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Abstract

The purpose of this study is an application of scale invariant feature transform (SIFT) algo-
rithm to stitch the cervical-thoracic-lumbar (C-T-L) spine magnetic resonance (MR) images
to provide a view of the entire spine in a single image. All MR images were acquired with
fast spin echo (FSE) pulse sequence using two MR scanners (1.5 T and 3.0 T). The stitch-
ing procedures for each part of spine MR image were performed and implemented on a
graphic user interface (GUI) configuration. Moreover, the stitching process is performed in
two categories; manual point-to-point (mPTP) selection that performed by user specified
corresponding matching points, and automated point-to-point (aPTP) selection that per-
formed by SIFT algorithm. The stitched images using SIFT algorithm showed fine registered
results and quantitatively acquired values also indicated little errors compared with commer-
cially mounted stitching algorithm in MRI systems. Our study presented a preliminary valida-
tion of the SIFT algorithm application to MRI spine images, and the results indicated that the
proposed approach can be performed well for the improvement of diagnosis. We believe
that our approach can be helpful for the clinical application and extension of other medical
imaging modalities for image stitching.

Introduction

The vertebral column is an anatomical structure composed of cervical, thoracic and lumbar
spine (C-T-L spine), and sacrum and coccyx. Diagnostic evaluation of these structures is
important for assessing pathology and a crucial tool to achieve this goal is imaging, particularly
magnetic resonance (MR) imaging. However, it is difficult to acquire the whole C-T-L spine
image at once due to the limited field-of-view (FOV) of receiver coil system [1-3]. Thus, image
stitching method that made a single image through the separate images was widely used to per-
form the combining images, effectively [3, 4]. Although using the multi-channel phased array
C-T-L spine coil is enabled to acquire the C-T-L spine image at once, the use of image stitching
method is necessary not only in C-T-L spine image and but also in whole-body MR image
acquisition.
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The image stitching methods are generally related with the image deformable registration
methods because of the image stitching procedures based on the spatial-temporal registration
application between two images. Moreover, automatic landmark detection and extraction pro-
cess were basically performed to the image-based deformable registration. Harris and Stephens
have shown the landmark detection results using corner detectors at a single scale [5]. Shi and
Tomasi also have shown the method for corner detectors [6]. These approaches are very sensi-
tive to changes in image scale, so it has some limitations in the accuracy and stability of feature
detection. To overcome this problem, Lowe extended the local feature approach to achieve
scale invariance [7, 8]. The invariance properties of feature extraction methods are crucial to
detect points in temporal image series. Scale Invariant Features Transform (SIFT) algorithm
proposed by Lowe have been used to generate the image features and to take local feature vec-
tors [7, 8]. Each of these feature vectors is invariant to any translation, rotation, or scaling of
the image. The SIFT algorithm has been used in application to two-dimensional images, and is
expanded to application in multi-dimensional image by Cheung and Hamarneh [9].

In this study, we applied SIFT algorithm to C-T-L spine MR image for stitching of them to
investigate the feasibility and reproducibility. Furthermore, this proposed SIFT algorithm to
stitching of MR spine image is implemented on a graphic user interface (GUI) to ease to appli-
cations. For quantitative analysis, we compared the results between the use of SIFT algorithm
and the use of commercial algorithm mounted in an MRI system. Due to the lack of the gold
standard results for the imaging stitching, we have assumed two conditions to derive the com-
parison results in this study; i) the stitching results from the commercially mounted MRI sys-
tem were considered as the main comparison target (ground truth). ii) the stitching algorithms
in the commercial MRI system were provided relatively accurate stitching results in clinical
fields because those results have already been used widely in clinical fields.

Materials and Methods
MRI data acquisition

Five male healthy subjects (mean age + standard deviation: 26 + 2.1 years) participated in this
study. All subjects were provided written informed consent. All procedures and subjects were
approved by Yonsei Univesity Wonju Sevrance Christian Hospital institutional review board.
Each part of C-T-L spine images were acquired using two MRI system: 1.5 T MRI system
(SM160, SCIMEDIX, South Korea) using Fast Spin Echo (FSE) sequence with following
parameters (Time of Echo (TE) / Time of Repetition (TR) = 16 / 560 ms, Field of View
(FOV) = 350 mm?, Echo Train Length (ETL) = 4, matrix size = 420 X 420, slice thickness =

4 mm and number of slices = 6) and Philips 3.0 T MRI system (Achieva 3.0 T; Philips Medical
Systems, The Best, Netherlands) using FSE sequence with following parameters (TE / TR =
120/ 3,000 ms, FOV =288 mm?, ETL = 27, matrix size = 576 x 576, slice thickness = 4.4 mm
and number of slices = 5).

Image stitching process

The implementation of image stitching method is performed in two categories; manual point-
to-point (mPTP) selection and automated point-to-point (aPTP) selection. For the mPTP
approach, the user specified corresponding matching points between two images (C-spine and
T-spine images) at the overlapping area, and then image transformation process was per-
formed based on the set of points. The second image stitching process was performed using the
stitched image (C-T spine image) and the third image (L-spine image), with the same point
selection process. For the aPTP approach, the implementation of an image stitching was per-
formed based on the SIFT algorithm. The SIFT algorithm was used to detect the feature points
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created from an edge or corner of an object for vector calculation. The SIFT algorithm was
applied in five steps; detection of the extrema in scale-space, keypoint localization, keypoint
orientation assignment, Generation of keypoint descriptor and Point matching process [10].

First, the filterling process was applied to the process of extrema detection in scale-space to
identify locations and scales that are invariant from different views of the same object. A scale-
space of an image was generated by convolving the image with variable scale Gaussian kernel
function.

L(x,y,0) = G(x,y,0) *I(x,y) (1)

o~ ()20 (2)

G(x,y,0) =
(%y,0) =5
Where G(x,y,0) is the Gaussian function, I(x,y) is the object image, x,y is the coordinate loca-
tion and * is the convolution operator.
The calculation of Difference of Gaussian (DoG), which can be used to detect the stable key-
point in the scale-space, was acquired from the difference between one scale and k times scale
images.

D(x7y7 J) = (G(Xa)’» kO‘) - G(X,y, O-)) * I(x:)’) - L(x7y’ kO’) - L(xvyv 6) (3)

Where D(x,y,0) is the Difference of Gaussian (DOG) and k is the scale factor. Local extrema
of DOG images are calculated by comparing each sample point to its 8 neighbors at the same
scale, and its 9 neighbors up and down scale. If calculated value is indicated the maximum or
minimum, this location point is considered as an extremum.

Second, the keypoint localization process is applied to eliminate unnecessary points from
the list of keypoints by finding those that have low contrast or poorly localized on edges. This
process is done by using second-order Taylor expansion of the DoG function [11].

X (4)

where D(x,y,0) and its derivatives are evaluated at the sample point, and X = (x,y,a)T is the off-
set from this point [8]. The extremum location (X) is determined by taking the derivative of
this function with respect to X and setting it to zero [8].

0°D,_, 0D
) % (5)

%=

In this paper, we used all absolute values for extremum less than 0.03, and we assumed
image pixels were normalized, thus pixels ranges were from 0 to 1 [8]. If the function value is
below a threshold value, then this point is excluded. This removes extrema that has low con-
trast. When the process of extrema elimination in the poor location was applied, it is important
to consider a large principal curvature across the edge and a small one in perpendicular direc-
tion. To calculate the principle curvature, the ratios of Trace of Hessian matrix and Determi-
nant were used. We assumed o is the eigenvalue with the largest magnitude and f is the
smallest one. We calculated the sum of the eigenvalue from the trace of H and their product
from the determinant as follows.

Tr(H) =D, +D, = o+ B (6)

Det(H) =D_D_— (D,)" = ap (7)
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Using Eqs (6) and (7), we determined the ratio and we newly defined vy is the ratio between
the ocand .

Tr(H)' _ (a+B)° _ (y+1)° (8)
Det(H) af Y

Third, we computed the local gradient magnitude and orientation to assign a consistent ori-
entation to the keypoints. The equations are as follows.

m(x,y) = \/(L(x +1y) = Lx—1),9)" + (Llx,y + 1) = L(x,y = 1))’ (©)

0(x,y) = tan” ((L(x,y + 1) = L(x,y = 1))/ (L(x + 1,y) = L(x — 1,)) (10)

where m(x,p) is the gradient magnitude, 0(x,y) is the orientation and L(x,y) is each Gaussian
smoothed image. We created histogram from the gradient orientation of sample points within
a 3-0 window around the keypoint. Each sample added to the histogram is weighted with
Gaussian window of 1.5-0. And then, we found the highest peak in the histogram and any
other local peak within 80% of the height of the highest peak in order to create a keypoint.

Fourth, to compute the feature descriptor, the coordinate and gradient information are
rotated to the keypoint orientation and then weighted by Gaussian function with 1.5-0. We
used a set of 16 histograms, and these were aligned in a 4x4 grid, each with 8 orientation bins.
Thus, we got the 128 elements feature vector for each keypoint.

Finally, the image matching process between the extracted SIFT feature points from a refer-
ence image and another image was applied using the calculation of Euclidean distance.

dis = \/(xl - x2)2 + _)’2)2 (11)

In the case of multi-slice images, the point selection is only performed at the most central
slice among them, and other slices are combined with the selected point at the most central
slice to stitch images. All of image processing was done in Matlab 7.8 (Mathworks, Natick, MA,
USA) with a 2.6 GHz Intel Core 2 duo processor with 4 GB RAM. The GUI implementation is
also performed by Matlab software.

For quantitative comparisons between the stitched images using SIFT algorithm and com-
mercially mounted stitching algorithm in MRI system, we performed Bland-Altman analysis
[12], and calculated Normalized Mean Square Error (NMSE) and Pearson’s correlation coefti-
cients. These quantitative analysis procedures performed with images from 3.0 T MRI system
(In 1.5 T MRI system, the stitching algorithms has not been mounted yet). Note that there is
no gold standard or ground truth for stitching image results, we assumed that the stitched
images from commercial MRI system as a reference images for quantitative analysis in this
study.

Results

Developed GUI configuration for C-T-L spine MR images stitching program and its process is
shown in Fig 1. It is the user’s choice to select mPTP or aPTP method. The image preview was
provided in order to know and confirm each step of stitching process intuitively. It is possible
to confirm the different cross-sectional multi-slice images using a scroll bar of the final image
display. The stitched image results were saved in DICOM or JPEG image files. In the case of
multi-slice images, the point selection was performed at the most central slice among them,
and other slices were automatically stitched based on the selected points from the central slice.
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Magnetic Resonance Imaging (MRI) Stitching Program

€T Spine Stiiched Images [Sag, LK)

Base Images Load - -
C-T Spine Images Stitching (Group 1)

Point Selection (C-T)
Image Stitching (C-T)

¢ Automatic Featured Point Search

CT-L Spine Images Stitching (Group 2)
Point Selection (CT-L)
T-Spine Image Stitching (CT-L)

¢ Automatic Featured Point Search

All Images Stitching

Save Image Type

LoApin, DicoM JPEG

Stitched Images Preview

Fig 1. Developed GUI configuration program for C-T-L spine MRI stitching.
doi:10.1371/journal.pone.0153043.g001
Fig 2 shows the stitched C-T-L images for 3rd and 4th slices from representative subjects

using developed GUI configuration in two different MRI systems: (A)- 1.5 T and (B)- 3.0 T
MRI system.

Fig 2. C-T-L spine MRI stitching result images (sagittal sections) using SIFT algorithm and developed GUI configuration for a representative
subject. Datasets are acquired from 1.5 T MRI system (A) and 3.0 T MRI system (B).

doi:10.1371/journal.pone.0153043.9002
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Fig 3 shows the comparative results, which are sagittal and coronal section images from repre-
sentative subject, between the use of our proposed stitching approach (SIFT) on GUI configuration
(A and C) and the use of stitching algorithm commercially mounted on the 3.0 T MRI system (B
and D). The calculated NMSE values from all subjects are represented 1.74 x 10~ + 3.68 x 10~
(sagittal) and 1.85 x 107* £ 2.92 x 107> (coronal). For statistical results performed with paired t-test
between the use of the SIFT algorithm and commercially mounted stitching algorithm, note that
there is no significant differences in sagittal or coronal image sections. (all p > 0.05).

Fig 4 shows the quantitative comparison of the mean signal intensities from whole stitched
images reconstructed with SIFT and commercially mounted algorithms in each subject’s image
slices (A and B), and Bland-Altman analysis results (C and D). Notably, the calculated Pear-
son's coefficient values (r) represent high correlations between two stitched results performed
with SIFT algorithm and commercially mounted stitching algorithm (r = 0.88; p < 0.001 for
sagittal section; r = 0.86; p < 0.001 for coronal section). In addition, the signal intensities com-
parison results, which are located close to the y = x line, and high coefficients of determination
values (R® = 0.95 for sagittal section; R* = 0.93 for coronal section) also clearly indicate that the
feasibility and reliability for the use of SIFT algorithm to spine MR image stitching process. For
the Bland-Altman analysis results, the mean differences and standard deviations are
-104.48 + 280.88 (Arbitrary Unit; A.U.), and -187.79 + 315.78 A.U. for sagittal and coronal sec-
tion results, respectively. The all differences between SIFT algorithm and commercially
mounted stitching algorithm are within the ranges of £1.96 times the standard deviations of
the means, and there are no significant biases at sagittal and coronal section stitching results.

Furthermore, the computational time consumption of the overall imaging processes were
1.83 sec for 1.5 T MR spine images and 2.76 sec for 3.0 T MR spine images, providing to be
highly correlated with the involved image matrix size.

Fig 3. A representative subject’s stitching results for the use of SIFT algorithm on GUI configuration (A; sagittal section and C; coronal section) and the use
of stitching algorithm commercially mounted on the MRI system (B; sagittal section and D; coronal section). Allimages acquired from 3.0 T MRI system.

doi:10.1371/journal.pone.0153043.g003
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Fig 4. Quantitative comparison of signal intensities between the results using SIFT algorithm and
commercially mounted stitching algorithm at 3.0 T MRI system (as reference image) for sagittal section (A)
and coronal section (B). The red sold line represents the correlations and the linear regression of all values.
The Pearson’s coefficient (r) and p values are provided for each image sections. (C) and (D) indicate the
Bland-Altman plots of signal intensities acquired from stitching results using SIFT algorithm, compared with
those by commercial mounted stitching algorithm for sagittal and coronal sections, respectively. The black
solid line is the mean of the difference and the dotted lines bracket +1.96 times the standard deviations of the

means.

doi:10.1371/journal.pone.0153043.g004

Discussion

Medical images generally have many different feature points. However, all of those points are
not useful for image registration and segmentation processes. Thus, it is necessary to detect
more accurate and important feature points of the images that are informative in one side and
in the other side of target images for reducing the complexity. Especially, the SIFT algorithm is
given a high degree of accuracy in the results as compared to another feature extraction meth-
ods. This advantage of SIFT algorithm is to be extended to more areas. In the computer vision
and pattern recognition researches, the automatic detection of bilateral symmetry is a challeng-
ing task and it is currently have been overcome by the application of SIFT to detect the bilateral
symmetry in object images [13, 14]. Moreover, in the previous studies, there were only a few
researches on the applications of the SIFT algorithm for medical imaging field to track the sig-
nal features and to evaluate them for their research purpose such as image registration [10, 15,
16], motion detection [17, 18], and radiation therapy planning [19]. As a similar purpose of
previous studies, we wanted to present a SIFT application to another medical imaging field,
and confirm the possibility of our application.

Therefore, in this study, we proposed a C-T-L spine MR images stitching process based on
the SIFT algorithm on GUI configuration for convenience of user interface and implementa-
tion. This implemented GUI software is worked by the user of stitching method (mPTP or
aPTP) selection. We validated the accuracy and robustness of the proposed method through
experiments and quantitative analysis. Based on our results, the stitched images using SIFT
algorithm showed fine and reliable results, and also clearly showed the reproducibility of the
use of SIFT algorithm compared with commercially mounted stitching algorithm on MRI sys-
tem. In addition, to the best our knowledge, only one study was performed for the application
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of SIFT algorithm to the MR spine images stitching [20]. The previous research showed their
stitched spine results without any quantifications and comparisons with other results, and we
considered that these are the main drawback of the previous research. In this study, we also
have applied the SIFT method as in previous study; however, unlike previous research, we have
quantitatively evaluated our results compared with the results from commercially mounted
algorithm in MRI system. Therefore, our studies objectively indicated the feasibility and possi-
bility of the SIFT application to MR spine images stitching.

There are some limitations in this study. The application of SIFT algorithm has a possibility
of mismatching between features, and it can lead to unexpected results in the matching proce-
dures. Because we did not deal with this issue for our application, it can be a technical limita-
tion in this study. Since the SIFT algorithm is widely used in various fields, this mismatching
issue is sometimes considered as a weak-point of SIFT algorithm. Although all the quantitative
and qualitative results showed good agreements with the results that derived from commercial
MRI system, strictly speaking, it is hard to completely ignore the possibility of mismatching
problem based on our results. To solve the mismatching problem technically, some methods
have been introduced such as; random sample consensus (RANSAC) algorithm, which is an
iterative parameter estimation method between inliers and outliers of data [21], and second-
order Gaussian (SOG) algorithm, which gives an weighting to the matching points using
Gaussian function depending on the Euclidean distance to adjust the matching points in
threshold values [22]. Therefore, in order to pursue higher accuracy of the stitching results, we
will try SIFT combined with above mentioned algorithms to eliminate the mismatching prob-
lems in the future. Moreover, our proposed approach relies on the early stage of SIFT algorithm
to MR spine image stitching application, so further study will be performed on a large number
of subjects to improve the performance. Finally, this approach is processed in single GPU sys-
tem. In the future study, the efficiency of computation time consumption of the feature extrac-
tion will be improved to use multi GPU-based parallel computation and multi-core processing
implementation.

Conclusions

We provided preliminary findings of the feasibility and the validity of the SIFT algorithm
application. As shown in the results, the algorithm could be performed well in the MR spine
images stitching process. We believe that our approach could be extended to the other image
stitching fields such as whole-body MRIs and other imaging modalities as well, and could be
helpful for clinical applications and diagnosis improvements.
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