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Abstract

The human linguistic system is characterized by modality invariance and attention selectivity. Previous studies have
examined these properties independently and reported perisylvian region involvement for both; however, their relationship
and the linguistic information they harbor remain unknown. Participants were assessed by functional magnetic resonance
imaging, while spoken narratives (auditory) and written texts (visual) were presented, either separately or simultaneously.
Participants were asked to attend to one stimulus when both were presented. We extracted phonemic and semantic
features from these auditory and visual modalities, to train multiple, voxel-wise encoding models. Cross-modal
examinations of the trained models revealed that perisylvian regions were associated with modality-invariant semantic
representations. Attentional selectivity was quantified by examining the modeling performance for attended and
unattended conditions. We have determined that perisylvian regions exhibited attention selectivity. Both modality
invariance and attention selectivity are both prominent in models that use semantic but not phonemic features. Modality
invariance was significantly correlated with attention selectivity in some brain regions; however, we also identified cortical
regions associated with only modality invariance or only attention selectivity. Thus, paying selective attention to a specific
sensory input modality may regulate the semantic information that is partly processed in brain networks that are shared
across modalities.
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Introduction
Modality invariance (MI) and attention selectivity (AS) are two
properties that are characteristic of language communication.
We understand linguistic contents, regardless of their presen-
tation in text or speech (MI). When we are exposed to different
linguistic stimuli simultaneously, however, attending to auditory
information often prevents the understanding of information
presented visually (AS).

Previous studies have reported modality-invariant brain
activity, associated with single-word processing (Booth et al.
2002; Marinkovic et al. 2003), sentence comprehension (Carpen-
tier et al. 2001; Jobard et al. 2007), and story comprehension

(Deniz et al. 2019; Regev et al. 2013; Nguyen et al. 2019). In
particular, Deniz et al. (2019) quantitatively estimated common
semantic information across visual and auditory modalities,
even after excluding the effects of other linguistic and sensory
features. Modality-invariant linguistic information is likely
represented in the perisylvian, “higher-order” brain regions,
including the inferior frontal, superior temporal, and parietal
regions (Regev et al. 2013).

In contrast, other studies have reported that selective
attention can improve the comprehension of sentences in
the attended modality and induce changes in cortical activity
patterns (Moisala et al. 2015; Regev et al. 2019; Wang and
He 2014). Regev et al. (2019) showed that selective attention
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can enhance the linguistic information flow of the attended
modality, from early sensory areas along the processing
hierarchy, converging in the perisylvian, “higher-order” brain
regions.

Although the processing hierarchy of linguistic information
has been suggested, in terms of both MI and AS, indepen-
dently, how these two “higher-order” areas are related to each
other is yet to be determined (Fig. 1A). The first hypothesis
is that these areas overlap, forming a unified area that rep-
resents modality-invariant and attention-selective information
(Fig. 1A, left). The second hypothesis is that functionally distinct
areas operate independently (Fig. 1A, right). The third hypoth-
esis exists between these two extremes: some areas represent
both MI and AS, whereas other areas exclusively represent one
or the other (Fig. 1A, center). Which types of linguistic informa-
tion (semantic or phonemic) contribute to these properties also
remains unknown.

To address these issues, 7-h, functional magnetic resonance
imaging (fMRI) experiments were conducted, during which uni-
modal and bimodal language stimuli were presented. During the
unimodal experiments (Fig. 1B), six participants either listened
to spoken narratives (Speech-only condition) or read transcribed
narratives (Text-only condition). Meanwhile, during the bimodal
experiment (Fig. 1C), both speech and text were presented simul-
taneously, and the participants were asked to attend to either
the speech or the text (Attend-audio or Attend-visual conditions,
respectively). Data from the unimodal experiment were used
to evaluate MI, whereas the data from the bimodal experiment
were used to evaluate AS.

In order to evaluate the brain representations of multiple
linguistic features, quantitatively, we used voxel-wise encoding
models (Naselaris et al. 2011) (Fig. 1D). By using this approach,
brain activity can be modeled by a combination of features
that are extracted from the presented stimuli. Researchers have
adopted this approach to comprehensively examine semantic
representations (de Heer et al. 2017; Deniz et al. 2019; Huth
et al. 2016), visual object category representations (Çukur et al.
2013a; Çukur et al. 2016; Çelik et al. 2019; Huth et al. 2012), and
how attention modulates representations (Çukur et al. 2013b;
Shahdloo et al. 2020). Using this modeling approach, under
cross-modal and multiple-attention conditions, we elucidated
a quantitative relationship between modality-invariant repre-
sentations (Fig. 1E) and attentional modulation (Fig. 1F), in a
feature-specific manner.

Materials and Methods
Participants

Six healthy participants (referred to as ID01–ID06; ages 22–29;
all native Japanese; two females), with normal vision and hear-
ing, participated in the fMRI experiments. Participants were
all right-handed, as measured using the Edinburgh inventory
(Oldfield 1971) (laterality quotients, 62.5–100). Informed consent
was obtained from all participants, prior to their participation in
the study. This experiment has received approval from the Ethics
and Safety Committee of the National Institute of Information
and Communications Technology, Osaka, Japan.

Stimuli and Tasks

We selected 20 narrative stories from the Corpus of Spontaneous
Japanese (Maekawa, 2003), of which 14 narratives were used
during the training runs, for both Text-only and Speech-only

conditions (total of 28 runs). One narrative was used only in the
test run of the Text-only condition, one narrative was used only
in the test run of the Speech-only condition, two narratives were
used only in the test run of the Attend-visual condition (i.e.,
simultaneously presented in a single run), and two narratives
were used only in the test run of the Attend-audio condition
(i.e., simultaneously presented in a single run). All test runs
were conducted twice (total of eight runs). We used different
narratives during each test runs, in order to avoid adaptations
to the redundant presentation of the same content.

All narratives were originally recorded in the auditory modal-
ity. Sound signals were controlled by their root mean square and
were only used in the Speech-only, Attend-visual, and Attend-
audio conditions. Visual stimuli used for the Text-only, Attend-
visual, and Attend-audio conditions were generated by pre-
senting each spoken segment on the center of the screen. The
onset of each visual segment has matched the onset of the
corresponding segment in the spoken narrative. The average
duration of the spoken narratives (mean ± standard deviation
[SD]) was 673 ± 70 s.

During the Speech-only condition, participants were asked
to fixate on a fixation cross-presented on the center of
the screen and listened to spoken narratives, through MRI-
compatible ear tips. Meanwhile, during the Text-only condition,
participants read the transcribed narratives, which were
displayed on the center of the screen, using a Rapid Serial
Visual Presentation method (Forster 1970). During the Attend-
audio condition, participants listened to the spoken narratives,
through MRI-compatible ear tips, and were instructed to
ignore the text that was displayed simultaneously. Partici-
pants were asked not to close their eyes and were further
instructed to fixate on the center of the screen. During the
Attend-visual condition, participants were instructed to read
the transcribed narratives displayed on the center of the
screen, while ignoring the simultaneously presented spoken
narratives.

At the beginning of each run, 10 s of dummy scans were
acquired, during which the fixation cross was displayed, and
these dummy scans were later omitted from the final analysis
to reduce noise. We also obtained 10 s of scans at the end of
each run, during which the fixation cross was displayed, and
these were included in the analyses. In total, 36 fMRI runs
were performed for each participant. Among these, 28 runs
were used for model training (14 each, under the Speech-only
and Text-only conditions), whereas 8 runs were performed for
model testing (2 each, under the Text-only, Speech-only, Attend-
visual, and Attend-audio conditions). For each participant, the
experiments were executed over the course of 7 days, with 4–6
runs performed each day.

Participants were informed prior to the fMRI scan that, after
each run, they would be asked to answer 10 questions relevant to
the stimulus on which they were instructed to concentrate (the
attended stimulus). However, the actual questionnaire that was
administered after the fMRI scans included 10 questions that
were relevant to both the attended and unattended stimuli. This
surprise was intended so that participants would concentrate
on understanding the instructed modality while ignoring the
distractive one.

MRI Data Acquisition

This experiment was conducted on a 3.0T MRI scanner (MAGNE-
TON Prisma; Siemens, Erlangen, Germany), with a 64-channel
head coil. We scanned 72 2.0-mm-thick interleaved, axial slices,
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Figure 1 . Schematic image of the experimental paradigm and the encoding modeling. (A) Three possible hypotheses are possible regarding the overlap between brain

regions associated with modality-invariant linguistic representations (red) and those modulated by selective attention (blue). Brain regions showing these higher-order
properties could be overlapping (left), independent (right), or partially overlapping (center). (B) Experimental design. During the unimodal experiment (left panel),
participants passively listened to auditory stimuli, in the Speech-only condition, or read a written text, in the Text-only condition. Brain activity was measured

using fMRI. The original Japanese stimuli were translated into English for the purpose of intelligibility. (C) During the bimodal experiment (right panel), visual and
auditory stimuli were presented to participants, simultaneously. The participants selectively attended to the visual (Attend-visual condition) or auditory (Attend-
audio condition) modality. The stimuli in the attended modality are highlighted in blue. (D) Semantic and phonemic features were extracted from the text and speech
stimuli used during the unimodal experiment, and encoding models were separately trained, using the brain activity of the training dataset (text-only and speech-only

models). For model training, using a concatenated matrix of semantic and phonemic features, we used a banded ridge regression (see Materials and Methods). (E) For
MI analyses, trained unimodal models were used to predict brain activity in the test dataset from the unimodal experiments, in both intramodal (yellow arrows) and
cross-modal (red arrows) manners. The prediction accuracy notations are described with each arrow (see Table 1 for a description of all notations). Semantic and
phonemic components were separated using variance partitioning analysis (see Materials and Methods). (F) For AS analyses, the trained unimodal models were used

to predict brain activity during the bimodal experiment, and semantic and phonemic features were extracted from both attended and unattended modalities. Stimuli
in the attended modality are highlighted in blue.
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without a gap, using a T2-weighted, gradient-echo, multiband,
echo-planar imaging sequence (Moeller et al. 2010) (repetition
time [TR] = 1000 ms, echo time [TE] = 30 ms, flip angle [FA] = 62◦,
field of view [FOV] = 192 × 192 mm2, voxel size = 2 × 2 × 2 mm3,
multiband factor = 6). The number of volume collected was
determined to be different for each run, depending on the
stimuli length, of (mean ± SD) 693 ± 70 s (including the 10 s
of initial dummy scans and the 10 s of fixation scans at the
end of each run). For anatomical reference, high-resolution T1-
weighted images of the whole brain were also acquired from all
participants, using a magnetization-prepared rapid acquisition
gradient-echo sequence (MPRAGE, TR = 2530 ms, TE = 3.26 ms,
FA = 9◦, FOV = 256 × 256 mm2, voxel size = 1 × 1 × 1 mm3).

Semantic Features

To quantitatively evaluate the brain representations of the
presented semantic information, in a data-driven manner, we
extracted the semantic features from each narrative stimulus,
using Wikipedia2Vec (Yamada et al. 2018; https://wikipedia2ve
c.github.io/wikipedia2vec/). Wikipedia2Vec has been used to
embed words and entities into distributed representations,
based on the skip-gram model (Mikolov et al. 2013). The
Wikipedia2Vec model is considered to be an extension of the
conventional Word2Vec model, which we used in our previous
study (Nishida and Nishimoto 2018). The Word2Vec model is
trained solely on contextual words around a target word and
has difficulty in dealing with entities (e.g., New York and Julius
Caesar). In contrast, the Wikipedia2Vec model is trained on both
contextual words and entity link information. All transcribed
narrative segments were further segmented into words and
were morphologically parsed, using MeCab (https://taku910.gi
thub.io/mecab/). Individual word segments were projected into
the 300-dimensional space (i.e., word vectors with 300 elements)
and were later assigned to the mean time point between the
onset and offset of target segments, with 40 Hz. The dimension
size of the word vectors was set to the default value of 300. Time
points without any word vector assignments were defined as 0.
The resultant concatenated vectors were downsampled to 1 Hz.

To confirm that the narratives used in the current study were
sufficiently covered in the Wikipedia2Vec semantic space, we
calculated the ratio of words contained in the current narratives
to words contained in the training dataset of the Wikipedia2Vec
model. The resultant ratio was 3582/3902 = 0.918, which indi-
cated that the current narratives were adequately covered in the
Wikipedia2Vec semantic space.

Phonemic Feature

To compare the predictability of brain activity, based on seman-
tic features, with that of other non-semantic linguistic fea-
tures, we also extracted phonemic features from each narrative
stimulus. By using the Julius speech recognition software (Lee
et al. 2001), an onset of each phoneme included in each spoken
narrative was extracted. Each phoneme was then temporally
aligned, based on the estimated onset. In total, 39 phonemes
were extracted using the phoneme alignment procedure. Each
phoneme was assigned to the mean time point between its onset
and offset, and the number of phonemes presented each second
was used as a phonemic feature. Based on the literature on
phonological coding (Leinenger 2014), we assumed that phono-
logical processing is related not only to the listening of narrative
stories but also to the reading of transcribed narratives (i.e., the

Text-only condition), and phonemic features are assigned to the
text stimuli according to their narrative counterpart.

Letter Feature

To model the orthographical components of the Text-only condi-
tion, we extracted the number of letters presented each second
as a letter feature.

fMRI Data Preprocessing

Motion corrections for each run were performed using the Sta-
tistical Parametric Mapping Toolbox (SPM8). All volumes were
aligned using the first echo-planar imaging result for each par-
ticipant. Low-frequency drift was removed, using a median filter,
with a 120-s window. The response for each voxel was then
normalized, by subtracting the mean response and scaling the
response to the unit variance. We used FreeSurfer (Dale et al.
1999; Fischl et al. 1999) to identify cortical surfaces, based on
anatomical data, and to register them against voxels for func-
tional data. For each participant, voxels identified throughout
the whole brain were used in the analysis.

Encoding Model Fitting

The cortical activity measured in each voxel was fitted with a
finite impulse response (FIR) model that captured slow hemo-
dynamic responses and its coupling with neural activity (Nishi-
moto et al. 2011; Kay et al. 2008). Although many fMRI studies
use canonical hemodynamic response function, this function
assumes that the hemodynamic response function has the same
shape across all cortical voxels. This may lead to an inaccurate
modeling of brain activity because there is variation in hemody-
namic responses across different cortical regions (Handwerker
et al. 2004). Using the FIR model, we estimated voxel-specific
hemodynamic response functions (Kay et al. 2008). Potential
overfitting of the FIR model was avoided by using regularization.
In order to examine how the different linguistic features were
associated with cortical activity patterns, we modeled brain
activity using two linguistic features (phonemic and semantic).
A semantic feature matrix, F1 [T × 6 N1], was modeled by con-
catenating sets of [T × N1] semantic feature matrices, with six
temporal delays of 2–7 s each (T = no. of samples; N1 = no. of fea-
tures). Similarly, the phonemic feature matrix, F2 [T × 6 N2], was
modeled using concatenating sets of [T × N2], using phonemic
feature matrices, with six temporal delays. A cortical response, X
[T × V], was then modeled by the concatenated feature matrices
of F1 and F2, multiplied by the concatenated weight matrices, W1

[6N1 × V] and W2 [6N2 × V] (V = no. of voxels):

X = [F1 F2]
[

W1

W2

]
+ ε

where ε is isotropic gaussian noise. In analyzing the predictive
performance of the two linguistic models exclusively, we used
banded ridge regression on the training dataset to obtain the
weight matrices, W1 and W2 (Nunez-Elizalde et al. 2019). Specif-
ically, weight matrices were estimated by solving the following
equation, with regularization parameters α1 and α2:

[
Ŵ1

Ŵ2

]
= argmin

W1,W2

[
‖X − F1W1 − F2W2‖2

2 + α1‖W1‖2
2 + α2‖W2‖2

2

]
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The solution to this equation is as follows:

[
Ŵ1

Ŵ2

]
=

([
FT

1F1 FT
1F2

FT
2F1 FT

2F2

]
+

[
α1I1 0

0 α2I2

])[
FT

1

FT
2

]
X

where I1 and I2 are identity matrices of the sizes [6N1 × 6 N1]
and [6N2 × 6 N2], respectively. The training dataset consisted of
9815 samples, under both Speech-only and Text-only conditions.
An optimal regularization parameter was assessed in each voxel
using 10-fold cross-validation.

The test dataset consisted of 619 Speech-only samples, 617
Text-only samples, 613 Attend-audio samples, and 623 Attend-
visual samples. Differences in sample sizes in the test dataset
can be attributed to the various durations of the naturalistic
narrative story stimuli. Two repetitions of the test dataset were
averaged to increase the signal-to-noise ratio.

Encoding Model Fitting Using Visual and Auditory
Regressors

To exclude the effect of sensory information, we constructed
additional encoding models using visual and auditory regres-
sors. For the visual regressor, we used a motion energy model
(Nishimoto et al. 2011). First, movie frames and pictures were
spatially downsampled to 96 × 96 pixels. The RGB pixel values
were then converted into the Commission International de
l’Eclairage LAB color space, and the color information was
subsequently discarded. The luminance (L∗) pattern was passed
through a bank of three-dimensional spatiotemporal Gabor
wavelet filters. The outputs of the two filters with orthogonal
phases (quadrature pairs) were squared and summed to yield
the local ME. ME was compressed with a log-transformation
and temporally downsampled to 1 Hz. Filters were tuned to
six spatial frequencies (0.75, 1.5, 3.0, 6.0, 12.0, 24.0 cycles per
image) and three temporal frequencies (1.0, 2.0, 4.0 Hz), without
directional parameters. Filters were positioned on a square grid
that covered the screen. The adjacent filters were separated
by 4.0 SD of their spatial Gaussian envelopes. The original ME
features (1920) were reduced to 300 dimensions using principal
component analysis (PCA).

For the auditory regressor, we used a modulation transfer
function (MTF) model (Nakai et al. 2021). A sound cochleogram
was generated using a bank of 128 overlapping bandpass fil-
ters that ranged from 20 to 10 000 Hz. The window size was
set to 25 ms and the hop size was set to 10 ms. The filter
output was averaged across 1 s (TR). We further extracted the
features from the MTF model, which we have provided in a
public repository. For each cochleogram, we calculated a convo-
lution with modulation-selective filters. The outputs of the two
filters with orthogonal phases (quadrature pairs) were squared
and summed to yield the local modulation energy. Modulation
energy was then log-transformed, averaged across 1 s, and fur-
ther averaged within each of the 20 nonoverlapping frequency
ranges that were logarithmically spaced along the frequency
axis. The filter outputs of the upward and downward sweep
directions were also averaged. Modulation-selective filters were
tuned to 10 spectral modulation scales (0.35, 0.50, 0.71, 1.00, 1.41,
2.00, 2.83, 4.00, 5.66, and 8.00 cycles per octave) and 10 temporal
modulation rates (2.8, 4.0, 5.7, 8.0, 11.3, 16.0, 22.6, 32.0, 45.3, and
64.0 Hz). The original MTF features (2000) were reduced to 300
dimensions using PCA.

For the model training of the Text-only condition, the visual
regressor was concatenated with the nontarget features in the

banded-ridge regression (if the target features were semantic
features, the regressor was concatenated with the phonemic
features). The effect of visual information was then excluded
through variance partitioning analysis. This analysis was per-
formed for each of the semantic and phonemic features as target
features. For the model training of the Speech-only condition,
the auditory regressor was used in the same manner.

Variance Partitioning Analysis

To assess the predictive performances of semantic and phone-
mic features separately, we performed a variance partitioning
analysis (de Heer et al. 2017; Lescroart et al. 2015). Predicted
signals were estimated for each of the two separate models and
the concatenated model, as follows:

X̂1 = F1W1

X̂2 = F2W2

X̂3 = [F1 F2]

[
W1

W2

]

Coefficients of determination were estimated for each of the
two separate models and the concatenated model, as follows:

V2
i = 1 −

∑ (
X̂i − X

)2

∑ (
X − X

)2
,
(
i = 1, 2, 3

)

where X and X represent cortical response and mean response
(across time) in the test dataset, respectively. Prediction accu-
racies for every single model (R1 and R2, for the semantic and
phonemic features, respectively) were obtained by subtracting
the coefficient of determinant calculated for a targeted single
model from that calculated for the concatenated model, as
follows:

R2
1 = V2

3 − V2
2

R2
2 = V2

3 − V2
1

To make the predicted performance comparable with those
reported by previous studies (de Heer et al. 2017; Deniz et al.
2019; Huth et al. 2016, 2012), the square root was calculated.
To obtain a null distribution of the prediction accuracy, we
calculated R1 and R2 values for all cortical voxels, based
on the originally predicted responses and a random phase
permutation of the actual responses from the test dataset.
The resulting P-values (one-sided) were corrected for multiple
comparisons using the false discovery rate (FDR) procedure
(Benjamini and Hochberg 1995).

Modality Invariance

To quantify how the unimodal models explained brain activity in
each voxel, regardless of the presentation modality, we defined
a MI value. Previous studies have quantified MI using a model
weight correlation (Deniz et al. 2019) or intersubject correlation
of brain activity (Nguyen et al. 2019). To quantify MI based on
prediction accuracy, we used the geometric mean of prediction
accuracy instead of weight correlation. This can be justified by
the fact that models with similar weight values have similar
predictive performance. MI consisted of two components: DT
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Table 1 Notation of prediction accuracy for all combinations of conditions, for both the training and test datasets

MI analyses (unimodal experiments)

Training condition Test condition and feature modality

Text-only condition (Features from the text) Speech-only condition (Features from speech)

Text-only condition RTT RTS

Speech-only condition RST RSS

AS analyses (bimodal experiments)

Attend-visual condition Attend-audio condition

Features from the text
(attended)

Features from speech
(unattended)

Features from the text
(unattended)

Features from speech
(attended)

Text-only condition RTTV RTSV

Speech-only condition RSTA RSSA

and DS. DT has been defined as a degree of predictability for the
Text-only test dataset, regardless of the training modality:

DT = √
RTT · RST

where RTT and RST are the intramodal prediction accuracy for
the text-only model and the cross-modal prediction accuracy
calculated for the speech-only model when applied to the test
dataset for the Text-only condition, respectively (see Table 1
for all notations of prediction accuracies). Note that the R∗∗
values correspond to the R1 or R2 values described in the pre-
vious subsection, depending on the linguistic features used (i.e.,
semantic or phonemic). Similarly, DS is defined as the degree
of predictability calculated for the Speech-only test dataset,
regardless of the training modality:

DS = √
RTS · RSS

where RSS and RTS are the intra-modal prediction accuracy by
the speech-only model and the cross-modal prediction accuracy
calculated for the text-only model when applied to the test
dataset for the Speech-only condition, respectively. For all voxels
showing negative prediction accuracies, the prediction accuracy
was set to 0 to avoid obtaining imaginary values. MI was then
calculated for each voxel as a geometric mean between DS and
DT, as follows:

MI = √
DS · DT

MI value ranges from 0 to 1. A high MI value indicates that
the target linguistic features are represented in a modality-
independent manner, where MI = 0 indicates that the target
voxel does not have a shared linguistic representation of text
and speech. The significance of each MI value was assessed
using a phase permutation test (one-sided), corrected for
multiple comparisons using the FDR procedure (Benjamini and
Hochberg 1995).

As an additional analysis, we also calculated DT, DS, and
MI using the arithmetic mean (denoted as DT

Arith, DS
Arith, and

MIArith):

DT
Arith = (RTT + RST) /2

DS
Arith = (RTS + RSS) /2

MIArith =
(
DS

Arith + DT
Arith

)
/2

The significance of MIArith was assessed similarly to the
original MI.

Modality Specificity

To quantify how the unimodal models explained brain activity
that was specific for a single modality, we defined modality
specificity, which was calculated in each voxel for each modality
(MST for the Text-only condition and MSS for the Speech-only
condition) as the difference between the intramodal and cross-
modal prediction accuracies:

MST = RTT-RST

MSS = RSS-RTS

MS value ranges from −1 to 1. A high MS value indicates that
the target linguistic features are represented specifically accord-
ing to the target modality, where negative MS indicates that the
target voxel does not have a modality-specific representation.
Significance and FDR corrections for multiple comparisons were
calculated as described for the MI values.

Attention Selectivity

To quantify how each cortical voxel was affected by selective
attention, we defined an AS value. Based on a previous study
that contrasted brain activity between attended and unattended
conditions (Regev et al. 2019), the effect of selective attention
was measured by the difference in prediction accuracy between
the attended and unattended conditions. AS consisted of two
components, AV and AA, which indicated the augmentation
of prediction accuracies according to the application of selec-
tive attention to the visual and auditory modalities, respec-
tively. To calculate AV, the text-only model was tested on the
test dataset acquired under the Attend-visual condition. The
prediction accuracies contrasted the features from the visual
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(attended) and the auditory (unattended) modalities, as follows:

AV = RTTV − RTSV

where RTTV and RTSV represent the prediction accuracies cal-
culated based on the features from the visual (attended) and
auditory (unattended) modalities, respectively (see Table 1 for
all notations of prediction accuracies). Similarly, to calculate AA,
the speech-only model was tested on the test dataset acquired
under the Attend-audio condition. The prediction accuracies
contrasted the features from the auditory (attended) and visual
(unattended) modalities, as follows:

AA = RSSA − RSTA

where RSSA and RSTA are the prediction accuracies calculated
based on the features from the auditory (attended) and visual
(unattended) modalities, respectively. Voxels showing negative
AV and AA values were set to 0. AS was calculated as the
geometric mean of AV and AA, as follows:

AS =
√

AV · AA

AS value ranges from 0 to 1. AS is high when the features
extracted from the attended modality always predict brain activ-
ity more accurately than those of the unattended modality,
where AS = 0 indicates that the linguistic representation of the
target voxel is not affected by the selective attention. The calcu-
lation of statistical significance and FDR corrections for multiple
comparisons were performed as described for the MI values.

As an additional analysis, we also calculated AS using the
arithmetic mean (denoted as ASArith):

ASArith = (AV + AA) /2

The significance of ASArith was assessed similarly to the
original AS.

Anatomical ROI Analysis of MI and AS

To quantify how different cortical regions display MI and AS,
we calculated ratios between voxels with exclusively positive
MI values (“MI-only voxels”), voxels with exclusively positive AS
values (“AS-only voxels”), or voxels showing both positive MI and
AS values (“shared voxels”) and voxels showing either positive
MI or AS values across 148 anatomical regions of interest (ROIs),
based on the Destrieux cortical atlas (Destrieux et al. 2010). To
focus on the cortical regions associated with linguistic informa-
tion, we selected ROIs that contained a relatively large number
of voxels with positive MI or AS values (>30% and >100 voxels
within the target ROI).

Results
Selective Attention Facilitated the Understanding of
Semantic Content

To confirm that participants performed the selective attention
task as instructed, we used a post-experimental questionnaire
that tested whether participants understood the content of the
attended stimuli. The average score of the post-experimental

questionnaire was higher for the attended stimuli (mean ± SD,
90.8% ± 4.9%) than that of the unattended stimuli (50% ± 4.5%;
chance level = 50%; P < 0.02 for all participants using chi-squared
tests), which indicated that selective attention facilitated partic-
ipants’ comprehension of the semantic content in the linguistic
stimuli.

The Semantic Encoding Model Predicted Brain Activity,
Regardless of Modality

To confirm that the encoding models successfully captured
brain activity during the unimodal experiments (Fig. 1B), we
performed a series of intramodal encoding modeling tests and
examined the modeling accuracy using a test dataset from the
same modality as the training dataset (Fig. 1E, yellow). To quan-
tifiably evaluate the predictability of brain activity, based on
different linguistic information, we extracted both semantic and
phonemic features from the narrative stimuli. We exclusively
evaluated the effects of either semantic or phonemic features by
combining banded ridge regression (Nunez-Elizalde et al. 2019)
with variance partitioning analysis (de Heer et al. 2017; Lescroart
et al. 2015) (see Materials and Methods for details).

We first trained encoding models using the data from the
Text-only condition (text-only model) and predicted brain activ-
ity using the text-only test dataset. Using semantic features,
we found that the text-only model significantly predicted activ-
ity in the perisylvian regions, including the superior temporal,
inferior frontal, and inferior parietal cortices (blue or white in
Fig. 2A). Although we combined the phonemic features with
the semantic features, prediction performance was not largely
affected when letter features were used instead of phonemic
features (Supplementary Fig. S1). Similarly, we trained encoding
models using the data from the Speech-only condition (speech-
only model) and predicted brain activity using the speech-only
test dataset (blue or white in Fig. 2B). The speech-only model also
significantly predicted activity in the perisylvian regions.

We next examined whether the unimodal models captured
modality-invariant representations by performing cross-modal
encoding modeling, during which we examined the modeling
accuracy using a test dataset obtained from a different modality
than the training dataset (Fig. 1E, red). A speech-only model was
used to predict the brain activity with a text-only test dataset
(P < 0.05, FDR corrected, red or white in Fig. 2A), which showed
significant prediction accuracy in the perisylvian regions. Simi-
larly, a text-only model was used to predict brain activity with
a speech-only test dataset, which also displayed significant
prediction accuracy in the perisylvian regions (red or white in
Fig. 2B). The overlap between the intramodal and cross-modal
prediction performances displayed a clear contrast between the
cortical organization associated with modality-specific repre-
sentation in the early sensory regions (i.e., the superior temporal
and occipital regions) and that associated with the modality-
invariant representation in the perisylvian regions.

To identify those regions that activate during modality-
invariant representations of linguistic information, we further
calculated the MI value, by combining the intramodal and
cross-modal prediction accuracies, using semantic features.
The MI values were determined to be significantly larger
than 0 in the perisylvian regions (P < 0.05, FDR corrected,
Fig. 2C and Supplementary Fig. S2), indicating that these
regions are associated with modality-independent semantic
representations. In contrast with semantic features, however,
phonemic features were associated with small MI values across
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Figure 2. Effects of stimulus modality. (A) Comparison of the prediction accuracies of the unimodal models when applied to a Text-only test dataset using semantic
features. The intramodal prediction accuracies of the text-only model (denoted as RTT, blue) and the cross-modal speech-only model (denoted as RST, orange) are
mapped onto the cortical surface of participant ID01. Regions in which activity was predicted, regardless of the stimulus modality, are shown in white. Only significant
regions (P < 0.05, FDR corrected) are shown. Anatomical ROIs are marked by yellow lines. (B) Comparison between the prediction accuracies of the unimodal models for a

Speech-only test dataset, using semantic features. Intramodal prediction accuracy, using the speech-only model (denoted as RSS, blue), and the cross-modal prediction
accuracy, using the text-only model (denoted as RTS, orange), are mapped onto the cortical surface. MI was calculated using semantic features (C) or phonemic features
(D) (see Supplementary Figs S2 and S3 for the other participants). Modality specificity for text (MST, blue) and modality specificity for speech (MSS, red) were calculated
using semantic features (E) or phonemic features (F) (see Supplementary Figs S4 and S5 for the other participants). Mean MI, MST, and MSS values were extracted from

the five anatomical ROIs marked in (A), averaged across six participants, for both the left and right hemispheres, using semantic features (G) or phonemic features (H).
Error bar, SD.
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the cortex (Fig. 2D and Supplementary Fig. S3), indicating that
modality-invariant representations of linguistic information are
predominantly conveyed by semantic features.

To identify those regions associated with modality-specific
representations, we calculated the modality specificity of text
(MST) and speech (MSS). Even though significantly higher MST

values were observed in the visual cortex (P < 0.05, FDR cor-
rected, blue in Fig. 2E and Supplementary Fig. S4), the MSS values
were significantly increased in the auditory cortex (P < 0.05, FDR
corrected, red in Fig. 2E and Supplementary Fig. S4). Phonemic
features were also significantly associated with MST values in
the visual cortex and with MSS values in the auditory cortex
(Fig. 2F and Supplementary Fig. S5).

To evaluate the MI associated with each cortical region, we
extracted MI values for five anatomical ROIs, averaged across all
six participants (Fig. 2G,H). For the anatomical ROIs, we selected
three perisylvian regions: the inferior frontal sulcus (IFS), the
superior temporal sulcus (STS), and the angular gyrus (AG).
Activity in these regions has frequently been reported in previ-
ous neuroimaging studies examining language (Price 2010). We
also selected two sensory ROIs, at the occipital pole (OP) and
Heschl’s gyrus (HG), which process early sensory components
in the visual and auditory modalities, respectively. We found
that the MI values for semantic features were larger in the
three perisylvian regions than those in the sensory regions
(Cohen’s d = 2.15 [left hemisphere], d = 2.32 [right hemisphere],
calculated between the average of the three perisylvian regions
and the average of the two sensory regions). In contrast, the
MST values for semantic features in the three perisylvian regions
were found to be smaller than those in the OP (d = 1.65 [left],
d = 2.84 [right]), and the MSS values for semantic features in the
three perisylvian regions were smaller than those in the HG
(d = 1.78 [left], d = 1.55 [right]). For the phonemic features, we also
found that the MI values were larger in the perisylvian regions
than those in the sensory regions (d = 2.62 [left], 2.21 [right]).
In contrast, the MST values for semantic features in the three
perisylvian regions were found to be smaller than those in the
OP (d = 1.70 [left], d = 3.31 [right]), and the MSS values for semantic
features in the three perisylvian regions were smaller than those
in the HG (d = 1.80 [left], d = 1.42 [right]).

To exclude the effect of sensory information, we constructed
additional encoding models by adding visual and auditory fea-
tures as nuisance regressors (see Materials and Methods for
details; Fig. 3 and Supplementary Figs S6–S10). The MI values of
the semantic features were not largely affected by this analysis
(Fig. 3A,C,E and Supplementary Figs S6, S8, S9). However, when
we used the sensory regressors, the MI values of the phonemic
features were reduced across the cortex (Fig. 3B,D,F and Supple-
mentary Figs S7, S8, S10). These results also indicated that only
semantic features are represented in the perisylvian regions in
a modality-invariant manner, whereas modality-specific infor-
mation for both the visual and auditory domains are represented
in the primary sensory areas, regardless of linguistic features.

Effect of Selective Attention on Model Prediction
Performance

To examine whether selective attention affects the cortical
representations of linguistic information, we conducted bimodal
experiments, during which speech and text were simultane-
ously presented and participants were asked to selectively
attend to only one of the two modalities (Fig. 1C). During the
Attend-visual condition, we extracted semantic features from

both the attended (visual) and unattended (auditory) modal-
ities, which were presented simultaneously. The prediction
accuracies were calculated by applying a text-only model, with
features in each of the attended and unattended modalities
(Fig. 1F, top). We found increased prediction accuracy across
the cerebral cortex when using semantic features from the
attended modality (Fig. 4A, orange), compared with those from
the unattended modality (blue). Similarly, a speech-only model
was tested using the data collected during the Attend-audio
condition (Fig. 1F, bottom). We again found larger prediction
accuracy across the cerebral cortex when using semantic
features from the attended modality (Fig. 4B, orange), compared
with those from the unattended modality (blue). Cross-modal
prediction accuracies were not calculated during this procedure,
and we evaluated MI and AS separately.

To investigate which cortical regions were modulated
by selective attention, we calculated AS by subtracting the
prediction accuracy measured using unattended features from
that calculated using attended features, within each modality
(Fig. 4A,B). Larger AS values were identified in the inferior
frontal, middle temporal, and inferior parietal regions when
using semantic features (Fig. 4C and Supplementary Fig. S11).
In contrast, we found that very small brain regions showed
significant AS values when using phonemic features (Fig. 4D
and Supplementary Fig. S12). In contrast to the MI values, the AS
values were not largely affected by excluding sensory regressors
(Fig. 5 and Supplementary Figs S13–S15).

Select Brain Regions with Modality-Invariant Semantic
Representations Are Affected by Selective Attention

An overlaid cortical map of the MI and AS values for seman-
tic features (Fig. 6A,B) indicated that some voxels specifically
represented MI (red), whereas other voxels specifically repre-
sented AS (blue). A scatter plot of the cortical voxels clearly
revealed three types of voxels associated with semantic features
(Fig. 6C and Supplementary Fig. S16), in which voxels associated
with positive MI and 0 AS are colored in red (MI-only voxels; a
mean ± SD voxel size across six participants, 5934 ± 2170), those
associated with positive AS and 0 MI are colored in blue (AS-only
voxels; 8727 ± 2311), and those associated with both positive MI
and AS are colored in purple (shared voxels; 2186 ± 1550). Within
the shared voxels, we found a positive correlation between AS
and MI (Spearman’s correlation coefficients, ρ = 0.695 ± 0.025;
Fig. 6C). In contrast, when using phonemic features, relatively
few shared voxels were found to have significant values (Fig. 6D;
MI-only voxels, 5462 ± 1233; AS-only voxels, 4423 ± 1451; shared
voxels, 912 ± 449). However, we again found a positive correlation
between AS and MI in these shared voxels (ρ = 0.610 ± 0.073).

The relationship between the MI and AS values was also
examined using the encoding models that were constructed
using sensory regressors. The distribution of the three types
of voxels was not fully affected by regressing out the sen-
sory components from the semantic features (Fig. 6E; MI-only
voxels: 4914 ± 1882; AS-only voxels: 7282 ± 2481; shared voxels:
1659 ± 1158). For the phonemic features, we found few shared
voxels after regressing out the sensory components (Fig. 6F;
MI-only voxels: 1328 ± 388; AS-only voxels: 3639 ± 1462; shared
voxels: 84 ± 19). We observed a significant positive correlation
between the AS and MI values after regressing out the sensory
components from the shared voxels (Fig. 6E,F and Supplemen-
tary Fig. S17; semantic features: ρ = 0.675 ± 0.042; phonemic fea-
tures: ρ = 0.402 ± 0.100). These results indicated that the shared
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Figure 3. MI with sensory regressors. MI was calculated using semantic features (A) and phonemic features (B) and regressing out the sensory components and are
mapped onto the cortical surface of participant ID01 (see Supplementary Figs S6 and S7 for the other participants). Only significant regions (P < 0.05, FDR corrected)

are shown. Modality specificity for text (MST, blue) and modality specificity for speech (MSS, red) were calculated using semantic features (C) and phonemic features
(D) and regressing out sensory components (see Supplementary Figs S9 and S10 for the other participants). Scatter plots show the original MI, and MI with sensory
regressors, for both semantic and phonemic features, plotted for participant ID01 (see Supplementary Fig. S8 for the other participants). Motion energy and MTF
features were used as sensory regressors.

brain representation of MI and AS observed for the phonemic
features (Fig. 6D) may have been caused by sensory information,
whereas that observed for the semantic features was indepen-
dent of sensory information.

In the scatter plots of the MI and AS values (Fig. 6C,D), we
observed abrupt transitions from MI-only voxels to shared vox-
els and from shared voxels to AS-only voxels. Such abrupt
transitions might have been caused by the definition of MI and
AS based on the geometric mean. To clarify the underlying cause
of such transitions, we calculated the MI and AS values based

on the arithmetic mean. We found a similar distribution of MI
values using the arithmetic mean as that of the original MI val-
ues (Spearman’s correlation coefficient for MI values calculated
using the geometric and arithmetic means: ρ = 0.474 ± 0.080 for
sematic features and ρ = 0.442 ± 0.036 for phonemic features;
Supplementary Figs S18 and S19) and a similar distribution of
AS values calculated using the arithmetic mean as that of the
original AS values (Spearman’s correlation coefficient for AS
values calculated using the geometric and arithmetic means:
ρ = 0.549 ± 0.060 for sematic features and ρ = 0.388 ± 0.040 for
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Figure 4. Effects of selective attention. (A) Prediction accuracies, using a text-only model on the Attend-visual condition dataset, mapped onto the cortical surface
of participant ID01. Two prediction accuracies, associated with semantic features, were extracted from the attended modality (visual, orange) and the nonattended

modality (audio, blue) and compared (RTTV and RTSV, respectively). Only significant regions (P < 0.05, FDR corrected) are shown. (B) Comparison of the prediction
accuracies using a speech-only model on the Attend-audio condition (RSSA and RSTA). AS was calculated by subtracting the prediction accuracy for the unattended
condition from that for the attended condition and was mapped onto the cortical surface of participant ID01, using semantic features (C) or phonemic features (D) (see
Supplementary Figs S11 and S12 for the other participants).

phonemic features; Supplementary Figs S20 and S21), although
their distributions were less localized within the perisylvian
region and extended into the occipital cortex. The scatter plots
of the MI and AS values demonstrated reduced abruptness in
the transition from MI to shared voxels (Supplementary Fig.
S22), which suggested that the abrupt transitions of the MI-only,
shared, and AS-only voxels may have resulted from the current
method of defining the MI and AS values.

To scrutinize the detailed cortical organization associated
with MI and AS, we calculated the ratios between these three
types of voxels and all voxels that display either positive MI or
AS values across all of the anatomical ROIs when using semantic
features (Fig. 6G). Because both MI and AS were more densely
associated with semantic features than with phonemic features
(Fig. 6A–F), we focused on semantic features in this analysis.
Seven bilateral perisylvian ROIs (inferior frontal gyrus, IFS, pre-
central sulcus [PCS], superior temporal gyrus [STG], STS, AG, and
intraparietal sulcus [IPS]) contained relatively large portions of
voxels that showed significant MI or AS values (>30% and >100
voxels within the target ROI). For all target ROIs, there were more
MI-only and AS-only voxels than shared voxels (d = 2.08 and
d = 3.30, respectively). The target ROIs showed different patterns

of MI-only and AS-only voxels. More MI-only voxels were found
in the left STG and STS (left, d = 0.79; right, d = 0.76) compared
with AS-only voxels, whereas more AS-only voxels were found
in bilateral IFS (left, d = 0.92; right, d = 1.26), left PCS (d = 1.50), right
STG (d = 2.38), right AG (d = 3.01), and bilateral IPS (left, d = 1.54;
right, d = 3.17) compared with MI-only voxels.

Discussion
In this current study, participants underwent fMRI experiments
and were presented with either unimodal auditory or visual
stimuli or with bimodal auditory and visual stimuli; they were
later asked to selectively attend to only one modality. The uni-
modal model, using semantic features, was able to predict the
activity in the bilateral inferior frontal, superior temporal, and
inferior parietal regions, for both modalities. The involvement of
these regions in language processing has been repeatedly sug-
gested in many neuroimaging studies (Price 2010). In contrast,
the unimodal models using phonemic features were not able
to predict modality-invariant activity. This result is consistent
with the results of a previous study, by de Heer et al. (2017),
which reported that encoding models using semantic features
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Figure 5. AS with sensory regressors. AS was calculated using semantic features (A) and phonemic features (B) and regressing out sensory components and is mapped

onto the cortical surface of participant ID01 (see Supplementary Figs S13 and S14 for the other participants). Only significant regions (P < 0.05, FDR corrected) are shown.
(C, D) Scatter plots show the original AS and AS with sensory regressors for both semantic and phonemic features, plotted for participant ID01 (see Supplementary Fig.
S15 for the other participants). Motion energy and MTF features were used as sensory regressors.

predicted larger brain regions than those predicted by phonemic
models.

Differences in prediction accuracy, between attended and
unattended features, can only be explained using the effects of
attention as the only differences in the prediction were associ-
ated with these extracted features (attended vs. unattended). A
behavioral questionnaire administered after each session con-
firmed that participants showed higher accuracy for under-
standing the semantic contents of the attended stimuli. This
result suggested that semantic information is represented in
the brain only when participants pay attention to the target
stimuli, which was consistent with the finding that phonemic
features produced significant AS values only in very small brain
regions.

The brain regions that were well predicted by cross-modal
predictions and those regions that were modulated by selective
attention demonstrated partial overlap; this agrees with the
hypothesis depicted in Fig. 1A (center). Anatomical ROI analyses
further showed that the overlapping regions were primarily
located in perisylvian regions, such as the inferior frontal, supe-
rior temporal, and inferior parietal cortices. The MI of semantic
representations has been reported previously (Booth et al. 2002;
Deniz et al. 2019); however, we show, for the first time, that this
representation partially correlates with the effects of selective
attention on perisylvian regions.

We also identified cortical voxels showing only MI, as well
as those showing only AS. These results suggested heterogene-
ity among cortical representations of semantic information. A
recent study of the cocktail party effect (i.e., the simultaneous

presentation of different auditory stimuli) showed that brain
activity reflected the semantic information of attended words
but not unattended words (Brodbeck et al. 2018). Selective atten-
tion may affect some cortical semantic networks, in a modality-
specific manner.

Modality-specific regions were primarily identified in the
primary auditory cortex, for the auditory modality, and in the
primary visual cortex, for the visual modality. These results are
consistent with a previous study, which reported that higher-
order brain regions were more strongly affected by selective
attention than early sensory regions (Regev et al. 2019). Impor-
tantly, the modality-specificity values were found to be larger
in the early sensory regions, for both semantic and phonemic
features, whereas the modality-invariance values were larger in
the perisylvian regions, only for semantic features. This model
dependency may indicate that the processing of semantic infor-
mation is more affected by selective attention, whereas phone-
mic features are primarily processed in early sensory regions
and are not fully affected by selective attention.

Additional analyses with sensory regressors showed the
reduced MI and AS values only for the phonemic features
(Figs 3E,F and 5C,D; Supplementary Figs S8 and S15). In contrast,
the sensory regressors did not have much influence on the MS
values (Figs 2E,F and 3C,D). The occipital and superior temporal
cortices may share linguistic information in a modality-specific
manner. This is in line with the previous findings that semantic
features are represented in large brain regions, including
occipital and superior temporal cortices (Huth et al. 2012;
Nishida and Nishimoto 2018).
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Figure 6. Partial overlap between the modality-invariant and attention-selective regions. MI (red) and AS (AS, blue) were mapped onto the cortical surface of participant
ID01, using semantic features (A) and phonemic features (B). Only significant regions (P < 0.05, FDR corrected) are shown. A scatter plot is shown for MI and AS, using

semantic features (C) and phonemic features (D) (see Supplementary Fig. S16 for the other participants). Data were extracted from the cortical voxels of participant
ID01. Data with positive MI and zero AS are colored in red. Data with positive AS and zero MI are colored in blue. Data with positive MI and AS are colored in purple. For
each plot, a Spearman’s correlation coefficient (ρ) is displayed. Scatter plots show the MI and AS values, using semantic features (E) and phonemic features (F), with
sensory components regressed out (see Supplementary Fig. S17 for the other participants). Motion energy and MTF features were used as sensory regressors. (G) The

ratios of voxels exclusively showing positive MI (red), those exclusively showing positive AS (blue), and those showing both MI and AS (purple) are plotted for seven
anatomical ROIs in the left (left panel) and right hemispheres (right panel). IFG, inferior frontal gyrus. Error bar, SD.

We used the geometric mean for the definition of MI and AS;
however, there are other possible definitions of these values.
When we used the arithmetic mean instead of the geometric
mean, we obtained similar MI and AS values across the cortex
(Supplementary Figs S18–S22). However, we did not use the
arithmetic mean in the main analyses because it may include
modality-specific components. For example, if one voxel has
DS = 1 and DT = 0 (see Modality Invariance section for the defini-
tion of these notations), the arithmetic mean MI = 0.5, whereas
the geometric mean MI = 0. Indeed, we found significant MI and
AS values in the occipital cortex using the arithmetic mean
(Supplementary Figs S18–S21). Thus, we considered that the

geometric mean was more appropriate for defining the MI and
AS values.

Using an encoding model approach, we compared phonemic
and semantic features for their predictabilities of brain activ-
ity, which provided detailed information that was not obvious
in a previous study that reported increased inter-participant
correlations among brain activities during selective attention
(Regev et al. 2019). We found that encoding models associated
with semantic features were more strongly affected by selective
attention than the phoneme-based models, which is consis-
tent with behavioral results showing that the understanding of
semantic content was facilitated by selective attention.
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Unimodal models using phonemic features have shown
modality specificity, not only in the auditory cortex but also
in the visual cortex. Although this finding may appear to
contradict the idea of a “phoneme,” the MST values observed
in the early visual cortex can be explained by phonemic
orthography associated with the Japanese language. Because
Japanese largely contains phonograms (i.e., “Hiragana” and
“Katakana”), phonemic features may correlate with visually
presented Japanese characters.

Encoding models were trained using the stimuli in the
unimodal experiment, whereas the bimodal data were used
only in the model testing. Adopting this approach allows us
to exclude the influence of nontarget modalities from the
constructed models, which simplifies the interpretation of the
prediction performance (i.e., the cross-modal and attentional
effects observed are solely due to the test dataset). However, if
we perform bimodal experiments as training, we can visualize
how selective attention warps semantic space (e.g., Çukur et al.
2013a, 2013b; Shahdloo et al. 2020). Such detailed analysis would
further clarify the types of linguistic content (e.g., noun, verb,
and adjective) that are most affected by selective attention.

We used naturalistic, narrative stories and extracted linguis-
tic information from both the auditory and visual stimuli. This
approach can be applied to other linguistic features. Although
we have only examined two linguistic models, which have both
been used in previous studies (de Heer et al. 2017; Nishida and
Nishimoto 2018), further applications examining different fea-
tures, such as syntax, may further increase prediction accuracy
and capture more profound representations across modalities.
Further modeling approaches are necessary for the compre-
hensive evaluation of the cortical representation of linguistic
information and the effects of selective attention.
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