomic diversity, metabolic changes,
and growth of pathogenic organisms (24). Several factors must
be considered when evaluating the effect of antibiotics on
gut microbiota, including the spectrum of antibiotics, dose
and duration of treatment, and the level of active antibiotics
in the intestinal tract. The duration of antibiotic treatment
is an important variable with a significant effect on the
composition of gut microbiota and metabolites in preterm
infants. Previous studies associated the prolonged use of
antibiotics with reduced gut microbial diversity (13, 22, 25, 26).
Others reported that exposure of preterm infants to different
types of antibiotics might alter microbial composition (14, 23).
The spectrum of cephalosporins is broader than that of
penicillin, potentially leading to greater interference against
the normal microflora (27). Gibson et al. reported that
cefotaxime was associated with significantly reduced species
richness, whereas gentamicin has no known effects in this
respect (12). Previous findings also suggested that antibiotic
regimens containing third-generation cephalosporins were
more frequently associated with development of antibiotic
resistance than regimens with aminoglycosides (11). In the
present study, it remains to be determined if the observed gut
microbial composition should be attributed to the different
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FIGURE 2 | Comparison of gut microbial alpha-diversity in the AG and AC groups on days 7, 14, and 30. (A) Richness was assessed using the Chao1 estimator. (B)

Evenness was assessed using Simpson’s Evenness index. (C) Diversity was assessed using the Shannon index. AG, ampicillin-gentamicin group; AC,

ampicillin-cefotaxime group. Boxes represent the interquartile range, lines indicate medians, and whiskers indicate the range. *Significant differences (P < 0.05).

FIGURE 3 | Principal component analysis (PCA) of microbial communities in the AG and AC groups. (A) Day 7, (B) day 14, and (C) day 30. AG, ampicillin-gentamicin

group; AC, ampicillin-cefotaxime group.

duration of antibiotic exposure or the administration of
different combinations of antibiotics. Therefore, future
studies on microbial composition should compare the
outcomes of different antibiotic combinations with the same
treatment duration.

Bacterial colonization in the intestine proceeds rapidly
after birth, particularly with aerotolerant microbes (phase I
bloom) (28, 29). Our study confirms that preterm birth and
antibiotic exposure result in inadequate phase I colonization.
Firmicutes were found to be dominant in the intestinal tract,
corroborating previous results on preterm infants (30). In
line with previous findings, our study also revealed that
neonates exposed to ampicillin and cefotaxime harbored more
Proteobacteria but fewer Actinobacteria, thus causing a shift
in the composition of gut microbiota (31, 32). At the genus
level, antibiotic treatment in the perinatal period negatively
affected the abundance of protective commensal anaerobic

bacteria such as Bifidobacteria (25, 31, 33, 34). As Bifidobacteria
have been associated with expression of inflammatory response
genes and stimulation of genes that promote integrity of the
mucosal barrier, the risk of NEC in preterm infants increases
with a decline in Bifidobacteria, resulting in an exaggerated
inflammatory response (11, 17). Although the abundance of
Bifidobacteria in this study did not change significantly, their
percentage increased over time in the ampicillin-gentamicin
group, while decreasing in the ampicillin-cefotaxime group. As
shown in this study, prolonged use of antibiotics or third-
generation cephalosporin treatment might result in excessive
growth of Enterococcus. This observation is in line with the
results of previous studies (14, 31, 35, 36). An increased
abundance of not only Enterococcus, but also pathogenic
bacteria, such as Enterobacteriaceae, Streptococcus, Pseudomonas,
and Clostridium difficile, has been observed with perinatal
antibiotic therapy (13, 14, 30, 31). These findings support
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the hypothesis whereby antimicrobial agents selectively kill
sensitive bacteria and allow rapid growth of antibiotic-resistant
strains. According to a recent meta-analysis, neonates exposed to
antibiotics carried a higher risk of developing antibiotic-resistant
bacteria (11).

Our study did not address the association between differences
in gut microbiota and clinical outcomes. It has been shown
that short-term use of antibiotics might have a beneficial effect
on reducing adverse outcomes in VLBW preterm infants (18,
37, 38). However, a study also highlighted the association
between cefotaxime and adverse clinical outcomes (39). Here,
such outcomes, including NEC and sepsis, were too few to
determine associations with antibiotic exposure. Alterations
in the composition of gut microbiota, fewer Bifidobacteria,
decreased microbiota diversity, and overgrowth of pathogenic
bacteria have been linked to NEC and LOS (40–44). Thus,
altering microbiome composition through nutrient intervention
including probiotics offers a promising strategy for the
prevention of NEC and LOS (45, 46). Another unknown in our
study is the recovery time for gut microbiota after antibiotic
therapy is discontinued. The recovery rate depends on the
duration of antibiotic treatment and the regimen applied. Short-
term use of antibiotics may have only mild and temporary
effects on gut microbiota; whereas infants exposed to antibiotics
for a prolonged time harbor a persistently altered microbiota,
which may continue up to the age of 3 months (25, 30).
In our study, bacterial diversity at 1 month did not differ
significantly between the two groups, which correlates with
a previous study (22). This finding confirmed the notion
that, although bacterial acquisition was perturbed following
the use of antibiotics, microbiota continued to populate the
gastrointestinal tract of neonates and eventually restored it to its
pre-intervention equilibrium.

Among the strengths of our study is the use of serial fecal
samples of preterm neonates to compare gut microbiota profiles.
The study takes into account also the most significant factor
associated with development of the microbiome community
structure in early life, breastfeeding (2, 47–49). However, our
study has also some limitations. We did not have a control
group with no antibiotic exposure because all VLBW preterm
infants in our NICU received empiric antibiotics at birth for
presumed sepsis. Another limitation was the lack of stool samples
collected immediately after birth. Exposure time to the two
antibiotic combinations was different, which further limited the
scope for comparison between the two groups. As a result,
it is unclear, whether the significant findings of our study
resulted from the different combination antibiotic therapy or
the different duration exposure to the treatment. Moreover, the
pre-existence of a higher risk for infection and more premature
births in the AC group created a selection bias. We could not
control all confounding factors that might have affected gut
microbiota composition, such as maternal conditions and diet,
gestational age, delivery mode, feeding types, other medications,
and nutritional supplements. Further studies controlling these
important confounding factors are required. Another important
limitation of our study was a relatively small sample size, which
might have led to study bias and insufficient power to detect

any differences. Furthermore, we only included infants exposed
to antibiotics in the first week of life and excluded those who
received antibiotics afterward. The continuous use of antibiotics
early in life may have a more severe and long-term impact on
gut microbiota.

In summary, we were able to demonstrate that early
administration of intravenous antibiotics to premature infants
during the first postnatal week dramatically affected the
development of neonatal intestinal microbiota. Different
antibiotic regimens exert different effects on the evolution of
gut microbiota in terms of composition, richness, and evenness.
Prolonged use of third-generation cephalosporins strengthened
the characteristic shift toward pathogenic bacteria, as indicated
by excessive growth of Enterococcus in neonates treated with
cefotaxime. However, these changes were no longer seen at 30
days of age, suggesting that new bacterial genera continued
to populate the neonatal gastrointestinal tract despite initial
antibiotic exposure. This also implies that rapid cessation of
antibiotic treatment may allow for a faster recovery, whereas
prolonged use of antibiotics further impairs recovery of the gut
microbiota. Although the clinical and long-term health impact of
these changes in microbiota remains to be determined, present
findings strongly suggest the need to reduce unnecessary use of
broad-spectrum antibiotics in preterm neonates. In the future,
well-designed large-scale studies should focus on neonates
subjected to the same antibiotic regimen, and compare the
changes in their gut microbiome before and after antimicrobial
therapy. This will help evaluate the effect of antibiotic exposure
on gut microbiome metabolites, clinical outcomes, and
long-term consequences.
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