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Abstract. Accurate predictions in subsurface flows require the forecast-
ing of quantities of interest by applying models of subsurface fluid flow
with very little available data. In general a Bayesian statistical approach
along with a Markov Chain Monte Carlo (MCMC) algorithm can be used
for quantifying the uncertainties associated with subsurface parameters.
However, the complex nature of flow simulators presents considerable
challenges to accessing inherent uncertainty in all flow simulator param-
eters of interest. In this work we focus on the transport of contaminants
in a heterogeneous permeability field of a aquifer. In our problem the
limited data comes in the form of contaminant fractional flow curves
at monitoring wells of the aquifer. We then employ a Karhunen-Loeve
expansion to truncate the stochastic dimension of the permeability field
and thus the expansion helps reducing the computational burden. Aim-
ing to reduce the computational burden further, we code our numerical
simulator using parallel programming procedures on Graphics Process-
ing Units (GPUs). In this paper we mainly present a comparative study
of two well-known MCMC methods, namely, two-stage and DiffeRen-
tial Evolution Adaptive Metropolis (DREAM), for the characterization
of the two-dimensional aquifer. A thorough statistical analysis of ensem-
bles of the contaminant fractional flow curves from both MCMC methods
is presented. The analysis indicates that although the average fractional
flow curves are quite similar, both time-dependent ensemble variances
and posterior analysis are considerably distinct for both methods.

Keywords: Porous media - Contaminant transport - Two-stage *
MCMC - DREAM - MPSRF

1 Introduction

In subsurface characterization and flow forecasting, one could characterize the
subsurface using a Bayesian framework. The Bayesian framework consists essen-
tially of a Markov Chain Monte Carlo (MCMC) algorithm, in which we repeat-
edly solve a flow numerical simulator that models the porous media problem of
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interest [11]. In this paper we use a single-phase flow numerical simulator that
simulates the contaminant transport in an aquifer. In the MCMC algorithm we
characterize the heterogeneous permeability field of the aquifer using the simu-
lator. Our C/C++ flow simulator takes advantage of Graphics Processing Units
(GPUs), which have the computational capacity to speedup the single-phase flow
simulation [12]. The GPU flow simulator runs on a computational grid of the
permeability field that is divided into several thousand elements. However, popu-
lating each computational element by a random permeability value and changing
those values in each MCMC iteration is impracticable. In this case the dimension
of the stochastic space is that of the computational domain and the dimension
reduction is achieved by a Karhunen-Loéve expansion (KLE) [15]. Due to the
serial nature of the MCMC algorithm, the computational burden in solving the
problem recurrently using the GPU numerical simulator is still huge. This can
make the Bayesian framework less attractive for our problem. Parallelizations of
the MCMC algorithm to speedup the characterization were considered in [10,12].
The simulation of several parallel MCMCs reduces the computational cost dras-
tically. However, the convergence of such parallel MCMCs should be carefully
analyzed.

In this paper we consider two-stage and DiffeRential Evolution Adaptive
Metropolis (DREAM) MCMC methods for the subsurface characterization. The
two-stage MCMC was introduced in [6,8] and it has been investigated more
recently (see [7,14] and references therein). The two-stage procedure is of par-
ticular interest to subsurface flow problems because samples can be rejected with
inexpensive simulations on coarse grids. The DREAM is an extension of Differ-
ential Evolution (DE) MCMC, which integrates the essential ideas of DE genetic
algorithm and MCMC algorithm [3]. Inspired by DE MCMC, the DREAM was
proposed in [22] and applied to several interesting problems (see [19-21] and ref-
erences therein). The DREAM is well known to converge relatively faster when
compared to earlier procedures. It employs subspace sampling and outlier chain
correction to accelerate the convergence towards the stationary distribution.

In the current work we run several parallel simulations for each MCMC
method. In this approach, we need to determine when it is safe to stop the
MCMC simulations for a reliable characterization of the permeability field. There
are several convergence diagnostics available for this purpose and those diagnos-
tics fall into two categories: the first category of diagnostics entirely depends on
the output values of the MCMC simulation and those in the second category use
not only the output values but also the information on the target distribution.
In the first category, Brooks and Gelman [4] proposed a convergence diagnostic
that uses the Multivariate Potential Scale Reduction Factor (MPSRF) to decide
when to terminate MCMC simulations. Very recently in [2] we proposed a stop-
ping criterion using a statistical analysis for single-phase flow prediction. In the
analysis we considered ensembles of fractional flow curves to decide when it is
safe to stop MCMC simulations for a reliable characterization and prediction.
In this work we use the criterion in [2] for both MCMC methods and compare
them for the characterization of the permeability field of the aquifer. Our results
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show that the two-stage MCMC provides a good estimate for the average of the
quantity of interest (fractional flow curves), but the DREAM MCMC method
reveals that the posterior distribution is not well characterized by the two-stage
method.

We organize the present study as follows. We discuss the computational mod-
eling of the single-phase flow of the aquifer in Sect.2. The reduction of the
parameter space dimension by the KLE is discussed in Sect.3. Section4 con-
tains the statistical framework using two-stage and DREAM MCMC methods
for the characterization of the permeability field in the aquifer. The MPSRF, a
frequently used criterion to estimate convergence of the MCMC methods, is pre-
sented in Sect. 5. Results obtained from our numerical experiments are discussed
in Sect. 6. Concluding remarks appear in Sect. 7.

2 Computational Physical Model

We consider a unit square-shaped subsurface aquifer {2 with a heterogeneous
permeability field. The aquifer contains two monitoring wells: one of which is
located at the top right corner of the domain (corner well) and the other well
(center well) is placed at the middle of the right boundary. An accidental con-
tamination occurs at the spill site and the contaminated water flows naturally
through the aquifer. The spill well is positioned at the bottom left corner through
which the contaminated (or tracer) water is discharged (Fig.1). In this single-
phase flow model we assume a relatively low concentrations of the contaminant,
thus it does not affect the velocity field.

Let us denote the Darcy velocity and the pressure of the fluid by wv(a,t),
and p(zx,t), respectively, where x € (2 is the location at time ¢. We also denote
the absolute permeability of the rock, porosity of the rock, fluid viscosity, and
contaminant concentration in the fluid by k(x), ¢(x), u, and p(x, t), respectively.
We consider that the pore space of the aquifer is filled by water. Applying Darcy’s
law and mass conservation, the governing equations describing the single-phase
flow can be written as the following [5]:

V-v =0, where 'u:—&m)Vp7 T €,
0 t " M)
o(@) 222D 49 (o t0) = 0.
In this study the porosity of the rock is considered a constant throughout the
domain with ¢(x) = 0.2. We assume no-flow boundary conditions and we take
p(x,t =0) = 0. The system of partial differential equations in (1) does not con-
tain any source or sink because all three wells are modeled through appropriate
boundary conditions. The coupled system consists of an elliptic problem and
a hyperbolic problem. After applying an operator splitting technique, we solve

each problem separately by an appropriate numerical scheme [13,18].
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Fig. 1. Top: On the left, the reference permeability field for a unit square-shaped
region, where circle and squares on the boundary denote the spill and monitoring wells,
respectively. On the right, contaminant flow at ¢ = 0.25 PVI. Bottom: Contaminant
flow at ¢ = 0.75 PVI on the left and ¢ = 1.0 PVI on the right.

The permeability field is characterized by using measured data in the form
of fractional flow curves, F'(t) which are defined as

Joo,., vn(®, t)p(z,t) ds

Fit)=1-
®) fanout vn(x,t) ds

: (2)

where 02,4 represents the well outflow boundary, and v, (x, t) is the component
of the velocity field normal to the well boundary. The dimensionless time is
denoted by ¢, which is measured in Pore Volume Injected (PVI) and is computed
using the following integral:

T
PVI:/ V,,*/ vp(2,t) ds dr, (3)
0 O26ut



Markov Chain Monte Carlo Methods 761

where V), denotes the total pore volume of the reservoir and 71" represents the
total time the contaminated water entered through the spill well.

3 Reduction in Parameter Space

If we consider the aquifer in a 128 x 128 computational domain, we have 16,
384 elements. In our Bayesian framework the numerical simulator uses the per-
meability value in each element. Therefore, we need to start with a random
permeability value in each element and change one or more of those values in
each MCMC iteration. Thus, the dimension of the parameter space is 16, 384 and
it presents a far-fetched framework for the characterization of the permeability
field. In order to reduce the number of uncertainty parameters, we therefore use
the KLE. Below we reduce the parameter space from 16, 384 to d, which is 20 for
our study, using the KLE. The KLE has been explained in [10-12]. A very short
discussion on the KLE is being presented below for the sake of completeness.
Suppose log [k(x)] = Y*(z), where € 2 C R?, Y*(z) is a Gaussian field
and the covariance function Cov(Y*(x1),Y*(x2)) is given by the following for-

mula: | ‘2 | ‘2
_ 2 T1 — T2 Y1 — Y2
R(x1,22) = 0y exp (— 212 — 2L§ ) , (4)

where L, and L, are the correlation lengths in x— and y—direction, respectively,
and o2 = Var[(Y*)?]. It is assumed that Y*(zx) is a second-order stochastic
process and E[(Y*)2] = 0. Thus, for a given orthonormal basis {;} in L2(§2),
Y*(x) can be expressed as the following:

ka:zoo ko (e wi k — k(2)o;(z)dx
Ve = S vade) i | Y@@z, (5)

where Y}* are random coefficients. On the other hand, since L? is a complete

space, thus p;(x) is an eigenfunction satisfying
/ R(ml,mg)cpi(:cg)dmg = )\7%(:1:1), 1= 1, 2, ceey (6)
o)

and the corresponding eigenvalue \; = FE [(YZ’“)Q} > 0. By using the assumption
0; = Y /\/X\i, the KLE in Eq. (5) can be expressed as the following:

V¥(x) = Z VAibipi(x). (7)

If the eigenvalues decrease, a truncated KLE can be written as

d
Yj(x) = Z Vibipi(). (8)
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Fig. 2. Decay of eigenvalues in KLE

If the eigenvalues in (8) decay quickly, the de will be a good approximation of
Yk

We set L, = L, = 0.2 and 0% = 4 in (4). Figure2 shows that the eigenval-
ues decay fast for these values. In this paper we thus consider the first twenty
eigenvalues in the KLE to model the permeability field.

4 Bayesian Framework

4.1 Exploration of the Posterior

In this subsection we discuss how to characterize the permeability field using the
fractional flow curves at the monitoring wells of the aquifer. Let us denote the
fractional flow data by F},, and the corresponding permeability field by . Using
the Bayes’ theorem we can write the posterior probability

P@p|Fp) o< P(Fn[h)P(4), 9)

where P(t) denotes the prior distribution and the normalizing constant is
ignored due to the iterative search in the MCMC algorithm. The % is gener-
ated through the KLE, for which the vector 6 is used as input in the expansion.
In the remainder of the discussion we use ¥ = KLE[f]. Moreover, we consider a
Gaussian distribution as in [9] for the likelihood function, i.e.,

P(E ) o exp (= (F = Fy) " S(Fn — Fy)), (10)

where the simulated fractional flow data Fy is obtained by the numerical solution
from the GPU simulator for each permeability distribution % in the MCMC
algorithm. We denote the covariance matrix by X, which is defined as X = I/20%
where I and 0% are the identity matrix and the precision parameter, respectively.

We sample data from the posterior by using the Metropolis-Hasting (MH)
MCMC and create a Markov chain, which has the posterior distribution as tar-
get distribution. We consider an instrumental distribution ¢(v,|¥), where %
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denotes the previously accepted proposal, in order to propose ¢, = KLE[6,] at
every iteration. We use the following acceptance probability in MH MCMC and
the probability value is computed by solving the forward problem for a given
permeability distribution on the numerical simulator:

Q(¢|’¢P)P(¢p|Fm)>
L a(pl)P($|FR) )

We now describe the two-stage and DREAM MCMCs that use the MH
algorithm.

ap.h,) = nin 1 (11)

4.2 Two-Stage MCMC

Here we present the two-stage MCMC method. The method has been widely
used for porous media applications [8,16]. The two-stage MCMC consists of
a screening procedure, which relies on a coarse-scale model approximating the
governing equations (1). The coarse-scale discretization is done in a similar way
as in the fine-scale discretization. The main idea lies on a rigorous projection of k
on the coarse-scale that is obtained from the fine-scale resolution. For this reason,
an upscaling method is used so that the effective permeability values on the
coarse-scale yield a similar average response as that of the underlying fine-scale
problem locally [11]. We then run the numerical simulator on the coarse-scale
model and get the numerical solution F.. Now we can compute the coarse-scale
and fine-scale acceptance probabilities

(I("/’|"/’p)Pc("/’p|Fm)> and
(Wl P (| i)

Pf(¢p|Fm)Pc('l/"Fm)
,Pf(¢|Fm)Pc("/)p‘Fm)

In the two-stage MCMC the following Random Walk Sampler (RWS) is used:

0,=0360+\/1- e, (13)

where 8 and 8, represent the previously accepted proposal and the current pro-
posal, respectively. The symbol € stands for a A(0,1)-random variable and 3
(= 0.75) is a tuning parameter [1]. The two-stage MCMC algorithm is presented
in Algorithm 1. The convergence diagnostic to break the “for loop” in the algo-
rithm is described in Sect. 5.

e, 9,) = min ( 1
( (12)

af(¥,¥,) = min (1 ) , respectively.

4.3 DREAM MCMC

The DREAM, which is an extension of DE MCMC [3], runs multiple MCMCs
simultaneously for a thorough exploration of the posterior, and has an in-built
mechanism to adapt the scale and orientation of the proposal distribution during
the evolution to the posterior distribution [22]. We describe the DREAM for our
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Algorithm 1. Two-stage MCMC

1: Given covariance function R generate KLE.

2: for p =1 to Mueme do

3: At 9 = KLE[#] using (13) generate 1, = KLE[8,,].

4: Compute the upscaled permeability on the coarse-scale using 1.
5: Solve the forward problem on the coarse-scale to get F..

6: Compute the coarse-scale acceptance probability a.(9,¥5).

T if 1, is accepted then

8: Use 9, in the fine-scale simulation to get Ff.

9: Compute the fine-scale acceptance probability o (9, p).

10: if 1, is accepted then ¢ = 1,,.
11: end if
12: end if
13: end for

application below. In Algorithm 2, m denotes the number of parallel chains that
we run simultaneously.

Algorithm 2. DREAM MCMC

1: Given covariance function R generate KLE.

2: for c=1tom do

3: for p =1 to Mmeme do

4 At 9 = KLE[f] using equation (14) generate %, = KLE[,].

5 é
0, =0+ I+ 1)v6,d) | > 070 0" | 4+ ¢ (14)

j=1 k=1

where § and d denote the number of pairs that are used to generate the pro-
posal and the number of parameters that are updated jointly in each iteration,
respectively. Two randomly chosen chains are denoted by r; and ry. Moreover, f
and € are drawn independently from CU[—b,b] and N (0, b*), respectively, where
CUla, b] represents the continuous uniform distribution on the interval [a, b].

Algorithm 3. DREAM MCMC (continued)

5 Use 9, to get Fy (on the fine-scale).

6 Compute the acceptance probability a(9,%,) using (11).
7 if 1, is accepted then ¢ = 1,,.

8: end if
9

10:

end for
end for




Markov Chain Monte Carlo Methods 765

We simultaneously run the DREAM MCMC with m = 11 parallel chains.
In (14) we set § = 5, b = 0.1 and b* = 1075. The jump rate is given by
— 23800 where the constant By = %. The user should select the value of

 Vsd

Bp in such a way the MCMC method has an acceptance rate between 15-35%.
In the present study we set d = 5, i.e., we update five parameters at every
iteration. In addition to setting those parameters, we also set v = 1.0 at every
tenth iteration to encourage a jump between two disconnected posterior modes.

5 Convergence Diagnostics of MCMC Methods

The DREAM MCMC requires a parallel simulation of multiple chains simulta-
neously. However, the two-stage MCMC does not require the same. Due to the
computational burden in repeatedly solving the numerical simulator, we still run
the parallel simulation of several two-stage MCMCs. Now we need to investigate
the convergence of multiple chains in each method for a reliable characterization
of the permeability field of the aquifer. In this section we discuss convergence
diagnostics for that purpose. The Potential Scale Reduction Factor (PSRF) and
its multivariate extension MPSRF are used to measure the convergence of mul-
tiple MCMCs [4].

We set the number of parameters as d = 20 in 6 as discussed in Sect. 3. Let
us consider m chains and n posterior draws of @ in each chain. 8! refers to the
vector @ at iteration t in the ith chain of multiple MCMCs. Then the posterior
variance-covariance matrix in higher dimensions is computed by

PN -1 1\ B
v=" W+(1+>. (15)
m) n
The within-covariance-matrix W is given by
1 m n _ o
W=—— 6; — 0;) (6 — 6; 16
T o (68 (6t ) (16)
i=1t=1
and the between-chain-covariance-matrix B is computed by
n n - — — _
B= w12 (Hi_ — 9“) (0i_ — 0,,) , (17)

where 8; denotes the mean of s within the chain and 0 represents the mean
of s in all the chains. The PSRF is defined as follows:

~

diag(V)p

PSRFP = m 5

where p=1,2,...,d. (18)

The PSRF values close to one indicate that the samples in multiple chains are
being generated from the same limiting distribution and thus confirm the con-
vergence. The MPSRF is computed as follows [17]:

MPSRF = \/<” - L (T) /\1), (19)
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where \; is the greatest eigenvalue of W—1B/n. If the MPSRF approaches
one for a reasonably large n, the convergence of the multiple chains is ensured.
Moreover, a relationship between the PSRFs and MPSRF is given by [4]

max of PSRFs < MPSRF. (20)

6 Numerical Results

6.1 Simulation Study

In this subsection we present a simulation study of the characterization of the
heterogeneous permeability field of the aquifer. See Fig.1. The aquifer is not
contaminated initially. The contaminated water flows through a spill well into
the aquifer at a rate of one pore-volume every five years. The synthetic reference
permeability field is constructed on a fine-grid of size 128 x 128. The fractional
flow curves for this reference field at the monitoring wells are shown in Fig. 5.
These curves are generated by running the numerical simulator on the reference
field until ¢ = 1.0 PVI. The time evolution of the contaminant flow on the
reference permeability field is shown in Fig. 1. We use the two-stage and DREAM
MCMC methods to generate samples from the posterior. A coarse-grid of size
32 x 32 is chosen for the two-stage algorithm, which runs four times faster than
the fine-grid simulation, but still manages to capture the general trend of the
flow. See Fig. 3.

Loy - = === = —_——
— 128x128 fine-grid

—==- 64x64 coarse-grid
— — 32x32 coarse-grid
-—-- 16x16 coarse-grid
06 | 8x8 coarse-grid

0.8 |

F()

04 F

02 f
center well

0.0 L L L L
0.0 0.2 0.4 0.6 0.8 1.0

time (t in PVI)

Fig. 3. A comparison of simulated fractional flows obtained from coarse-scale models
and the fine-scale model.

6.2 Convergence Analysis

This subsection contains the MPSRF and PSRF analysis for both two-stage and
DREAM MCMCs. We run twelve and eleven chains for two-stage and DREAM
MCMC s, respectively. Using an equal number of total proposals in all chains,
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we then compute the maximum of PSRFs and the MPSRF against the number of
iterations. Figure 4 shows that the MPSRF for each method is the upper bound
of the maximum of the PSRF's, which is consistent with the inequality shown
in (20). Moreover, it is also observed that both MPSRF and the maximum of
PSRFs for the DREAM MCMC have a faster downward trend than the two-stage
MCMC method. Thus, we can conclude that the DREAM MCMC samples from
the posterior faster than the two-stage MCMC and converges faster towards the
stationary distribution. However, Fig. 4 demonstrates that both MCMC methods
need a large number of iterations to achieve a complete convergence. To achieve
a complete convergence, the curves should approach the numerical value of one.

120 T T T T T 120 T T
— DREAM
100 fr 1 100 Two-stage
80 | E 80 | E
& &
Z 60| E P E
& =
40 - E 40 F E
20 | & 20 + 1
. . L L ! 0 . . . . .
6000 12000 18000 24000 30000 36000 6000 12000 18000 24000 30000 36000
iteration iteration

(a) (b)

Fig. 4. The maximum of PSRFs and the MPSRF for DREAM and two-stage MCMCs

Next we focus on a statistical analysis of two ensembles of accepted frac-
tional flow curves. In the analysis we consider the variances of the ensembles of
fractional flow curves as well as the posterior distributions.

6.3 Variance Analysis

We compute the average production curves using 24000 accepted proposals and
compare those curves with the reference fractional flow curves. See Fig. 5. From
the comparison we can say that both two-stage and DREAM MCMCs produce
very similar fractional flow curves. Table 1 shows the acceptance rates for both
MCMCs, where 0% and o2 are precision parameters in (10) for coarse- and fine-
scale simulations, respectively. Note that the acceptance rates for both MCMC
methods are the same, however, the convergence rate in the DREAM MCMC is
considerably higher than that in the two-stage MCMC (see Fig. 4).

We now construct two ensembles by taking the same number of fractional
flow curves in each MCMC method: The first ensemble contains 24000 samples
and the second one has 36000 samples. Figure6 displays the variances of the
fractional flow curves for the center and corner wells of the aquifer. The variance
curves differ between not only both ensembles but also both MCMC methods.
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Fig. 5. Fractional flow curves of (a) center and (b)

DREAM MCMCs.

corner wells for two-stage and

Table 1. A comparison of accepted proposals for two-stage and DREAM MCMCs

Two-stage MCM

C | DREAM MCMC

oF

ot

Acceptance rate

1074
2x107%
35%

1074

35%

0.005 : : : : 0.005
0.004 | 0.004
8 0.003 | 8 0.003 |

=1 =1
= =t
S 0002 F S 0.002 b
- -
0.001 F 0.001 |
0.0 ! 00
0.0 02 0.4 0.6 038 10 0
time (t in PVI)
(a)

— DREAM 24000 samples
—=- DREAM 36000 samples
[ — Two-stage 24000 samples
=== Two-stage 36000 samples

.0 0.2

0.4 0.6
time (t in PVI)

(b)

Fig. 6. Variance plots of fractional flow curves at (a) the center well and (b) corner
well for two-stage and DREAM MCMCs.

Furthermore, we sketch the posterior densities in Fig. 7 for the same ensembles
that we considered for the variance analysis. The normalized frequencies reveal
that the posterior densities are also different for both MCMC methods.
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Fig. 7. Normalized frequency plots of fractional flow curves for two-stage and DREAM
MCMCs. Top: Center well. Bottom: Corner well. Left: At ¢ = 0.78 PVI. Right: At
t =0.98 PVL

7 Conclusions

Using a GPU-based single-phase flow simulator we have compared two frequently
used MCMCs, the two-stage algorithm based on a random walk sampler and the
DREAM. We have confirmed that the DREAM converges much faster than the
two-stage MCMC by comparing the corresponding PRSF and MPRSF curves.
Moreover, a careful statistical analysis of ensembles of accepted fractional flow
curves, produced by the two MCMCs, reveals that such ensembles share essen-
tially the same average behavior. However, significant differences have been
observed in the time-dependent variance curves as well as in the posterior distri-
butions for those ensembles. This provides an indication that, for the purpose of
making Monte Carlo predictive simulations, one might observe considerable dif-
ferences in the results. One could combine both MCMC methods in a two-stage
version of DREAM to achieve good convergence along with reduced computa-
tional cost in line with the work of [14]. As a future work we intend to combine
both methods for our problem and study the convergence.
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