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SUMMARY

We describe a consensus approach for network construction based on fully
conserved gene-gene interactions from randomly downsampled data subsets
for an unbiased differential analysis of gene co-expression networks. The pipe-
line allows users to identify network nodes lost, conserved, and acquired in
cancer as well as interpret the functional significance of these network changes.
For proof of concept, the protocol is used to leverage RNA-seq data of tumor
samples from TCGA and healthy tissue samples from the GTEx database.
For complete details on the use and execution of this protocol, please refer to
Arshad and McDonald (2021).

BEFORE YOU BEGIN

Select case-control gene expression dataset for analysis

Timing: 1 day to 8 weeks (depending on availability of data)

Differential co-expression analysis is a pair-wise comparison of network structures that helps uncover

molecular changes underlying various phenotypes such as disease stages, tissue types, molecular

subtypes, or treatment responses (Yang et al., 2014; Hill and McDonald, 2015; Yu et al., 2017; Costa

et al., 2018; Andonegui-Elguera et al., 2021; Paci et al., 2021).

This protocol describes the specific steps for differential co-expression analysis of lung squamous

cell carcinoma (LUSC) samples (Hammerman et al., 2012) from TCGA (dbGaP:phs000178.v11.p8)

(Weinstein et al., 2013) and healthy lung tissue samples fromGTEx (dbGaP:phs000424.v8.p2) (Ardlie

et al., 2015). We have also used this protocol to analyze eight other cancer types (Glioblastoma mul-

tiforme-GMB, thyroid carcinoma-THCA, breast-BRCA, lung adenocarcinoma-LUAD, skin cutaneous

melanoma-SKCM, kidney renal clear cell carcinoma-KIRC, ovarian-OV, acute myeloid leukemia-

LAML) published in (Arshad and McDonald, 2021).

RNA-seq data for this analysis can also be derived from human or non-human primary tissues or

a relevant cell line for the phenotype of interest. Sequence alignment data from high-

throughput sequencing (HTS) experiments can be used to generate gene expression profiles

with analysis packages such as HTSeq (Anders et al., 2015). Information about processing and

generating counts for RNA-Seq alignment with HTSeq can be found in the Tutorials section of

the package.
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Experimental variation between data from different sources can confound biological interpretation

and therefore needs to be corrected before analysis. This can be performed in RNA-seq data using

batch correction tools such as PEER (Stegle et al., 2012) or ComBat (Zhang et al., 2020). Conversely,

publicly available batch-corrected data from resources such as the Recounts2 project (Mounir et al.,

2019) can also be used.

In this protocol for LUSC, we implement our analysis on HT-seq counts data for 500 primary tumor

samples and 374 healthy tissue samples from the Recounts2 project with TCGAbiolinks. Normalized

counts (e.g., TPM and RPKM) can also be used here, in which case the data scaling step (step 3) under

‘before you begin’ can be skipped.

Make sure that your dataset of choice provides sufficient samples (n > 100) to generate robust net-

works for each class. Previous work by Liesecke et al. reported inconsistencies in performance of net-

works constructed with fewer than a hundred samples (Liesecke et al., 2019).

Data preparation for co-expression network analysis

Timing: 1 h

1. After the dataset is selected, download and preprocess before the network construction step. For

this workflow, we utilize functions from the following packages:

2. The following script queries data produced by the Recount2 project with TCGAquery_recount2

and stores it in a RangedSummarizedExperiment(rse) object. The rse objects provide metadata

on expression features and samples, as well as the count matrix.

3. Next, the coverage counts provided by Recounts2 are scaled by read length to get read counts.

This rescaling is necessary because most RNA-seq analysis tools expect read count matrices as

input. The following code rescales, and extracts counts data from the rse objects:

4. Next, the TCGA dataframe is filtered for the sample type andmolecular subtype that need to be

investigated. Here we set these options to ‘Primary Tumor’ and ‘Lung Squamous Cell Carcinoma’

respectively.

> library(TCGAbiolinks)

> library(SummarizedExperiment)

> library(biomaRt)

> library(limma)

> library(TCGAutils)

> library(recount)

> tissue = "lung"

> recount.gtex <- TCGAquery_recount2(project="gtex", tissue=tissue)

> recount.tcga <- TCGAquery_recount2(project="tcga", tissue=tissue)

> eset.gtex <-assays(scale_counts(recount.gtex$gtex_lung, round = TRUE))$counts

> eset.tcga <-assays(scale_counts(recount.tcga$tcga_lung, round = TRUE))$counts
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5. The filtered count matrix for tumor is then merged with the normal tissue matrix into one data-

frame for normalization.

6. Next, RNA-seq read counts are normalized for GC-content with TCGAanalyze_Normalization

from the TCGAbiolinks package. This normalization step is necessary to address the sequence

bias against GC-rich and GC-poor fragments in RNA-Seq data. EDASeq package needs to be

installed prior to running the function.

The geneInfo argument in TCGAanalyze_Normalization should be set to geneInfoHT when using

gene expression data aligned against hg38, otherwise if your data are aligned against hg19, gen-

eInfo should be set to geneinfo.

7. Quantile filtering is then applied to normalized counts with a cutoff of 0.25 with

TCGAanalyze_Filtering to remove genes with expression levels lower than the 25th percentile

of the data.

8. Finally, expression matrices for normal and cancer samples are saved into csv files with samples

for rows and genes for columns, as follows:

> eset.tcga.both <- eset.tcga[,which(colData(recount.tcga$tcga_lung)$gdc_cases.sam-

ples.sample_type=="Primary Tumor" & colData(recount.tcga$tcga_lung)$gdc_cases.project.-

name=="Lung Squamous Cell Carcinoma")]

> dataPrep <-merge(as.data.frame(eset.gtex), as.data.frame(eset.tcga.both), by=0,

all=TRUE)

> BiocManager::install("EDASeq")

> rownames(dataPrep)<-dataPrep$Row.names

> dataPrep$Row.names<-NULL

> dataNorm <- TCGAanalyze_Normalization(tabDF = dataPrep,

geneInfo = geneInfoHT,

method = "gcContent")

> dataFilt <- TCGAanalyze_Filtering(tabDF = dataNorm,

method = "quantile",

qnt.cut = 0.25)

> write.csv(dataFilt[,colnames(eset.gtex)], paste0("GTEx-",tissue,".csv"), quote =

FALSE)

> write.csv(dataFilt[,colnames(eset.tcga)], paste0("TCGA-cancer-",tissue,".csv"),

quote = FALSE)
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Differential expression analysis

Timing: 30 min

To determine if genes associated with co-expression changes in cancer exhibit any significant

expression changes in cancer relative to normal tissue, differential gene expression levels for these

genes need to be determined in LUSC samples.

There is a wide variety of tools available for gene expression analysis (DEA) of RNA-seq data (Costa-

Silva et al., 2017) that can be employed in this step.

In this protocol we use the TCGAanalyze_DEA function from TCGAbiolinks that in turn utilizes the

edgeR package (Robinson et al., 2010). We choose to use this function as it is available as a part

of the TCGAbiolinks package. However, other independent DEA tools such as DESeq2 may also

be used in this step.

9. The method argument is set to ‘glmLRT’, which fits a negative binomial generalized log-linear

model to the read counts for each gene in the two conditions (normal and tumor) and then com-

putes gene-wise exact tests for differences in the means of these distributions to determine dif-

ferential expression.

10. In our work, the thresholds of p-value <0.05 and |log2(fold change)| s 1 are set to define differ-

entially expressed genes (DEGs). Alternatively, adjusted p-values using the False Discovery Rate

correction may also be used to identify significant DEGs here.

11. DEGs are further divided into up-regulated DEGs with log2 FCs1 and down-regulated DEGs

with log2 FC G�1.

Cancer driver genes

Timing: 30 min

12. To compare differential expression and co-expression patterns of cancer driver genes (onco-

genes and tumor suppressor genes) in the LUSC dataset, a comprehensive list of cancer driver

genes is downloaded from Cancer Gene Census, COSMIC (Sondka et al., 2018); https://cancer.

sanger.ac.uk/census.

This dataset includes 315 oncogenes and 315 tumor suppressors. Out of these, 72 genes are labeled

both oncogene and tumor suppressor gene in COSMIC.

13. Save these gene sets in comma separated value (csv) files for use during the protocol.

> dataDEGs <- TCGAanalyze_DEA(mat1 = group1, mat2 = group2,

Cond1type = "Tumor",

Cond2type = "Normal",

pipeline = "edgeR",

method = "glmLRT")
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KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Step 1: Construction of co-expression networks

Timing: 1 day

In this step, consensus co-expression networks will be constructed using interactions (significant

gene-gene correlations) found conserved across all iterations of the network construction pipeline.

1. For next steps in the pipeline (network construction, analysis, and visualization) we switched to

Python. Alternately, packages from R may also be used here.

2. We will utilize functions from the following python packages:

3. In this step we use the gene expression matrix to calculate pair-wise correlation between all gene

pairs using pandas.DataFrame.corr with themethod argument set to ‘pearson’. The returned ob-

ject is an adjacency matrix (n by n) where each cell represents the correlation coefficient between

a gene pair, with an associated p-value.

4. Next, we select a threshold(r) for the correlation coefficient to define significant gene relation-

ships to be included in our networks. Previous work from the McDonald lab found, after evalu-

ating different values of correlation thresholds (0.70–0.99), that networks of random signals could

> import pandas as pd

> import networkx as nx

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R (3.6.1) (The R Foundation, 2018) https://www.r-project.org/

RStudio (2020) (RStudio, 2020) https://rstudio.com/

Python (3.8.8) (Python Software
Foundation, 2016)

https://www.python.org/

TCGAbiolinks (2.12.6) (Mounir et al., 2019) https://bioconductor.org/packages/
release/bioc/html/TCGAbiolinks.html

Recount (1.10.13) (Collado-Torres et al., 2017) https://bioconductor.org/packages/
release/bioc/html/recount.html

Limma (3.42.2) (Smyth, 2005) https://bioconductor.org/packages/
release/bioc/html/limma.html

biomaRt (2.40.5) (Durinck et al., 2005) https://bioconductor.org/packages/
release/bioc/html/biomaRt.html

SummarizedExperiment
(1.14.1)

(Morgan et al., 2020) https://bioconductor.org/packages/
release/bioc/html/SummarizedExperiment.html

edgeR (3.26.8) (Robinson et al., 2010) https://bioconductor.org/packages/
release/bioc/html/edgeR.html

Devtools (2.4.3) (Wickham et al., 2021) https://cran.r-project.org/web/packages/
devtools/index.html

Pandas (1.2.4) (McKinney, 2010) https://pandas.pydata.org/

> from scipy.stats import pearsonr

> corr = data.corr()

> corr_pval = data.corr(method=lambda x, y: pearsonr(x, y)[1]) - np.eye(*corr.shape)
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appear to be connected for values of r < 0.85 (Hill and McDonald, 2015). Hence, we select gene

pairs satisfying |r| > 0.85, p-value < 0.05.

5. Save the network as an adjacency list of edges with three columns (1) node 1, (2) node 2 and (3)

correlation strength.

6. The number of edges in a co-expression matrix is highly dependent on the number of samples in

small datasets. Therefore, to ensure fair comparison between datasets with variable sample sizes,

we used a consensus approach to define our signal networks. For this:

a. Both normal and cancer datasets are randomly down sampled to a hundred subsets each con-

sisting of a hundred samples.

b. Next, we generate a network for each data subset following steps 3–5. Links from each of the

100 networks are combined into a single list called links_100_iterations, for normal and

cancer data independently.

c. A frequency is assigned to each unique interaction from all hundred networks, based on their

occurrence across the hundred iterations, for cancer and normal individually. Save each of

these interactions along with their frequencies in a csv file for use during the protocol.

d. Finally, network edges found in each of the hundred iterations are used to define the final net-

works. Save the final networks as dataframes with two columns (1) node 1 and (2) node 2, for

normal (df_normal) and cancer (df_cancer) individually.

7. All relationships (correlations) are treated as unsigned in all downstream analyses because nearly

100% of the correlations in the dataset are positive values.

Step 2: Network structural analysis

Timing: 30 min

> links.columns = [’node 1’, ’node 2’,’correlation strength’]

> links.to_csv(’adjacency_list.csv’, index=False)

> normal_data = normal_data.sample(n = 100)

> cancer_data = cancer_data.sample(n = 100)

> link_frequency = links_100_iterations.value_counts()

> consensus_edges = list(link_frequency [link_frequency >= 100].keys())

> df_normal = pd.DataFrame([[i.split(’ ’)[0],i.split(’ ’)[1]] for i in consensus_edges],

columns=[’node 1’, ’node 2’])

# Repeat these steps (6 b to d) for cancer_data and store the corresponding consensus links in

df_cancer

> corr = corr.mask(corr_pval >= 0.05)

> links = corr.stack().reset_index()

> links = links[(links[0] >= 0.85)|(links[0] <= -0.85)]
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In this step, consensus co-expression networks from the previous step will be analyzed to identify

and compare network connectivity and network similarity between normal and cancer networks.

Additionally, network hub nodes will be defined for use later in the protocol.

8. For a quantitative comparison of overall network connectivity and to explore relative changes in

network connectivity between normal and cancer, record and compare:

a. total number of gene correlations (network vertices) found in any of the hundred iterations of

network construction from step 6b, for normal and cancer samples.

b. fully conserved network connections found in all hundred iterations of the pipeline from step

6d, for normal and cancer samples.

9. Besides the quantitative comparison of network structures described above, a more literal way to

calculate network similarity is a node by node and edge by edge comparison. Jaccard similarity

can be used as a measure of network similarity between normal and cancer networks using

sklearn.metrics.jaccard_score based on shared network nodes and edges.

a. Read the networks saved in step 5 into dataframes each with three columns: node 1, node 2

and correlation strength. Next, load these co-expression networks into Networkx using the

following code:

b. Get the set of unique (1) nodes and (2) edges from normal and cancer networks and calculate

their Jaccard similarities. The following code implements network similarity between cancer

and normal networks based on node overlap:

10. We defined network hub nodes as the top 2% most connected nodes in the network. In the

literature, hub nodes have been defined anywhere from the top 1%–10% of network nodes

with highest connectivity. For this protocol we choose to restrict hub nodes to a conservative

cutoff of 2%.

11. Sort network nodes based on their degree and select the top 0.02*n genes as hubs, where n is

the total number of genes:

Step 3: Identify differentially co-expressed gene lists

Timing: 15 min

> G_normal = nx.from_pandas_edgelist(df_normal,’node 1’,’node 2’)

> G_cancer = nx.from_pandas_edgelist(df_cancer,’node 1’,’node 2’)

> list1 = G_cancer.nodes()

> list2 = G_normal.nodes()

> intersection = len(list(set(list1).intersection(list2)))

> union = (len(list1) + len(list2)) - intersection

> Jaccard_similarity = return float(intersection) / union

> n_genes = sorted(G_normal.degree, key=lambda x: x[1], reverse=True)

> threshold = int(len(n_genes)*0.02)

> n_hubnodes = pd.DataFrame(n_genes,columns=[’GeneId’,’Degree’])[0:threshold][’GeneId’]
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Comparing network connectivity in normal and cancer datasets, we found that while a large percent-

age of network nodes are lost in cancer, some of these interactions are also conserved in disease

state. Additionally, cancer networks also acquire some unique interactions not previously found in

normal tissue. In this step, we will identify the proportions of normal nodes lost and conserved in can-

cer, as well as the proportion of acquired cancer nodes.

12. For comparative analysis, network nodes were divided into three differential cases of interest (1)

lost nodes, (2) conserved nodes and (3) acquired nodes, where:

a. Lost nodes represent genes displaying significant correlations across normal samples that

are not co-expressed in cancer samples. This is calculated as:

b. Conserved nodes are genes with connections in both normal and cancer samples that are

calculated as:

c. Acquired nodes are genes that display gene-gene correlations in cancer samples only and

are calculated as:

13. The proportion of network nodes in each of these categories is recorded.

14. In addition to this, we also record network nodes that are differentially expressed and network

nodes that are cancer drivers (COSMIC).

Step 4: Gene enrichment analysis

Timing: 30 min

In this step, we use functional enrichment analysis to determine if genes (nodes) that are lost,

conserved, or acquired in cancer networks are differentially enriched for biological functions.

15. There are a number of tools available for conducting gene ontology analysis that can be used

here. For this project we used GSEApy, which is an Enrichr pathway analysis package within

the Python wrapper. GSEApy is a popular tool for the gene enrichment analysis of gene lists,

based on Fisher’s exact test, that includes more than a hundred gene set databases with over

180,000 gene sets in multiple categories.

16. Submit these gene lists (lost, conserved and acquired nodes) for genome ontology (GO) enrich-

ment analysis using the function gseapy.enrichr as follows:

> lost_nodes = G_normal.nodes() - G_cancer.nodes()

> conserved_nodes = G_normal.nodes().intersection(G_cancer.nodes())

> Acquired_nodes = G_cancer.nodes() - G_normal.nodes()

> lost_normal_nodes = len(lost_nodes)/len(G_normal.nodes())

> conserved_normal_nodes = len(conserved_nodes)/len(G_normal.nodes())

> acquired_cancer_nodes = len(acquired_nodes)/len(G_cancer.nodes())

> import gseapy

> enr = gseapy.enrichr(gene_list = nodes,

description = ’pathway’,
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17. Biological process terms with adjusted p < .05 were considered significant and recorded.

EXPECTED OUTCOMES

Network connectivity in LUSC cancer relative to healthy normal tissue

Integrating all unique edges from the 100 iterations of network construction step (Step by step 1)

resulted in 15717 and 23191 significantly correlated changes in expression (edges) between pairs

of genes (nodes) in cancer and normal respectively. Of these, 297 edges in cancer and 2261 edges

in normal were consistently found in each model iteration and these conserved edge lists were used

to define our final consensus networks. Figure 1 in the study by (Arshad and McDonald, 2021) pre-

sents results for this overall reduction in network complexity observed in nine different cancer types,

including LUSC.

Dividing the edges into lost, conserved and acquired categories, we observed a dramatic loss of

2175 (96.2%) network connections (edges) relative to those present in their respective normal pre-

cursor tissues. Only 86 (3.8%) of the connections present in the precursor normal tissues were

conserved in the cancers, whereas cancer exhibits 211 (71.04%) newly acquired connections. These

results provide quantitative evidence for the dynamic rewiring of normal biological pathways in can-

cer, marked by significant reduction in normal edges as well as acquisition of novel cancer gene

interactions.

Comparison between differentially connected network nodes and DEGs

26 (4.53%) of lost network nodes and12 (5.59%) of acquired cancer nodes displayed a significant change

inexpressionbetweencancer andnormal. Remarkably,noneof thenetworkhubgenes lost or acquired in

cancer displayed any significant changes in expression in the cancer. Further, network nodes lost in can-

cer included 12 COSMIC genes while 6 of the acquired cancer genes were cancer driver genes. Of this

only one lost network COSMIC gene (nodes) and none of acquired network COSMIC genes (nodes) dis-

played a significant change in expression between cancer and normal.

Overall, we found that genes displaying significant changes in gene-gene connections in the transi-

tion from normal to cancer cells were often not differentially expressed. This observation was consis-

tent across different cancer types [Figure 2 in (Arshad and McDonald, 2021)].

Functional enrichment results

Functional enrichment analysis of genes lost, conserved, and acquired in cancer resulted in a total of

5, 8 and 6 hits, respectively. Translation, macromolecule biosynthesis and protein transport were the

biological process most significantly enriched for lost nodes. Conserved nodes in cancer networks

were predominantly enriched for antigen processing and presentation pathways, along with Ras

and ARF protein signaling pathways. While acquired cancer nodes were enriched for regulation of

immune processes including negative regulation of interferon-beta and interleukin-12 production.

LIMITATIONS

There are some limitations of co-expression analysis that need to be noted. For example, co-expres-

sion networks are sensitive to sample sizes with small datasets potentially giving rise to false posi-

tives. To minimize this possibility, we limited our networks to include conserved edges frommultiple

iterations of down-sampled equally (>100) sized datasets. In addition, it is important to keep in mind

> enr[enr.results[’Adjusted p-value’]<0.05]

gene_sets = [’GO_Biological_Process’], organism=’Human’,

cutoff=0.5)
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that while correlated changes in the expression of genes associated with cancer are reliable system-

level indicators of changes in network structure, this does not imply that each correlation is

necessarily indicative of a direct (transcription factor - target gene) regulatory change on the molec-

ular level. Indeed, it is likely that a number of the significantly correlated changes computationally

identified between genes (represented as edges between nodes in the network) are the result of in-

direct regulatory interactions on the molecular level. For example, gene A could directly regulate

gene B, and gene B could directly regulate gene C, in this case a connection identified between

gene A and gene C would be an example of an indirect regulatory interaction.

TROUBLESHOOTING

Problem 1

Errors while using Recounts2 package (in step 2, before you begin). These could include errors

related to function arguments as well as connection errors.

Potential solution

TCGA and GTEx expression data used in this protocol were downloaded from the Recount2 project,

with TCGAbiolinks. This resource provides batch-corrected data from 2041 different studies

(including TCGA and GTEx projects), processed under one single pipeline to avoid any technical

variabilities that may affect downstream integrative analysis. For errors related to querying and

downloading and preprocessing Recounts2 data, refer to this workflow (http://bioconductor.org/

packages/release/workflows/html/recountWorkflow.html).

Problem 2

‘‘Error in names(y) <- 1:length(y) : ‘names’ attribute [2] must be the same length as the vector [0]’’

while using the TCGAanalyze_Normalization function (in step 6, before you begin).

Potential solution

This error indicates that the data set includes Ensemble IDs that are not included in the geneInfo data

set. To avoid this, the geneInfo argument in TCGAanalyze_Normalization should be set to geneIn-

foHT when using gene expression data aligned against hg38, otherwise if your data are aligned

against hg19, geneInfo should be set to geneinfo.

Problem 3

Error ‘‘Segmentation fault (core dumped)’’ with pandas.DataFrame.corr (in step 3, step-by-step

method details).

Potential solution

This error indicates that python has crashed while processing a very high dimensional dataset and

the allocated RAM is full. To work around this error, you can increase the stack that your operating

system allocates for the python process or breakdown the counts matrix into smaller chunks, calcu-

late correlations for each subset and merge the results into one matrix. A code snippet for the latter

is included below:

> n = len(data.columns)

# breakdown the counts matrix into two

> subset_1 = data.iloc[:,list(range(0,n//2))]

> subset_2 = data.iloc[:,list(range(n//2,n))]

# calculate correlations for each subset

> _1st = corr(subset_1, subset_1) #1st quadrant

> _2nd = corr(subset_1, subset_2) #2nd quadrant
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Data and code availability
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