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1Institute of Geophysics, ETH Zurich, Zurich, Switzerland

Abstract We present a probabilistic seismic point source inversion, taking into account 3-D
heterogeneous Earth structure. Our method rests on (1) reciprocity and numerical wavefield simulations
in complex media and (2) Hamiltonian Monte Carlo sampling that requires only a small amount of test
models to provide reliable uncertainty information on the timing, location, and mechanism of the source.
Using spectral element simulations of 3-D, viscoelastic, anisotropic wave propagation, we precompute
receiver side strain tensors in time and space. This enables the fast computation of synthetic seismograms
for any hypothetical source within the volume of interest, and thus a Bayesian solution of the inverse
problem. To improve efficiency, we developed a variant of Hamiltonian Monte Carlo sampling.
Taking advantage of easily computable derivatives, numerical examples indicate that Hamiltonian Monte
Carlo can converge to the posterior probability density with orders of magnitude less samples than the
derivative-free Metropolis-Hastings algorithm, which we use for benchmarking. Exact numbers depend on
observational errors and the quality of the prior. We apply our method to the Japanese Islands region where
we previously constrained 3-D structure of the crust and upper mantle using full-waveform inversion with a
minimum period of 15 s.

1. Introduction

The characterization of effectively point-localized wavefield sources has been a prime objective of seismol-
ogy ever since the first installations of sufficiently dense seismometer networks. Knowing the location, timing,
moment tensor, and possibly the source time function of earthquakes is critical for a wide range of related
fields and applications. These include seismotectonics, earthquake physics, seismic hazard analysis, early
warning, nuclear monitoring, and seismic tomography.

1.1. Developments and Challenges in Seismic Source Inversion
Pioneering work on the mathematical description of earthquake sources (e.g., Backus & Mulcahy, 1976a,
1976b; Burridge & Knopoff, 1964; Knopoff & Randall, 1970) was accompanied by the development of practical
methods to constrain their properties (e.g., Aki & Patton, 1978; Buland & Gilbert, 1976; Dziewoński & Gilbert,
1974; Dziewoński & Woodhouse, 1981; Dziewoński et al., 1981; Gilbert, 1973; Randall & Knopoff, 1970). As a
result, routinely delivered source locations and moment tensors have become an indispensable and routinely
employed element of geophysical research.

Despite the conceptual simplicity of the seismic source inverse problem, methods for the characterization
of point-localized sources continue to proliferate, focusing on near-real-time operation and automation (e.g.,
Bernardi et al., 2004; Cesca et al., 2010; Käufl et al., 2015; Scognamiglio et al., 2009; Vackár et al., 2017), uncer-
tainty quantification (e.g., Mustać & Tkalčić, 2016; Silwal & Tape, 2016; Staehler & Sigloch, 2014, 2017; Valentine
& Trampert, 2012; Wéber, 2006), the incorporation of 3-D structural models (e.g., Chen et al., 2007; Fichtner &
Tkalcic, 2010; Hejrani et al., 2017; Hingee et al., 2011; Hsieh et al., 2014; Liu et al., 2004; Zhu & Zhou, 2016), and
the use of new types of seismological observables (e.g., Donner et al., 2016; O’Toole et al., 2012).

These continued developments also reflect fundamental difficulties in seismic source inversion. They include
trade-offs between source parameters and 3-D Earth structure, and the existence of a null space, which often
contains, for instance, the trace of the moment tensor (e.g., Dufumier & Rivera, 1997). The unavoidable null
space commands the use of Monte Carlo methods to sample the space of acceptable solutions and to avoid
results that are biased by regularization (e.g., Mosegaard & Tarantola, 1995; Sambridge & Mosegaard, 2002).
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Unfortunately, Monte Carlo methods for seismic source inversion suffer particularly strongly from the curse
of dimensionality (e.g., Tarantola, 2005) for two reasons: (1) Since source parameters, such as moment tensor
components, may vary over several orders of magnitude, the prior in model space tends to be very wide. In
other words, the space (or number) of models that are a priori plausible is very large. (2) Since the observational
errors in today’s seismic data are often very small, the posterior in model space is rather concentrated, meaning
that few models are actually plausible when tested against high-quality data.

As a consequence, many samples that are tested for being a priori plausible may in fact be wasted because
they fail to produce synthetic seismograms that explain observed seismograms to within the small measure-
ment uncertainties. This facet of the curse of dimensionality severely reduces the efficiency of Monte Carlo
methods that strongly rely on prior information, including the widely used Metropolis-Hastings algorithm
(Hastings, 1970; Metropolis et al., 1953; Tarantola, 2005).

1.2. Hamiltonian Monte Carlo
Motivated by the potentially poor performance of Monte Carlo methods for high-dimensional problems,
Hamiltonian Monte Carlo was introduced as hybrid Monte Carlo by Duane et al. (1987) in the context of lattice
quantum chromodynamics. The method moved into the focus of statistical computation through the work of
Neal (1996) who used it for Bayesian neural network learning. Hamiltonian Monte Carlo was further popular-
ized by the reviews of Neal (2011) and Betancourt (2017), who introduced the method without the overhead
of advanced differential geometry. Today, applications of Hamiltonian Monte Carlo can be found in a wide
range of disciplines, including neural networks and machine learning (e.g., Bishop, 2006), molecular simula-
tions (e.g., Dubbledam et al., 2016), nuclear physics (e.g., Elhatisari et al., 2015), genomics (e.g., Honkela et al.,
2015), and quantum mechanics (e.g., Seah et al., 2015). However, despite its success in widely varying disci-
plines, Hamiltonian Monte Carlo seems not to be used for the solution of geophysical inverse problems, with
few recent exceptions (e.g., Muir & Tkalčić, 2015; Sen & Biswas, 2017).

1.3. Objectives and Outline
This work has two main objectives: (1) to introduce Hamiltonian Monte Carlo to geophysical inversion
using the low-dimensional point source inversion problem as example and (2) to illustrate the efficiency of
Hamiltonian Monte Carlo for seismic source inversion, taking into account 3-D heterogeneous Earth structure.
Less explicitly, we further intend to pave the way toward higher-dimensional finite-source inversions where
the benefits of Hamiltonian Monte Carlo are expected to become more pronounced than in the relatively
low-dimensional point source problem.

This manuscript is organized as follows: In section 2 we summarize the forward problem solution, which rests
on precomputed, receiver side Green’s functions. Section 3 introduces Hamiltonian Monte Carlo in the context
of Bayesian inference, with special focus on weakly nonlinear problems. A seismic source inversion toy prob-
lem that illustrates the basic concepts is the subject of section 4. Finally, in section 5, we present a real-data
point source inversion from the Japanese Islands region.

2. Forward Problem Solution

To set the stage for the probabilistic inversion, we describe the forward problem solution. For a moment tensor
point source at position 𝝃, the i component of the displacement field at position x and time t is given by the
representation theorem (e.g., Aki & Richards, 2002) as

ui(x, t) =
3∑

n,j=1
∫ Mnj(t − t′) 𝜕

𝜕𝜉j
Gin(x, t′; 𝝃)dt′ . (1)

In equation (1), Mnj denotes the components of the symmetric moment tensor, and Gin(x, t′; 𝝃) is the i com-
ponent of the Green’s function for a point source in n direction at position 𝝃. Equation (1) is inconvenient
because the simulation of Gin for heterogeneous media from all potential sources 𝝃 is prohibitively expensive.
We therefore employ spatial reciprocity (e.g., Aki & Richards, 2002) to modify the representation of ui to

ui(x, t) =
3∑

n,j=1
∫ Mnj(t − t′) 𝜕

𝜕𝜉j
Gni(𝝃, t′; x)dt′ . (2)
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This allows us to model ui via the precomputation of a database containing the derivatives of the receiver side
Green’s functions, 𝜕Gni(𝝃, t′; x)∕𝜕𝜉j , for all receiver locations x. Equation (2) has been used in various source
studies (e.g., Chen et al., 2007; Hejrani et al., 2017; Lee et al., 2014; Zhao et al., 2006).

To enable source inversion, we parametrize the moment tensor in terms of time-independent tensor compo-
nents Mnj , the origin time t0, and a small number of coefficients sk that premultiply the basis functions 𝜙k(t)
of the source time function (moment function),

Mnj(t) = Mnj

N∑
k=1

sk𝜙k(t − t0) . (3)

In the interest of generality, we leave the shape of the basis functions 𝜙k(t) unspecified at this point. Based
on equation (3), the forward problem solution depends on 10 + N parameters, six independent components
of the moment tensor Mnj , three source coordinates 𝝃 = (𝜉1, 𝜉2, 𝜉3), the origin time t0, and an adjustable
number N of source time function coefficients sk . While alternative parametrizations of the time-independent
tensor components have been proposed (e.g., Jost & Herrmann, 1989; Kikuchi & Kanamori, 1991; Staehler &
Sigloch, 2014; Tape & Tape, 2015), we prefer to work directly with Mnj in the interest of simplicity and because
it preserves the linear dependence of synthetic seismograms on the source mechanism. This aspect will be
further discussed in section 6.2.

Equations (2) and (3) define the forward problem, that is, the computation of synthetic seismograms as a
function of model parameters. In the following paragraphs we describe how these model parameters and
their uncertainties can be inferred efficiently using Hamiltonian Monte Carlo inversion.

3. Hamiltonian Monte Carlo
3.1. General Hamiltonian Monte Carlo Sampling
For notational convenience, we collect all model parameters that we wish to infer into an Nq-dimensional
vector q. Thus, q comprises moment tensor components, source coordinates, origin time, and source
time function coefficients. Our goal is to sample the posterior probability density 𝜋(q|d) given by Bayes’
theorem as

𝜋(q|d) = k 𝜋(d|q)𝜋(q) , (4)

where d is the data vector, 𝜋(d|q) is the likelihood function, 𝜋(q) is the model space prior, and k is a normal-
ization constant (e.g., Mosegaard & Tarantola, 1995; Sambridge & Mosegaard, 2002; Tarantola, 2005). In the
context of Hamiltonian Monte Carlo, a model q is interpreted as the position vector of a particle, and equation
(4) is used to define its potential energy U as the negative natural logarithm of the posterior,

U(q) = − ln 𝜋(q|d) . (5)

Thus, more plausible models q with large values of the posterior correspond to low potential energies, and vice
versa. The kinetic energy K of the model q is defined as an auxiliary variable through the artificially introduced
Nq-dimensional momentum vector p,

K(p) = 1
2

pT−1p . (6)

The Nq × Nq mass matrix  is a tuning parameter. While it can in principle be set to any arbitrary positive
definite matrix, its choice affects the performance of the Hamiltonian Monte Carlo algorithm, as we will explain
in section 3.2. Endowed with momentum, the model or particle q will move through the 2Nq-dimensional
phase space according to Hamilton’s equations (e.g., Landau & Lifshitz, 1976; Symon, 1971),

dqi

d𝜏
= 𝜕K

𝜕pi
,

dpi

d𝜏
= − 𝜕U

𝜕qi
, i = 1,… ,Nq , (7)

and with increasing artificial time 𝜏 that is not to be confused with the physical time t. Based on this notion
of a model moving as a particle through phase space, the Hamiltonian Monte Carlo algorithm operates in the
following sequence of steps, starting from a randomly chosen initial model q:

1. Randomly draw the Nq momenta pi from the normal distribution exp
(
− 1

2
pT−1p

)
.

2. With position and momentum thus determined, propagate the model q forward in time by solving Hamil-
ton’s equations (7). After some time 𝜏 , which remains to be chosen, a new model q(𝜏)with a new momentum
p(𝜏) is reached.

FICHTNER AND SIMUTĖ 2986
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3. The new model is accepted with probability

Πaccept = min

[
1,

exp [−H(p(𝜏),q(𝜏))]
exp [−H(p,q)]

]
, (8)

where H = K +U is the total energy or Hamiltonian of the model. If accepted, q(𝜏) will serve as initial model
for the next trajectory. Otherwise, q will be reused as starting point.

4. Return to (1) and repeat until sufficiently many samples have been produced.

The models generated by the algorithm are samples of the posterior 𝜋(q|d) and may be used to compute
marginals, means, covariances, or other quantities of interest. Tuning parameters that affect convergence are
the mass matrix  and the propagation time 𝜏 along the Hamiltonian trajectory. These will be discussed
below in the context of specific applications.

3.2. Weakly Nonlinear Problems
Most of the computational expense in Hamiltonian Monte Carlo is in the evaluation of 𝜕U∕𝜕qi along the
Hamiltonian trajectory, because this requires us to compute derivatives of the posterior and, therefore, of the
forward problem. The computation cost can be reduced substantially in the case of Gaussian observational
errors and weakly nonlinear problems where the forward equations can be meaningfully linearized. In fact,
under the Gaussian assumption and in the context of seismic source inversion, the potential energy U defined
in equation (5) is equal to

U(q) = 1
2T

Nr∑
r=1

3∑
n=1

T

∫
0

𝜎−2
d

[
un(xr, t;q) − uobs

n (xr, t)
]2

dt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ud(q)

+ 1
2Nq

(q − q0)T C−1
q (q − q0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Uq(q)

. (9)

The first term in equation (9), Ud , is the L2 waveform misfit between observations uobs
n (xr, t) and synthetics

un(xr, t;q) at Nr receiver positions xr , integrated over the time interval [0, T]. The data covariance 𝜎2
d encodes

the observational uncertainties. While 𝜎2
d could be made time dependent and receiver dependent, we keep it

constant for notational convenience. The second term in equation (9), Uq, captures Gaussian prior knowledge
on the model parameters q, with prior mean q0 and prior covariance matrix Cq. Using equations (5) and (9),
the likelihood function and the model-space prior may be written as

𝜋(d|q) = exp
[
−Ud(q)

]
, 𝜋(q) = exp

[
−Uq(q)

]
. (10)

Expanding the synthetics in equation (9) around q0 gives correct to first order,

un(xr, t;q) = un(xr, t;q0) +
Nq∑
i=1

𝜕

𝜕qi
un(xr, t;q0) (qi − q0

i ) . (11)

With the forward problem defined in equations (2) and (3), expression (11) is exact for the moment tensor
components Mnj and the source time function coefficients sk . Higher-order terms only exist for the source
coordinates 𝝃 and the origin time t0. Substituting (11) into (9) and isolating the model parameters qi yields a
simplified expression for the potential energy,

U(q) = 1
2

Nq∑
i,j=1

(qi − q0
i )Aij (qj − q0

j ) +
Nq∑
i=1

bi(qi − q0
i ) +

1
2

c . (12)

The quantities Aij , bi , and c are defined as

Aij =
1

T𝜎2
d

Nr∑
r=1

3∑
n=1

T

∫
0

𝜕

𝜕qi
un(xr, t;q0) 𝜕

𝜕qj
un(xr, t;q0)dt + 1

Nq𝜎
2
q

,

bi =
1

T𝜎2
d

Nr∑
r=1

3∑
n=1

T

∫
0

[
un(xr, t;q0) − uobs

n (xr , t)
] 𝜕

𝜕qi
un(xr, t;q0)dt ,

c = 1
T𝜎2

d

Nr∑
r=1

3∑
n=1

T

∫
0

[
un(xr, t;q0) − uobs

n (xr , t)
]2

dt .

(13)
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Being independent of the variable q, they can be precomputed before running the Hamiltonian Monte Carlo
sampling. With the help of (12), the derivative of the potential energy is reduced to the simple vector-matrix
product,

𝜕U
𝜕qi

=
Nq∑
j=1

Aij(qj − q0
j ) + bi , (14)

which does not require significant computational resources. The first-order approximation (11) leads to a
modified Hamiltonian Monte Carlo algorithm where an approximate trajectory is computed on the basis of
equation (14), while the correct criterion (8) is still used to decide about the acceptance of new samples.

In addition to yielding a computationally more efficient algorithm, equation (14) can also guide the choice of
the mass matrix  that we have so far left unspecified. Indeed, substituting (14) into Hamilton’s equations
(7) gives a second-order differential equation for q(𝜏),

d2q
d𝜏2

+−1A(q − q0) = −−1b . (15)

Using the matrix exponential and matrix square root, the solution of (15) can be symbolically written as

q(𝜏) = exp
(

i
√−1A𝜏

)
q1 + q2 , (16)

with some constant vectors q1 and q2. Equation (16) reveals that the model q(𝜏) oscillates through phase
space along closed Hamiltonian trajectories. Depending on the product −1A, some components of q(𝜏)
may oscillate very rapidly and explore phase space in a short time, while others may oscillate slowly and take
a long time for phase space oscillation. However, for an efficient algorithm it is desirable that all components
oscillate with roughly equal speed. This can be achieved by choosing  = A when A is indeed a positive
definite covariance matrix that can be used to draw random momenta in Step 1 of the Hamiltonian Monte
Carlo algorithm. Otherwise, choosing  to be a diagonal matrix with entries Qii = Mii empirically works well
in the examples presented below.

In the following sections we will illustrate the application of the modified Hamiltonian Monte Carlo algorithm,
first using an easily reproducible toy problem, and then with a real-data application in the Japanese
Islands region.

3.3. Numerical Details
To integrate Hamilton’s equations (7), we use the leapfrog algorithm. Being symplectic, it ensures that the
time-discrete equations still maintain two properties of Hamiltonian dynamics that are essential for Hamilto-
nian Monte Carlo, volume preservation and reversability (Neal, 2011). Following Neal (1996), we choose the
integration step size empirically to be slightly less than the minimum step size required for numerical stabil-
ity. This ensures that the integration error remains moderate and that the phase space is explored efficiently
with the minimum number of integration steps. The length of individual Hamiltonian trajectories, that is, 𝜏 in
equation (8), is found adaptively using the No-U-Turn criterion (Hoffmann & Gelman, 2014). This ensures that
trajectories terminate when they begin to return toward their starting point. While a mathematical proof for
the efficiency of the No-U-Turn criterion still seems to be missing, it is commonly found to work well empirically
(Betancourt, 2017).

4. Toy Problem Illustrations

We begin our illustrative tour with simplistic synthetic inversions of P waveforms in a homogeneous elastic
full space where the forward problem can be solved analytically (e.g., Aki & Richards, 2002). These examples
are intended to be educational and to explain key features of Hamiltonian Monte Carlo.

4.1. Model Space Exploration
In the first example we only consider the moment tensor components Mij , keeping all other parameters fixed.
The source is at (xs, ys, zs) = (0, 0, 0)m with Mxx = 1 and Myy = Mzz = Mxy = Mxz = Myz = 0 Nm. Three receivers
are located along the coordinate axes at (x1, y1, z1) = (103, 0, 0), (x2, y2, z2) = (0, 103, 0), and (x3, y3, z3) =
(0, 0, 103) m. In this configuration, only the diagonal components Mxx , Myy , and Mzz can be constrained.
The off-diagonals Mxy , Mxz , and Myz are purely controlled by the model-space prior 𝜋(q) from equations (9)
and (10). For simplicity, we use a zero prior mean q0 = 0 and a diagonal prior covariance matrix Cd = 𝜎2

d I,
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Figure 1. Two-dimensional projection onto the Mxx-Myy plane of the first
three trajectories of a Hamiltonian Monte Carlo run. The red star and the
blue dot mark the start and end points, respectively. Black arrows symbolize
the random momentum vectors at the beginning of the trajectories, plotted
in different colors.

where I is the identity matrix. Both the prior standard deviation, 𝜎q, and
the observational errors 𝜎d we will vary during the subsequent numerical
experiments.

To understand the functioning of Hamiltonian Monte Carlo, we consider
the projection onto the Mxx-Myy plane of the first three trajectories of a rep-
resentative random walk, shown in Figure 1. The walk starts at a random
position, indicated by the red star. There, the model q is given a random
momentum p, shown by a black arrow. Following Hamiltonian dynamics,
the model moves along an elliptical trajectory, roughly in the direction of
Mxx = 1 and Myy = 0 Nm. At the end of the trajectory, the model receives
a new random momentum, which takes it onto a different elliptical tra-
jectory, roughly orbiting around Mxx = 1 and Myy = 0 Nm. The same
procedure is then repeated. A key feature of Hamiltonian Monte Carlo,
seen from this illustration, is that models stay within the typical set, that is,
the relevant part of the model space where the posterior 𝜋(q|d) is large.
This property is essential for the efficiency of Hamiltonian Monte Carlo.
It ensures that new proposals are likely to be accepted and that the model
space is explored rapidly.

The importance of a high acceptance rate is illustrated in Figure 2, where
we compare Hamiltonian Monte Carlo to the Metropolis-Hastings algo-
rithm. The latter proposes samples randomly according to the prior 𝜋(q)
(Hastings, 1970; Metropolis et al., 1953; Mosegaard & Tarantola, 1995). The
prior standard deviation is set to 𝜎q = 0.5 Nm for all moment tensor com-
ponents, and the observational errors 𝜎d decrease successively. (During
each individual inversion, 𝜎d is constant, but variable from one inversion
to the next.) When 𝜎d is as large as the P wave amplitude itself (𝜎d = 1

in Figure 2a), the posterior 𝜋(q|d) is broad because many models fit the artificial observations acceptably
well. Therefore, more than 60% of the test samples proposed during the Metropolis-Hastings algorithm are
accepted, and the model space is explored efficiently. However, as the observational error 𝜎d decreases, the
percentage of accepted test models drops superexponentially. When 𝜎d equals 5% of the maximum P wave
amplitude, not uncommon in practice, only 0.15% of all proposals are accepted. The algorithm is stalled at few
models because the probability of randomly drawing a test model within the very small typical set of the pos-
terior has become negligible. Consequently, the model space is explored very inefficiently, and most of the
computational resources are wasted. In contrast to Metropolis-Hastings, the acceptance rate of Hamiltonian
Monte Carlo is constant around 40%, independent of the observational errors.

The drop in acceptance rate observed in Figure 2a is a consequence of shrinking the typical set of the poste-
rior relative to the fixed typical set of the prior, as observational uncertainties decrease. A similar phenomenon
occurs when the typical set of the prior expands relative to a fixed typical set of the posterior. This is shown
in Figure 2b where the standard deviation of the prior 𝜎q increases from 0.5 to 2.5 Nm. (Again, 𝜎q is con-
stant within each inversion but varies from one run to the next.) The increasingly weaker prior enlarges the
typical set of the prior from which the Metropolis-Hastings algorithm draws its proposals. Consequently, it
becomes less likely to obtain a proposal from the typical set of the posterior, and the acceptance rate drops.
Again, Hamiltonian Monte Carlo does not suffer from this problem, which becomes even more severe in higher
dimensions as a consequence of the curse of dimensionality (e.g., Tarantola, 2005).

In summary, Figure 2 illustrates that Hamiltonian Monte Carlo is well suited for scenarios that are typical
for seismic source inversion: high data quality (low observational errors) and weak prior knowledge on
parameters such as moment tensor components that may vary over several orders of magnitude.

4.2. Convergence
The efficient exploration of model space in Hamiltonian Monte Carlo favorably affects convergence, as illus-
trated in Figure 3 for the case of 𝜎d = 0.1 and 𝜎q = 2.0 Nm. Using 20 bins, the posterior marginal of Mxx

requires several thousand samples to converge. However, the posterior mean and the posterior standard devi-
ation practically reach their final values already after a short burn-in phase of several tens of samples, needed
to find the typical set.
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Journal of Geophysical Research: Solid Earth 10.1002/2017JB015249

Figure 2. Acceptance rate of the Metropolis-Hastings algorithm (solid) and Hamiltonian Monte Carlo (dashed) averaged
over 10 runs with 10,000 samples each. (a) Acceptance rate as a function of the observational error 𝜎d in equation (9),
normalized to the maximum amplitude of the P wave. For Metropolis-Hastings, the acceptance rate drops
superexponentially with decreasing observational errors, while the acceptance rate for Hamiltonian Monte Carlo is
constant at 40%. (b) Acceptance rate as a function of the prior standard deviation 𝜎q for the moment tensor
components. For an increasingly weaker prior, that is, increasing prior standard deviation, the acceptance rate for
Metropolis-Hastings decreases rapidly, while the acceptance rate of Hamiltonian Monte Carlo is again unaffected.
The behavior of the prior and posterior typical sets for decreasing errors and weaker priors is illustrated in color below.

For the same choice of 𝜎d and 𝜎q, the acceptance rate of the Metropolis-Hastings algorithm is on the order
of 10−4, meaning that any consideration of convergence would not even be meaningful when the number of
samples is not some orders of magnitude larger than 104. While Figure 3 only shows the marginal of Mxx , we
note that maginals for the remaining moment tensor components behave identically.

4.3. Extension to Source Location, Origin Time, and Source Time Function
Based on the formulation developed in section 3.2, the previous example can be extended to include origin
time, source location, and source time function coefficients as free parameters. As bases for the source time
function, 𝜙k , we choose 10 nonoverlapping box functions of duration 1 s. The dimension of the model space
is therefore 20.

Convergence and acceptance rate of Hamiltonian Monte Carlo behave similar as in the reduced scenario
shown in Figures 2 and 3. This suggests that the linear approximation for origin time and source location
indeed works well. For illustration, we show a collection of 2-D posterior marginals for different parameter
pairs, as well as 1-D posterior marginals for the source time function coefficients, in Figure 4. Notable, and
intuitively plausible, features of the marginals for this simple example, such as the trade-off between source
location xs and origin time t0, indicate that the algorithm functions as expected and is ready for real-data
applications.

5. Application

To test the Hamiltonian Monte Carlo source inversion on observed waveforms, we consider an event from near
the Izu arc, south of Japan (Figure 5a). In the following paragraphs, we will describe the data, the structural
model used to compute synthetic seismograms, and the inferred properties of the event.
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Figure 3. Convergence of the posterior marginal of the moment tensor component Mxx with increasing number of
samples. (a) Histogram of the posterior marginal with 20 bins and a number of samples ranging between 20 and
100,000. (b) Convergence of the posterior mean and the posterior standard deviation of Mxx . While the posterior
distribution in (a) requires several thousand samples to achieve acceptable convergence, the posterior mean and the
posterior standard deviation converge after a very short burn-in phase of several tens of samples.

5.1. Data and Structural Model
The event used for this demonstration occurred on 30 May 2005. According to the global centroid moment
tensor (CMT) catalog (www.globalcmt.org, last accessed on 17 November 2017), its origin was at latitude
32.20∘, longitude 141.01∘, depth 50.0 km, and GMT 11:18:08.47. The estimated magnitude was Mw 5.2.
Among the available stations we selected 14 with an estimated signal-to-noise ratio above 10 in the period
range of 15–100 s. The distribution of stations and the CMT location of the event are shown in Figure 5a.

The structural model is based on the full-waveform inversion of the Japanese Islands region by Simute et al.
(2016). For the construction of the model, we used the numerical wave propagation code SES3D (Fichtner
et al., 2009; Gokhberg & Fichtner, 2016), which combines spectral element simulations of wave propagation
(Faccioli et al., 1997; Fichtner, 2010; Komatitsch & Vilotte, 1998) with adjoint techniques (e.g., Fichtner et al.,
2006; Tarantola, 1988; Tromp et al., 2005). The waveform inversion framework LASIF (Krischer et al., 2015) was
used for data management and for the iterative minimization of time- and frequency-dependent phase misfits
between observed and synthetic seismograms (Fichtner et al., 2008). In preparation for this source inversion
study, we further improved the model of Simute et al. (2016) by reducing the minimum period from 20 to 15
s, using the same full-waveform inversion method as before. The model is radially anisotropic and captures
both crustal and mantle structure. To illustrate the complexity of the model, horizontal slices through the SV
velocity distribution and 15 and 70 km depth are shown in Figure 5b.

5.2. Setup of the Hamiltonian Monte Carlo Sampling
To prepare for the posterior sampling, we chose the CMT solution as prior mean, q0, for the Taylor expansion
in equation (11), and for the computation of the quantities Aij , bj , and c in equation (13). Since the duration
of magnitude ∼ 5 earthquakes is usually only a few seconds (e.g., Vallée, 2013), which is small compared
to the minimum period of 15 s, we restrict the model parameter space to the moment tensor components,
the source location, and the origin time. Omitting the source time function, we therefore have Nq = 10.
Figure 6 shows the prior source model, and a comparison of observed and prior synthetic seismograms com-
puted with the structural model presented in the previous paragraph. While only the E-W components are
shown, all three components are used in the analysis.

To avoid nonlinearity related to cycle skipping, we restrict measurements to time intervals where observed
and prior synthetic seismograms match to within a half-cycle. This windowing may be relaxed when only
inverting for the moment tensor components, which enter the forward problem purely linearly. We conser-
vatively set the observational error to 𝜎d = 0.1μm. The prior model covariance Cq is diagonal with standard
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Figure 4. Selection of posterior marginals for the combined inference of source location, origin time, and source time
function. (a) Trade-offs between pairs of model parameters are quantified by 2-D posterior marginals. The synthetic
input model and the posterior maximum-likelihood model are indicated by red and blue stars, respectively. (b) Posterior
marginal for the source time function coefficients. Prior and posterior maximum-likelihood values are marked by red
and blue lines, respectively.

deviations set to infinity, thus reflecting a state of ignorance where the influence of the prior is negligible.
Mathematically, 𝜎q → ∞ eliminates the term N−1

q 𝜎−2
q in the computation of Aij (equation (13)).

With the goal to assess convergence of the Hamiltonian Monte Carlo sampling, we perform two runs, the first
with 1 million samples, the second with only 100 samples. The posterior maximum-likelihood model obtained
from 100 samples is visualized in Figure 6a. The corresponding synthetic seismograms are shown below in
Figure 6b by solid black curves. Despite the small number of samples, the maximum-likelihood source pro-
vides a significantly improved fit to the observations, especially at stations GJM, HID, HJO, HRO, and KMU. At
stations HID and KMU the fit also improves visibly outside the actual measurement window.

5.3. Posterior Distributions
The quality of the maximum-likelihood model is fully characterized by the posterior, 𝜋(q|d), which consti-
tutes the complete solution to the Bayesian inference or probabilistic inverse problem. Figure 7 visualizes the
posterior in the form of 1-D marginals for the individual model parameters.

Standard deviations of the moment tensor components vary significantly, ranging from ∼ 0.4 ⋅ 1016 Nm for
Mxy to∼1.5 ⋅1016 Nm for Mxx . The uncertainties in the components of M translate into uncertainties of derived
parameters, including the seismic moment and the trace, shown in Figure 7b. In fact, the maximum-likelihood
moment tensor has a nonzero trace of ∼3 ⋅ 1016 Nm, but a moment tensor with vanishing trace is only within
little more than a standard deviation. Uncertainties of the time and space location parameters in Figure 7c
are comparatively small, and the posterior maximum-likelihood is close to the prior mean. As a consequence
of stations HJO and AOG being just slightly west of the event (Figure 5), longitude is better constrained than
latitude.

A remarkable aspect is the number of samples needed to obtain useful approximations of the posterior mean
and standard deviations for the individual parameters. These are indicated in Figure 7 for 1 million samples in
blue and for 100 samples in red. While they differ, of course, by a few percent, they are for practical purposes
identical. This important result confirms the preliminary synthetic study presented in section 4.2 and Figure 3.
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Figure 5. Source-receiver geometry and the structural model. (a) Distribution of broadband stations (black triangles) used in the source inversion. The a priori
epicentral location of the earthquake is marked by a red star. (b) SV velocity structure at 15 and 70 km depth in the radially anisotropic model of the Japanese
Islands used for the computation of synthetic seismograms. In the 15 km depth slice, gray scale approximately marks mantle velocities, whereas colors from red
over white to blue approximately represent crustal velocities.

The most significant interparameter trade-offs are shown in Figure 8 by a collection of 2-D posterior marginals.
They illustrate, for instance, that both Mxx and Myy may be reduced without changing the misfit significantly,
which is in accord with the previous finding that the trace is rather poorly constrained. To assess convergence
of a 2-D trade-off measure, we compute the normalized posterior covariance

cov0(qi, qj) =
cov(qi, qj)

𝜎i𝜎j
, (17)

where 𝜎i denotes the posterior standard deviation of parameter qi . Following the color scheme from Figure 7,
values of cov0 are shown in blue for 1 million samples and in red for 100 samples. Since the computation
of a covariance involves the square of parameters, the differences are larger than for the single-parameter
standard deviation, but still mostly limited to around 10%. The only exception is the parameter pair t0 latitude,
where larger differences result from the division by a small standard deviation in equation (17).

6. Discussion

In the previous sections, we introduced the concept of Hamiltonian Monte Carlo in the context of geophysical
Bayesian inference and showed applications to seismic point source inversion for regional CMTs and location.
Issues that remain to be discussed include the extent to which Hamiltonian Monte Carlo can be expected to
be universally efficient, the parametrization of the moment tensor, the quantification of observational and
modeling uncertainties, and the role of the prior.

6.1. No Free Lunch
While Hamiltonian Monte Carlo is widely considered to be an efficient alternative to preexisting sampling
methods, it is important to keep in mind that efficiency only exists within a context. As stated by a series
of No-Free-Lunch theorems (e.g., Mosegaard, 2012; Wolpert & Macready, 1997), efficiency is not an inherent
attribute of a method, but it arises from the combination of the method with the right kind of prior knowledge
about a specific problem.

In the case of seismic source inversion, we possess the prior knowledge that the forward problem is exactly
linear in the parameters that can vary by many orders of magnitude, that is, the moment tensor components.
Furthermore, we know that derivatives with respect to other parameters, including origin time and location,
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Figure 6. Summary of source models and waveforms. (a) Properties of the prior and posterior maximum-likelihood source models, the latter being obtained
from 100 samples. DC percentage is the double-couple percentage as defined in Jost and Herrmann (1989). (b) E-W components seismograms. Observations are
plotted in red, synthetics for the prior maximum-likelihood source in black dashed, and synthetics for the posterior maximum-likelihood source from 100
samples in black solid. The measurement windows used in the Hamiltonian Monte Carlo sampling are marked in white, with boundaries of the cosine taper in
light gray. Time intervals marked in darker gray have been discarded because the initial fit between observations and synthetics was insufficient. Waveforms for
the N-S and vertical components appear similar and are therefore not shown.

can be computed easily, and these derivatives enable a meaningful linearization. Without these prerequisites,
Hamiltonian Monte Carlo would not be a good choice for the source inversion problem.

Along similar lines, we note that Hamiltonian Monte Carlo is not the only method designed to reduce the
impact of the curse of dimensionality and to increase the model space dimension that can be handled
in practical applications. Others include the Neighborhood Algorithm (Sambridge, 1999a, 1999b), (parallel)
tempering (e.g., Geyer & Thompson, 1995; Marinari & Parisi, 1992; Sambridge, 2014), and transdimensional
sampling (e.g., Bodin & Sambridge, 2009; Green, 1995; Sambridge et al., 2006, 2013).

6.2. Parametrization
Throughout the history of seismic source inversion methods, numerous parametrizations have been
proposed, especially of the moment tensor. These include the classic decomposition into isotropic,
double-couple, and compensated linear-vector components (Kikuchi & Kanamori, 1991; Knopoff & Randall,
1970); decompositions based on the eigenvectors and eigenvalues of the moment tensor (e.g., Chapman &
Leaney, 2012; Hudson et al., 1989; Riedesel & Jordan, 1989); and the uniform parametrization of the moment
tensor space (e.g., Tape & Tape, 2012, 2015).

All of the proposed parametrizations fully span the space of moment tensors. This turns the choice of one of
them into a delicate balancing act between advantages and disadvantages that is to some extent subjective.
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Figure 7. Summary of one-dimensional posterior marginals. (a) Marginals of the of the individual moment tensor components in units of 1016 Nm.
Black histograms are drawn from 1 million samples. The posterior mean, standard deviation, and Gaussian are shown for 1 million samples in blue and for 100
samples in red. For better comparability, the x axes are labeled with the mean and deviations from the mean, for example, −1.18 ± 8 for Mxx .
(b) Posterior distributions of the seismic moment, M0, and the moment tensor trace, tr M. The color coding is the same as above; blue for 1 million samples
and red for only 100 samples. (c) Posterior marginals for source location and timing, relative to the prior origin time. Color coding and labeling as before.

While, for instance, the parametrizations of Chapman and Leaney (2012), Hudson et al. (1989), Riedesel and
Jordan (1989), and Tape and Tape (2015) may help with the physical interpretation of the moment tensor,
they also sacrifice the linearity of the forward problem. An advantage of the uniform parameterization
proposed by Tape and Tape (2015) is that a larger number of parameters is naturally bounded, which could
make Metropolis-Hastings sampling more competitive.

Besides subjective preferences, Hamiltonian Monte Carlo relies on the efficient computation of derivatives,
which gives a clear preference to parametrizations that lead to a linear forward problem. Since Monte
Carlo sampling does not require artificial regularization by suppressing isotropic or non-double-couple
components, our choice of working directly with the moment tensor components seems natural.

6.3. Quantification of Modeling and Observational Errors
With the focus of this work being on Hamiltonian Monte Carlo as a method for source inversion, we admit-
tedly paid less attention to other aspects of the problem that may not be less important. These include
the quantification of forward modeling and observational uncertainties, as performed, for instance, by
Mustać and Tkalčić (2016), Silwal and Tape (2016), Staehler and Sigloch (2014, 2017), Vackár et al. (2017),
and Wéber (2006).

In the interest of a clear methodological description, we limited ourselves to the assumption of uncorrelated
Gaussian observational errors. Based on the analysis of preevent noise, we concluded that they are well
(but still conservatively) described by a single standard deviation of 𝜎d = 0.1μm for all stations. Since the
structural model used to compute synthetic seismograms is the result of a full seismic waveform inversion
in the region of interest, we further assumed that forward modeling errors are negligible, relative to the
observational uncertainties.
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Figure 8. Summary of the most significant interparameter trade-offs in the form of 2-D posterior marginal distributions. All other parameter pairs are nearly
independent. Posterior maximum-likelihood values are indicated inside the panels. Following the color coding of Figure 7, normalized covariances,
cov0(qi, qj) = cov(qi, qj)∕(𝜎i𝜎j), are shown in blue for 1 million samples, and in red for 100 samples.

Regardless of these pragmatic simplifications, we note that more complex descriptions of observational
and forward modeling uncertainties can be incorporated into Hamiltonian Monte Carlo by including proper
covariance matrices in the definition of the potential energy in equation (9).

6.4. Role of the Prior
An essential component of our “sloppy” Hamiltonian Monte Carlo is a Taylor expansion around the prior mean
model. As a consequence, the quality of the prior mean—in terms of its proximity to the posterior mean—can
affect the convergence of the algorithm for those parameters that do not enter the forward problem exactly
linearly (e.g., source location and origin time). The effect on convergence is hard to quantify a priori and
should, as so often, be assessed on a case-by-case basis. Parenthetically, we remark that the proposed method
may be modified by replacing the Taylor expansion around the prior mean by a Taylor expansion around the
current model.

6.5. Computational Requirements
The computational requirements of the source inversions shown in the previous sections are generally low,
meaning that they are feasible on modern laptop computers. While precise numbers are too hardware depen-
dent to be generally meaningful, we note that the CPU time for the real-data inversion is on the order of several
seconds. Wavefield storage requirements are on the order of several gigabytes, though this may be reduced
drastically using modern wavefield compression techniques (e.g., Boehm et al., 2016).

7. Conclusions

We present a new method for the Bayesian inference of effectively point-localized seismic sources, includ-
ing their timing, location, moment tensor, and source time function. The method has two key elements:
(1) Spectral element simulations combined with wavefield reciprocity allow us to account for 3-D hetero-
geneous Earth structure. (2) Hamiltonian Monte Carlo sampling drastically reduces the number of required
samples, especially in those cases where the data quality is high and/or prior knowledge is weak.

Since Hamiltonian Monte Carlo is sill hardly used for the solution of seismological inverse problems, we pro-
vide a detailed introduction, with special emphasis on weakly nonlinear problems for which first derivatives
can be computed efficiently. Seismic source inversion falls into this category, meaning that it is within the
niche of applications for which Hamiltonian Monte Carlo is efficient. As part of the introduction, we show
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Journal of Geophysical Research: Solid Earth 10.1002/2017JB015249

that the acceptance rate of Hamiltonian Monte Carlo is practically unaffected when data quality increases
and when prior knowledge weakens. This is in strong contrast, for instance, to the widely used
Metropolis-Hastings algorithm.

In a real-data application for an event in the Japanese Islands region, we demonstrate the practical feasibility
of our Hamiltonian Monte Carlo source inversion. Using a 3-D structural model inferred from full-waveform
inversion, we obtain the full posterior for timing, location, and mechanism with as little as 100 samples.

While details of the method, including the treatment of observational errors and the measurement process,
may still be improved, the examples are promising. They indicate that extensions to larger-scale finite-source
inversions with many more parameters may be possible.
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